
Deep Probabilistic Modelling of Price Movements
for High-Frequency Trading

Ye-Sheen Lim
Department of Computer Science

University College London
London, UK

yesheenlim@gmail.com

Denise Gorse
Department of Computer Science

University College London
London, UK

d.gorse@cs.ucl.ac.uk

Abstract—In this paper we propose a deep recurrent archi-
tecture for the probabilistic modelling of high-frequency market
prices, important for the risk management of automated trading
systems. Our proposed architecture incorporates probabilistic
mixture models into deep recurrent neural networks. The result-
ing deep mixture models simultaneously address several practical
challenges important in the development of automated high-
frequency trading strategies that were previously neglected in
the literature: 1) probabilistic forecasting of the price movements;
2) single objective prediction of both the direction and size of
the price movements. We train our models on high-frequency
Bitcoin market data and evaluate them against benchmark
models obtained from the literature. We show that our model
outperforms the benchmark models in both a metric-based test
and in a simulated trading scenario.

I. INTRODUCTION

The aim of this paper is to develop a deep neural network
architecture for producing forecasts that is suitable for use in
an automated trading strategy (ATS) pipeline to reduce trading
risk. When designing and developing an ATS in practice, risk
management is arguably a more crucial part of the pipeline
than forecasting. In a complex dynamical system such as a
financial market, it is sensible to expect that even the best
trading algorithms, that incorporates state-of-the-art models
and are driven by the most expensive and exclusive datasets,
will suffer losses at some point. If risk is improperly managed,
for example by holding large positions in assets with high
variance, the trader may rapidly lose all their capital.

When the forecasting component of an ATS has discovered
a trading opportunity, the information is passed on to the risk
management component to quantitatively determine (based on
current trade positions and capital) if the trading opportunity
should be taken and, if so, how much capital should be
assigned to this opportunity. In order to make these decisions,
uncertainties surrounding the trading opportunities need to
be known. These uncertainties can either be extrinsically
obtained through the forecast errors of historical backtesting,
or intrinsically obtained from probabilistic forecasts.

Uncertainties obtained from backtesting are useful to man-
age risks in trading strategies [1] such as the long-short strat-
egy [2], which theoretically guarantees no losses. However,
probabilistic forecasts can directly be fed into a much greater
variety of proven and well-established industry standards such

as the computation of Value at Risk (VaR) [3] and the Kelly
Criterion [4]. VaR, which computes the potential loss of a
trading opportunity, is directly known if the trading oppor-
tunity is described in the form of a probability distribution.
Probabilistic forecasts also allows us to compute of the Kelly
Criterion, which suggests the optimal bet sizes for a given
trading opportunity require knowledge of the win or lose
probabilities, as well as the expected values of the win and
loss.

In this paper we propose a novel architecture that combines
deep learning and statistical modelling to address the main
challenge of the probabilistic forecasting of high-frequency
price movements. The nature of the architecture also allows
us to address the secondary challenge of determining the size
of price movements. In finance, it is more common to treat
forecasting as a classification problem rather than a regression
problem. Knowing if the price will go up or down is vital as it
gives us the all-important information as to which position (to
buy or to sell) to take on a trading opportunity. However, along
with this directional information, knowing also by how much
the price will go up or down (i.e. the size of the movements)
will give the trader a much more complete picture of risk
and therefore enable better decision making. When computing
the Kelly Criterion, for instance, we would require probability
distributions of the size of the price movements.

This paper is organised as follows. In Section II we present
a review of current literature related to forecasting for high-
frequency trading and to deep probabilistic forecasting. Then
in Section III we describe our proposed architecture. Our data
collection, experimental set-up, model implementation, and
test and benchmarking procedures are described in Section
IV. The next section V presents the results of the experiments.
Then, in Section VI, we present a simulated trading scenario
using real-world data in which we test the practical usage
of model and its benchmarks. Finally we conclude with a
summary and discussion of future work in Section VII.

II. RELATED WORK

In the domain of high-frequency trading (HFT), the most
common method for producing probabilistic forecasts is by
the stochastic modelling of price movements, an extensively
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researched topic in quantitative finance. [5]–[8] These ap-
proaches are however not extensively data-driven and rely on
fitting closed-form theory-driven stochastic models, leading
to major drawbacks such as sensitivity to regime shifts,
intractability and lack of generalisation power. Due to these
drawbacks, trading strategies driven by these models rely
heavily on risk management to limit potential losses.

These kinds of drawbacks can be overcome with data-driven
approaches using machine learning models. Deep learning
models in particular have exhibited state-of-the-art results in
predicting high-frequency stock price movements [9]–[11].
However, the needs of risk management, which are addressed
here have been mostly overlooked in the existing literature.
These works are focused on producing deterministic forecasts,
meaning that for risk management the trader has to rely on
the less useful measure of uncertainty that is extrinsically
obtained from historical backtesting. For instance, in absence
of probabilistic forecasts a method of using the backtesting
false positives and false negatives rates to compute profit risk
has been proposed [1]. Furthermore, all previous deep learning
papers predict only the directional price movements and do not
provide any output on the size of the price movements. The
only exception is [11]), whose output can be used to compute
the size of the price movements.

Probabilistic forecasts can be obtained from deep learning
models either by exploiting dropout to compute uncertainty
[12], or by adopting a probabilistic network architecture. For
the application presented in this paper, the probabilistic archi-
tecture approach allows for the specification of application-
suitable probabilistic models and likelihood functions, and
also reduces the time it takes to produce the probabilistic
forecast, which is a crucial process in HFT. Such probabilistic
architectures [13] have been shown to be successful in the
domains of e-commerce [14], [15] and NLP [16]. The novelty
in our proposed architecture compared to existing work is in
the way the output is specified to produce forecasts suitable
for use in automated HFT pipelines.

III. METHOD

A. Problem Formulation

HFT data is characterized by the order flow, which is the
microsecond stream of events arriving into an exchange. Each
event is essentially an action taken by a market participant,
such as placing and cancelling orders. The order flow is the
underpinning mechanism behind all the changes we see on the
price charts one would find on Google Finance, for instance.
Readers are directed to [17] for a comprehensive introduction
to this concept as its details are outside the scope of this paper.
It should be noted that we change much of the jargon used in
[17] to more intuitive terms for readers without a background
in quantitative finance.

Let us denote an order flow of length m (representing the
ith datapoint) as an irregularly spaced sequence xi,:m. (Note
that the notation ”:m” is a list notation indicating all indices
from the beginning up to m.) Since events can arrive, and price
change can occur, at any time, irregularly spaced sequences

are an important characteristic of HFT data. Given xi,:m, we
want to predict the price change after the last event of xi,:m.
The word ”after” is loosely defined here such that the price
change could be caused by the next event, or be the price
change τ seconds after the last event in the stream, and so on.
Denoting the price change as yi,m, our main goal is to then
model the conditional distribution of yi

P (yi,m|yi,:m−1,xi,:m,x(s)
i ) (1)

where x
(s)
i are static (non-temporal) covariates, xi,:m are the

non autoregressive temporal covariates and yi,:m−1 are the
autoregressive temporal covariates. Note here that since the
temporal covariates xi,:m have irregularly spaced intervals,
each of the auto-regressive covariates yi,:m−1 may be com-
puted relative to the timestamp of the temporal covariates.
For example, if yi,m is the price change τ seconds after xi,m,
then yi,m−1 is the price change τ seconds after xi,m−1.

High-frequency price movements are inherently discrete
since the rules of any given stock exchange typically define
the tick, which is the minimum amount by which prices can
change [17]. Therefore, we have yi,m ∈ Z and can formulate
our problem as one of modelling count data (i.e. how many
ticks the price has moved up or down by).

B. Proposed Architecture

Our proposed architecture for modelling the conditional
distribution in Equation 1 is summarised in Figure 1.

Fig. 1. Proposed architecture

Let h(.) be a function implementing a deep recurrent neural
network (RNN). We first learn abstract representations of the
temporal covariates xi,:m and yi,:m−1 using an L-layer stacked
recurrent neural network (RNN). The output at each layer l
can be described as follows

hli,m =

{
h(hl−1i,m ,h

l
i,m−1,Θ

l) if 1 < l ≤ L
h(yi,:m−1,xi,m,h

l
i,m−1,Θ

l) if l = 1
(2)

where Θl are the neural network parameters associated with
layer l. Any individual covariates xji,m ∈ xi,m that are
non-ordinal and categorical are embedded beforehand into a
multidimensional continuous space before feeding them into



the inputs of the RNNs. This embedding, denoted x̃ji,m, is
implemented as follows

x̃ji,m = g
(
Wjᵀo(xji,m) + bj

)
(3)

where o(.) is a function mapping the categorical features to
one-hot vectors, g(.) is some non-linear activation function,
and Wq and bq are parameters to be fitted.

How the static covariates x
(s)
i are treated depends on the

cardinality. If the cardinality is small, then we append them
at each point in the sequence and repeat them over the whole
sequence. On the other hand, if the cardinality is large then
the previous method would be inefficient and we would feed
xi into a dense layer implemented similarly to Equation 3 but
without the one-hot mapping function.

Whether or not it is concatenated with h
(s)
i , hLi,m is then

fed into a D-layer fully connected neural network for a final
abstraction step. The output at each layer d of this step are
computed as follows

zdi,m =

{
g
(
WdᵀhLi,m + bd

)
if d = 1

g
(
Wdᵀzd−1i,m + bd

)
if 1 < d ≤ D

(4)

where hLi,m, g(.) is some non-linear activation function, and
Wl and bl are parameters to be fitted.

To obtain a probabilistic forecast suitable for use in an
automated high-frequency trading strategy, we propose the
novel application of mixture models [18] in the output of
the architecture for describing the price movements yi,m. The
mixture probabilities πi,m and the parameters θi,m of the
probability distributions are defined as functions of the dense
layer output zDi,m. The model is then fitted by minimising the
negative log-likelihood of yi,m given πi,m and θi,m.

The choice of the type of mixture models, and consequently
the likelihood function, depends on the statistical properties
of the data. For our experiments, we consider three choices
for the modelling of mixtures of count data: 1) the Poisson
mixture model, 2) the Negative Binomial mixture model, 3)
the Zero-Truncated Poisson mixture model.

The most common approach to modelling count data, as-
suming equal mean and variance, is to use the standard Poisson
distribution [19], and so we will begin by considering this
model. Let us denote the mixture probability for component
k as πki,m, the Poisson rate parameter for component k as
λki,m, and the number of mixture components as K. Also, let
k = 1 correspond to downward price movement and k = 2 to
upward price movement. Given the dense layer output zDi,m,
we define the log-likelihood `P of the 2-component Poisson
mixture model used in our experiments as follows, omitting
all i,m labels for readability:

πk =
eW

(πk)
ᵀ
zD+b(πk)∑K

eW
(πk)ᵀzD+b(πk)

(5)

λk = log(1 + eW
(λk)

ᵀ
zD+b(λk)

) (6)

`P (y|π, λ) = log

(
K∑
k

πk
λk
|y|
e−λ

k

|y|!
Ip(y)=k

)
(7)

In the above equations, W (.) and b(.) are neural network
parameters to be fitted, p(.) is a function mapping the sign
of yi,m to k, and I(.) is an indicator function for the given
statement.

However, much real-world data exhibits overdispersion,
where the variance is higher than the mean, causing the
Poisson distributions to be unsuitable since they do not specify
a variance parameter. We should therefore consider an alter-
native approach in this case, which is to use the standard
Negative Binomial distribution [19]. Using a similar notation
style as in the Poisson mixture model definitions, and letting
µki,m and αki,m be the mean and shape parameters respectively,
we define the log-likelihood `NB of the 2-component Negative
Binomial mixture model used in our experiment as follows
(with i,m once again omitted for readability):

µk = log(1 + eW
(µk)

ᵀ
zD+b(µk)

) (8)

αk = log(1 + eW
(αk)

ᵀ
zD+b(αk)

) (9)

`NB(y|π, µ, α) = log

(
K∑
k

πkη1η2Ip(y)=k

)
(10)

η1 =
Γ(|y|+ 1

αk
)

Γ(|y|+ 1)Γ( 1
αk

)
(11)

η2 =

(
1

1 + αkµk

) 1

αk
(

αkµk

1 + αkµk

)|y|
(12)

In the above equations, W (.), b(.) and p(.) are defined as in
the Poisson mixture model, and in addition the method of
computation for the mixture probabilities πk is not defined
here since it is exactly the same as in Equation 5.

While both the Poison and Negative Binomial mixture
models allow for cases when there is no price change, they do
not explicitly model yi,m = 0. We therefore also experiment
with a 3-component Zero-Truncated Poisson [20] mixture
model to explicitly model cases when there is no price change.
With mixture component k = 3 representing yi,m = 0, we
define the likelihood `ZP of this mixture model as follows
(omitting i,m once again)

`ZP (y|π, λ) = log

(
(π3Ip(y)=3

2∑
k

πk
λk
|y|

(eλk − 1)|y|!
Ip(y)=k

)
(13)

where the mixture probabilities πk and rate parameters λk are
as defined in Equations 5 and 6.



IV. EXPERIMENTAL SET-UP

A. Data

HFT data from stock exchanges are usually very expensive
or difficult to obtain for the typical market participant. On
the other hand, digital currency exchanges provide participants
with APIs that allow, through a websocket feed, access to the
same type of high-frequency data as used for HFT in stock
exchanges. The data for our experiment is thus obtained from
Coinbase, a digital currency exchange. Using the Coinbase
API, we a log real-time message stream containing trades and
orders updates for currency pairs BTC-USD and BTC-EUR
between 4 Nov 2017 to 22 Dec 2017.

Since these are raw JSON messages, data for training and
testing the model cannot be obtained directly from the message
stream. For each of the currency pairs, we implement an
emulator which sequentially processes the JSON messages to
update the state of the exchange over time. From this, we are
able to compute different measures to obtain the covariates
and target variables necessary for building the training and
test sets. We combine the datasets obtained from BTC-USD
and BTC-EUR to jointly train the model on both currency
pairs. Since we are predicting numbers of ticks, there is no
issue with combining datasets of different currency pairs, and
in this way we are able to bridge different but very closely
related statistical behaviours and obtain a richer dataset.

The combined BTC-USD and BTC-EUR dataset is then
split into training, validation and test sets by dates, to avoid any
look-ahead bias. Datapoints timestamped between 6 Nov 2017
and 15 Nov 2017 are taken as the training set. Data prior to 6
Nov 2017 are not available since they were needed to ”warm
up” the emulator. Cross-validation and early-stopping checks
are performed on datapoints taken from 16 Nov 2017 to 18
Nov 2017. The rest of the datapoints (from 19 Nov 2017 to 22
Dec 2017) are kept strictly for testing and are never seen by
the model aside from this final testing phase. There are about
2 million, 0.7 million and 6 million datapoints in the training,
validation and test sets respectively.

The test set can be split into two periods with very different
market behaviours, as illustrated in Figure 2. Datapoints in
the test set timestamped between 19 Nov 2017 to 5 Dec 2017
have similar market behaviour to the training set. However,
the succeeding period from 6 December until the end of our
test period is the extremely volatile period during which the
infamous 2017 Bitcoin bubble reached its height. In this paper,
we will refer to the testing period between 19 November to 5
December as Pre-Bubble and the period from 6 Dec onwards
as Bubble. In our experiments, the models are tested on the
Bubble period without any retraining on more recent data that
includes the Bubble behaviour.

We are not doing any data preprocessing, since our previous
work [21] has shown that raw order flow data is able to
generalise over very different market regimes, exhibiting the
desirable property of stationarity.

Fig. 2. Plot of BTC-USD daily price change and volume of trading activity,
where the shaded area being our test period 19 Nov 2017 - 22 Dec 2017

B. Covariates & Target Variable

There are two types of covariates used in our model as
described in the previous section: temporal covariates xi,:m
and static covariates xi. The temporal covariates that we
chose for our experiments are a sequence of events called
the order flow, where each event is essentially an action
taken by a market participant, such as placing and cancelling
an order. Therefore, we define an event to be x

(j)
i,γ for all

γ ∈ {1, 2, . . .m}, with j ∈ {1, 2, . . . 5} as follows:

• x
(1)
i,t is the number of milliseconds between the arrival of

xi,γ−1 and xi,γ , such that x(1)i,t ≥ 0;
• x

(2)
i,t is the size of the order, such that x(2)i,t > 0;

• x
(3)
i,t ∈ {1, 2, 3} is the categorical variable for the type

of the order (i.e. limit price orders, open price orders, or
cancellation orders);

• x
(4)
i,t ∈ {1, 2} is the categorical variable for whether it is

a buy order or sell order;
• x

(5)
i,t , such that x(5)i,t ≥ 0, is the price associated with the

action described by the order.

The static covariates x(s)
i are non-temporal features that are

useful for predicting yi,m. We define the static covariates used
in our experiments as follows:

• x
(s),(1)
i ∈ N is the hour of the day in which our target

variable the price movement yi,m falls, which helps
capture intra-day trading activity seasonality;

• x
(s),(2)
i ∈ 1, 2 is a categorical variable indicating which of

the two currency pair (BTC-USD or BTC-EUR) datapoint
i belongs to.

Finally, given a sequence of orders xi,:m, our target variable
for prediction is the price change yi,m at τ seconds after
the arrival of the last order in the sequence xi,m. For our
experiments, we use τ = 15 seconds, a good compromise
between a too-small value, which could generate too many
zeroes (null events), and a too-large value, which would be
less accurate (predicting too far into the future).

C. Implementation, Training & Tuning

Our proposed architecture, as described in Section III, is
implemented using Tensorflow. The parameters of network are
fitted using the Adam optimisation algorithm with dropout



on all non-recurrent connections. Within the RNNs in the
architecture, we use LSTM cells [22]. Other RNN cells were
considered but we found little difference in the output. The
static covariates are appended to the temporal covariates,
repeated at each sequential point. We choose the length of the
temporal covariates to be m = 300, based on our experience
in this domain.

For hyperparameter tuning, we take the Bayesian approach,
using a library provided by [23]. The hyperparameters to be
tuned are the number of recurrent layers, the LSTM state size,
the number of dense layers in the output, the size of each
output dense layers, and the embedding dimensions. The costly
cross-validation procedure is implemented on a parallel GCP
Kubeflow pipeline running on GPU machines to decrease the
time taken by the experiments.

D. Benchmark Models

To benchmark our models we identify the following ap-
proaches in the literature as the most relevant for comparison
and evaluate the performance of our models against them:

1) Continuous Markov Birth-Death process [7]
2) Poisson Mixture GLM [8]
The models chosen for comparison are, like our model,

probabilistic. The state-of-the-art deep learning models [9]–
[11] referred to in the Related Work section produce de-
terministic outputs and therefore cannot be used for direct
comparison.

Benchmark 1 was chosen because it is a well established
approach in the literature for the stochastic modelling of high-
frequency price movements. In order to produce a probabilistic
forecast in a form suitable for direct comparison with our
proposed models, we implemented a process which draws
samples from the fitted stochastic models and puts it through
the emulator previously implemented for data collection to
obtain an empirical distribution of the price movements. Sam-
pling of order sizes needed for both benchmarks is done using
historical order sizes.

Benchmark 2 is the only machine learning related work in
the literature that produces probabilistic forecasts in the same
manner as our proposed models. However, in [8], the author
used only a single covariate to predict high-frequency price
movements while in our implementation we include a number
of static covariates we found useful for predicting the prices
through domain knowledge.

Note that since the sequential data used to train our pro-
posed model has non-regular intervals, careful alignment of
timestamps is taken to ensure the proposed and benchmark
models are predicting the same target variable.

V. EXPERIMENTAL RESULTS

The natural way to evaluate the accuracy of a probabilistic
forecast would be to compute the quantile loss [14], [15].
However, computation of the quantile loss requires the quantile
function of the random variable to be evaluated. Closed-form
derivation of the quantile function for our mixture models
is quite involved, and out of the scope of this paper. An

alternative would be to use a Monte Carlo approach where
samples are obtained from the mixture models and quantile
loss is evaluated on the empirical CDF. But it would still
be difficult to evaluate the performance of the models using
the quantile loss since the importance predicting the correct
direction of the price movement is not accounted for. If the
model assigns very low mixture probabilities to the right
direction, that means we run a high risk of betting in the wrong
direction (i.e. buying instead of selling when stock price is
going down). Computation of the quantile loss for evaluation
is therefore problematically complex, however approached.

Instead, for our experiments we propose to use a two
step evaluation procedure for testing the performance of the
probabilistic forecasts:

1) First we evaluate the directional risk by taking the
mixture component with the highest probability to obtain
directional point forecasts. The problem of evaluating
the directional risk has in this way been reduced to
the standard machine learning problem of comparing
classification performance. We use the Matthews cor-
relation coefficient (MCC) to evaluate the directional
performance [24]. This metric (where a score of zero
indicates random performance) is chosen because it
gives a good overall assessment of the quality of the
confusion matrix, and is able to handle imbalanced
datasets in an effective way. The MCC does not give
a misleadingly high score when a model has assigned
most instances to the majority class, as would be the
case for the often-used accuracy (proportion of correct
class assignments) measure.

2) Next, we separately evaluate the size risk. For every
directional point forecast that is correct, we evaluate
the quantile loss for the associated distribution. In other
words, we want to know: if the model gets the direction
of the price movement right, how good is the subsequent
prediction of the size of the movement? Since the quan-
tiles for Poisson and Negative Binomial distributions are
well-known, let ŷρi,m be the computed ρ quantile for the
predicted size of the price movements. Then, given the
true value yi,m we define the ρ quantile loss as

Lρ = (yi,m − ŷρi,m)(ρIŷρi,m>yi,m − (1− ρ)Iŷρi,m≤yi,m)
(14)

where I(.) is an indicator function for the given state-
ment. For the Zero-Truncated Poisson mixture model,
we only evaluate the quantile loss using Equation 14
if non-zero directional price movements are correctly
predicted.

We note that although turning the probabilistic forecasts
into point forecasts in Step 1 appears to defeat the purpose
of the probabilistic architecture, it is a compromise we need
to make in order to be able to benchmark the performance of
the model using standard metrics. Later, however, in Section
VI, we put the models through a trading scenario to test the
full probabilistic forecasts.



A. Directional Risk
The directional risk for each model, in terms of MCC, is

summarised in Table I. Poisson, Zero-Truncated Poisson (ZTP)
and Negative Binomial (NB) refer to the form of mixture
model used in our proposed architecture, while the benchmark
models are as described in the previous section. For predicting
the price change 15 seconds ahead, we can see from the table
that our deep learning approach (denoted by the names of
the three mixture models) outperforms the benchmark models.
Comparing the different mixture models used in the output of
the proposed architecture, the standard Poisson output is the
least effective in modelling the directional price movements,
while the ZTP output is best.

TABLE I
AVERAGE MATTHEWS CORRELATION COEFFICIENT OF THE PROPOSED

MODELS AND BENCHMARKS FOR τ = 15 IN THE BUBBLE AND
PRE-BUBBLE TEST PERIODS

Period Pre-Bubble Bubble

Poisson 0.12 0.10
Negative Binomial 0.14 0.14
Zero-Truncated Poisson 0.16 0.13
Benchmark 1 0.08 0.02
Benchmark 2 0.06 0.01

Although we are here only comparing the performance of
the directional forecast, which relies only on the mixture
probabilities, one might assume that Poisson, NB and ZTP
would be comparable. However, the mixture probabilities
and the parameters of the distribution of each component
are jointly trained through the likelihood. Hence, there is a
complex interaction between the estimated component dis-
tribution parameters and the estimated mixture probabilities
which for the same datapoint can lead to very different mixture
probabilities being learned in individual models. We think
that ZTP and NB outputs outperform Poisson here because
of the explicit modelling of zero price changes in the ZTP
mixture and the ability to account for overdispersion in the
NB component probability distributions.

B. Size Risk
To evaluate the size risk of the models, Table II shows

the 0.5 and 0.9 quantile losses of the predicted probability
distributions when the mixture components are correctly pre-
dicted. For easier comparison, we scale the results for the
other models to a baseline model. Benchmark 2 is chosen
as the baseline model for this scaling purpose as its outputs
are directly comparable with our models, without the need
for an emulator, as with Benchmark 1. We can see at a
glance that all the models using our proposed architecture
outperform the benchmark models. Between the benchmark
models, although Table I shows that the directional forecast
of Benchmark 1 is comparable to Benchmark 2, here we can
see that Benchmark 1 struggles to forecast the size of the price
movements compared to Benchmark 2.

Comparing the different mixture models used to obtain
the outputs of our proposed architecture, we note that NB

TABLE II
QUANTILE LOSS OF THE PROPOSED MODELS AND BENCHMARKS IN THE

BUBBLE AND PRE-BUBBLE TEST PERIODS, SCALED TO BASELINE
MODEL

Quantile 0.5

Period Pre-Bubble Bubble

Poisson 0.78 0.77
Negative Binomial 0.65 0.61
Zero-Truncated Poisson 0.70 0.68
Benchmark 1 1.23 1.29
Benchmark 2 (Baseline) (1.00) (1.00)

Quantile 0.9

Period Pre-Bubble Bubble

Poisson (Baseline) 0.72 0.70
Negative Binomial 0.60 0.56
Zero-Truncated Poisson 0.72 0.71
Benchmark 1 0.98 0.97
Benchmark 2 (Baseline) (1.00) (1.00)

outperforms both ZTP and Poisson. This may be due to
the ability of the deep NB mixture model to model the
overdispersion in population of price movement sizes. Com-
paring the performance of each model between the Pre-Bubble
and Bubble period, we can see that as the market becomes
volatile, the outperformance of our models in relation to the
baseline model increases. However, this increase in relative
performance is only slight for the deep Poisson mixture model.
The highly volatile behaviour of the market in the Bubble
period may have caused a higher degree of overdispersion to
arise from the clumping of the price changes. This causes
the deep Poisson mixture model, which does not model the
variance, to underperform compared to the deep NB model,
which specifically models the variance parameter. The deep
ZTP mixture model also underperforms, even though directly
modelling zeroes in the mixture probabilities in this model
reduces the overdispersion in the data.

Comparing the losses in the 0.5 quantile and the 0.9
quantile, we can see that Benchmark 1 has a lesser tendency
to overpredict compared to the baseline. Overall our proposed
models have a lesser tendency to overpredict compared to both
benchmarks. Comparing the different proposed deep mixture
models, we see that ZTP tends to overpredict more often and
we think this is due to the fact that zeroes are truncated in its
likelihood (i.e. distributions model yi,m > 0).

VI. TRADING SIMULATION

Previously in Section V we made the compromise of
transforming the probabilistic directional forecast into point
forecasts so that we could more directly compare our test
results to those obtained from the benchmark models. In this
section, we test the full probabilistic forecasts of both the
direction and size of the price movements by using both the
proposed models and the benchmark models in a simulated
trading scenario. This section also shows how the probabilistic
forecasts can be used to manage risk within automated trading,



since they can be used to compute the Kelly Criterion [4], a
common risk management strategy.

A. Trading Simulation Set-Up

In the scenario, each model starts off with a capital of
$10, 000. We assume that all the models have already been
trained and tuned on the training and validation sets. The
model are then each given a randomly sampled datapoint from
the test set which is pre-sorted by timestamp. The random
sampling of the datapoint is done monotonically such that, if
a datapoint at time t has been sampled, then datapoints times-
tamped before t are exempted from the subsequent sampling
process.

Taking this sampled datapoint as a trading opportunity, the
models produce a probabilistic forecast which is then used to
compute the Kelly Criterion to determine what proportion of
the capital to invest in this trading opportunity such that the
long-run growth of the capital is sustained. After τ seconds,
we assume that the model is able to immediately exit the trade
without any trading costs. We also assume that the market does
not react to the trading activities of our models. After exiting
the trade and updating the capital with the resulting profit or
loss, we then repeat the same procedure with another sample
from the test set. After T iterations of this, we store the results
and repeat the scenario from the beginning. We perform K
scenarios and observe the overall results.

The standard Kelly Criterion ft at a given point in time t
can be computed as follows:

ft = st(
π2
t+τ

ŷ2t+τ
−
π1
t+τ

ŷ1t+τ
)ε (15)

Recall from a previous section that π1 denotes the probability
of a downward price movement and π2 for the probability of
an upward price movement, the subscript t + τ indicates the
value τ seconds after current point in time, s is the current
price of the asset, ŷ1 is the expected value of the price change
if the price were to go down and ŷ1 is the expected value of
the price change if the price were to go up, and finally that
ε is the risk aversion constant serving as a multiplier. If the
value of ft is positive then the models take a long position
(i.e. buy) in the stock. Otherwise, if it is negative, then the
models take a short position (i.e. sell) the stock. We assume
that the models are able to leverage risk-free loans to invest
in the given trading opportunity if |ft| > 1.

B. Results

We run the above procedure for simulating trading scenarios
using the τ = 15 dataset for values of T = 500 iterations
in each scenario, and K = 10, 000 scenarios, with Figure 3
showing a sample from these K scenarios.

Observing the trajectories around and before the t = 320
mark, Benchmark 2 is for this scenario performing better than
the deep mixture models. However, due to an over-estimation
of the Kelly Criterion caused by inaccurate probabilistic fore-
casts, Benchmark 2 allocates too much capital into a risky
trading opportunity and ends up losing much of its capital.

Around the same time, we can see that the deep ZTP mixture
model also wrongly predicts the direction of the trade but does
not suffer too much loss due to good probabilistic prediction
of the price change when estimating the Kelly Criterion.

Fig. 3. A single sample of the simulated trading scenario showing the change
in capital due to the trading decisions made by the models

From Figure 3 we can observe that overall the deep models
perform much better than the benchmarks in the trading
simulation. However since that is only one sample from the
K scenarios, we cannot yet draw any conclusions. In Figure
4, we show the empirical distribution of the capital held by
each model at the end of each trading scenario. The values are
scaled to a hypothetical baseline model that makes a perfect
prediction at each iteration. At a glance we can observe that
the overall deep models do better than the benchmark models.
Although the mode of the benchmark model distributions is
comparable to those of the deep mixture models, we can
observe from the smaller peaks and right sight skew that the
benchmark models are often less profitable.

Fig. 4. Empirical distribution of the final capital held by each model after 500
iterations of trading across 10, 000 trading scenarios, scaled to a hypothetical
perfect prediction baseline model

We also performed paired Student t-tests on the null hy-
potheses that there is no difference between the profit distribu-
tion of each of the benchmark models against each of the deep
mixture models. As shown in Table III, the null hypothesis for
each test is rejected with very high confidence interval.



TABLE III
p-VALUE OF PAIRED STUDENT T-TESTS ON THE NULL HYPOTHESES THAT

THE PROFIT DISTRIBUTION FOR A GIVEN BENCHMARK MODEL IS NO
DIFFERENT TO THE THOSE OF A DEEP MIXTURE MODEL

p-value

Benchmark 1 Benchmark 2

Poisson 4.7e−30 8.2e−17

Negative Binomial 9.7e−30 3.2e−16

Zero-Truncated Poisson 1.4e−39 4.0e−24

VII. DISCUSSION

We have proposed a novel architecture that allows us to
produce probabilistic forecasts of the price movements of
Bitcoin for use in high-frequency trading using deep mixture
models. We compared the deep models, against benchmark
models identified from current literature, using a proposed
two-step procedure (assessing both directional and size risk,
for a trade) and also within a simulated trading scenario.
In our experiments, we have shown that the proposed deep
mixture models perform better in relation to both the Matthews
Correlation Coefficient and the quantile loss. Also, the proba-
bilistic forecasts produced by the deep mixture models result
in statistically significantly better profit when used in a trading
simulation. Note that we used the standard Kelly Criterion in
the trading simulation that assumes normality; in the future
we hope to test Kelly Criterion values that are derived from
the different probability distributions used in the output of the
proposed architecture.

Another possible direction of future work, of great interest,
is the explainability of the model. Due to the increased
regulatory attention given to high-frequency trading activities,
black box models are being increasingly criticised. Therefore
a natural extension this work would be to use black-box
feature explainers such as Shapley Additive Explanations [25]
to address the interpretation issue of the proposed models,
and to understand exactly what it is that drives probabilistic
price formation for the Bitcoin markets. Such a work would
be valuable as it would provide an alternative data-driven view
of the market microstructural behaviour of cryptocurrencies to
that of existing work in quantitative finance literature. Also
of interest for the future is what we can learn about the
cryptocurrency market microstructure from analysis of the
embeddings of categorical features of the order flow. Finally,
it would also be of great interest to perform a more in-depth
analysis of the suitability of different mixture models in the
output of the probabilistic architecture.
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