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Abstract—Human activity recognition has always been an
appealing research topic in computer vision due its theoretic
interest and vast range of applications. In recent years, machine
learning has dominated computer vision and human activity
recognition research. Supervised learning methods and especially
deep learning-based ones are considered to provide the best
solutions for this task, achieving state-of-the art results. However,
the performance of deep learning-based approaches depends
greatly on the modelling capabilities of the spatio-temporal neural
network architecture and the learning goals of the training
process. Moreover, the design complexity is task-depended. In
this paper, we show that we can exploit the information contained
in the label description of action classes (action labels) to
extract information regarding their similarity which can then
be used to steer the learning process and improve the activity
recognition performance. Moreover, we experimentally verify
that the adopted strategy can be useful in both single and multi-
stream architectures, providing better scalability on the training
of the network in more complex datasets featuring activity classes
with larger intra- and inter-class similarities.

Index Terms—Human activity recognition, Deep learning, Nat-
ural Language Processing

I. INTRODUCTION

Human activity recognition is a challenging problem of
computer vision. It is currently undergoing rapid advance-
ment due to the multiple and diverse applications ranging
from smart home applications, to support of Human-Robot
Collaboration (HRC) in complicated scenarios. Despite the
achieved progress, a number of challenges remain, particularly
with respect to the spatio-temporal modeling of composite
activities. These challenges can be attributed to numerous
factors such as the high-dimensionality of the video data,
viewpoint changes, camera motion, intra-class variations and
many others [1].

Robust recognition of human activities requires methods
that are able to accurately distinguish underlying sub-actions
and to provide strong representations for their temporal rela-
tionships and ordering. Moreover, the overall representation
needs to be unique in order to be able to differentiate between
activities with common sub-actions. In realistic conditions,
activities can consist of actions that can potentially share

similar motion patterns or appearance characteristics. An ideal
approach should be able to generalize in simple but also in
complex activity tasks. In recent years, deep neural network
(DNN)-based approaches have proved their ability to model
robustly activity sets of various complexities, achieving state-
of-the-art results [2]–[4]. However, DNNs require a large
amount of data and tailored network designs to be able
to robustly capture the differences between action classes.
The DNN design complexity and training data requirements
increases with the activity complexity, unavoidably leading to
higher computational demands for complex activity sets.

Existing human activity recognition datasets can be grouped
based on the activity complexity, into (a) coarse-grained,
and, (b) fine-grained activity sets. Coarse-grained activities
exhibit high inter- and low intra-class variations. In such cases,
recognition is easier since critical features that differentiate
the activity classes can be identified relatively easily, by
focusing on specific appearance or motion characteristics. On
the contrary, fine-grained activities involve complex actions
composed by a set of sub-actions that may share similar
characteristics in motion or appearance. This difference is also
manifested in the size and complexity of the relevant action
labels. In both cases, the vocabulary elements are selected to
provide the best and shortest descriptions of the semantic con-
tent of the corresponding activities. Coarse-grained datasets
achieve this with small-sized action label descriptions that
have simple vocabulary content. On the other hand, fine-
grained datasets involve actions with extensive descriptions
and richer vocabulary content which is required to express the
higher complexity of the corresponding activities.

In this work, we investigate the exploitation of information
in the linguistic description of action labels, for HAR deep
model design and learning. Our work contributes as follows:

• We present methods to identify and quantify possible
similarities of action labels of different action classes.

• We show that these similarities, when used to define
penalization weights, steer a DNN to learn finer repre-
sentations for classes with similar linguistic descriptions.

• We highlight the existence of underlying relations be-
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tween the parts of speech used for potential class similar-
ity detection, and the type of the employed visual input.

• We evaluate the degree to which basic DNN architecture
designs can benefit from this relation, and propose design
guidelines for its best exploitation.

The remainder of the paper is organized as follows. We review
related work on action recognition in Section II. Section III
describes the proposed methodology. We evaluate our method
in Sections V, IV and conclude in Section VI.

II. RELATED WORK

In recent years, deep learning has dominated action recog-
nition in videos, replacing hand-crafted spatio-temporal video
representations. Its popularity is attributed to the automatic
semantic representation learning of deep neural networks, that
produces models with high discriminative capacity, without
explicit definition of the model parameters as in hand-crafted
descriptors.

Contrary to visual representation, the task of modeling the
temporal structure of an action is still dominated by hand-
crafted deterministic or probabilistic approaches that exploit
either hand-crafted [5] or deeply-learned [6] feature descrip-
tors. Regarding deep temporal structure modeling, the most
common strategy is to define architectures that consist of
recurrent neural networks [7] or 3-D convolutional kernels [8].
However, these DNN designs are not easily trainable [9]
and require a large amount of data, which are lacking from
existing action datasets. A widely adopted strategy by existing
approaches in order to enrich the information quantity, is to
define models that exploit multi-stream inputs that combine vi-
sual information with other, multi-modal information sources.
Besides appearance and motion from visual data, these meth-
ods utilize language, audio or other sensory information to
increase the representational power of their models.

Regarding language, the most prominent approach is to
apply linguistic analysis on action script data with either
hand-crafted [10], [11] or deeply-learned [12], [13] models
and incorporate the additional knowledge to define more
discriminative representations that are easier to model in
action recognition or action captioning. The drawback of
language-assisted approaches is that only a limited number
of datasets provide script-based action descriptions, which
restricts the applicability of these methods on a narrow set
of action/activity cases. However, another source of linguistic
information that is available in the majority of action datasets,
are the action labels. They contain information about motion
patterns (in the form of verbs) and the visual appearance
of action-related aspects (in the form of nouns), such as
objects. There exist only a few works that exploit a label-
based linguistic analysis for action recognition and aim to learn
verb-centered label correlations and transform the problem into
multi-label classification [14], [15], jointly learning the two
aspects. These methods focus on verb associations and require
annotated data.

On the contrary, our work aims at applying label-based
linguistic analysis for a-priori class similarity estimation with

the goal of incorporating it to the learning process of deep
architectures for action recognition in the form of misclassi-
fication penalization weights. The proposed approach aims to
use Natural Language Processing (NLP) techniques to extract
similarities between a set of action classes, by examining the
lexical description of their class labels. This methodological
direction stems from the observation that the semantics of class
label descriptions contain information regarding possible as-
sociations between classes with respect to specific appearance
or motion characteristics related to the input type. In detail,
classes expected to contain similar appearance characteristics,
will potentially have descriptions with similar syntax and vo-
cabulary, consisting of words regarding the presence of objects
used in the action(s) or general scene characteristics. On the
contrary, classes with similar motion patterns are expected to
have similar verb-centered lexical structures indicative of the
performed action (e.g., “shoot a ball” or “shoot a basket”).

Our approach does not require any verb or noun-related
annotations and no training because verb-relations are sourced
from large semantic knowledge bases (in our case Word-
Net [16]) and refined using simple syntax rules based on a
simple action description formulation.

III. PROPOSED METHOD

In the following, we present our approach on how the lexical
analysis of action labels can identify their lexical similarities
in order to derive the corresponding action class similarities.
To this end, we present two distinct directions. The first has
a local nature, focusing the analysis on a specific part-of-
speech (verb, noun). The second utilizes the word semantics
and ordering statistics to capture the global semantic context
of the sentence. Subsequently, we demonstrate how to express
these similarities in the form of weights. Finally, we show
how to use these weights for training a neural network model
and we demonstrate that by penalizing more severely the
misclassification to a class with similar lexical descriptions
enhances the activity recognition performance.

A. Part-of-speech weight generation

The initial approach on NLP-assisted weight class gener-
ation, relies on simple grammatical syntax, centered around
a specific part-of-speech (e.g. verb, noun, subject). To define
what can be considered as a simple syntax for an activity label
sentence we formulate the following assumptions:

• Verbs characterize the motion motifs of the action and
are expected at the beginning of the sentence.

• Nouns are expected to indicate the presence of an object
that is either being used by the actor or is characteristic
of the action, providing action-related appearance cues.

• Nouns are most likely to follow verbs.

According to these assumptions, we can define two weight
generation strategies, (a) a verb-based approach, whose goal
is to encode motion-related class similarities and (b) a noun-
based approach which encodes the appearance-related ones.



1) Verb-based label processing: We begin by classifying
each word into lexical categories such as nouns, verbs, ad-
jectives, and adverbs. To achieve this we rely on a large set
of corpus readers and lexical data resources provided by the
Natural Language ToolKit (NLTK) platform [17]. Specifically,
we used a part-of-speech tagger to process the sequences of
words corresponding to each action class label in order to
attach a part of speech tag to each word. Subsequently, we
proceed by isolating the verbs that are placed in the beginning
of the sentence. Additionally, we define simple syntax rules,
to refine the set of unique verbs identified in the label set:

Syntax rule 1: A verb can be followed by any number of
particles (at, on, out, over per, that, up, with) or ad-positions
(on, of, at, with, by, into, under). In such case, we define this
candidate verb as compound.

This rule stems from the requirement to distinguish between
labels that share a common verb, but when followed by a par-
ticle or ad-position, can have different semantic interpretation
(e.g., take off and take out).

After the verb-set refinement, the next step is to cluster
together action classes with common verbs. In the case of non-
compound verbs, a simple one-shot clustering is performed,
grouping together classes that share the same verb. In the case
of classes containing compound verbs, we also examine the
degree of similarity between the accompanying particles (or
ad-positions). For this approach, we compute the shortest path
length between the word particles in the WordNet semantic
knowledge base [16]. The path length is normalized in the
range [0, 1], with 1 indicating complete similarity. To accept
two candidate classes as similar, despite verb sharing we also
set an ad-position (or particle) similarity greater than 0.5.

Finally, we define a 2-D weight matrix, in which each row
and column corresponds to an action class, and each cell (i, j)
expresses whether the classes i and j are similar (value 1) or
not (value 0). To transform the values to weights we normalize
them so that, row-wise, the matrix entries sum to 1.

2) Noun-based label processing: Similarly to the previous
approach, we start by classifying each word into lexical
categories. Considering that a noun will most likely refer to
an object/entity, its position most likely follows a verb with
possible intermediate grammatical elements such as particles,
ad-positions or delimiters (the, ., etc). This means that we
must introduce complex syntax expressions to be able to
accurately identify them. To achieve this, we exploit Noun
Phrase chunking (NP-chunk) techniques [18] to segment and
label multi-token sequences. In order to create an NP-chunker,
we first define a chunk grammar, consisting of rules that
indicate how sentences should be chunked. In our case, we
rely on the simplistic expression of the action labels found
the majority of human activity recognition datasets, to define
a coarse grammar with a simple regular expression. This
expression rule (syntax) states that chunks corresponding to
noun candidates should follow the expression pattern, “do
something with something”. Specifically, the syntax rule that
we used to identify the nouns in the description has the

following formulation:
Syntax rule 2: A verb is followed by any number of particles

or ad-positions, which is then followed by a delimiter, followed
by a noun.

Following the identification of candidate chunks and the
isolation of unique nouns, we proceed as previously to cluster
the input label sentences into the unique noun cluster centers.
Finally, the associations between the classes that can be
extracted based on the clustering result are used to generate
the 2-D weight matrix, which expresses the degree of relation
between the label sentences based on the present nouns.

B. Semantic Similarity-oriented weight generation

Relying the analysis on a specific part-of-speech leads to
a key drawback. The prerequisite for correctly identifying
similarities is that the class label sentences share common
verbs or nouns. This aspect constrains the approach, since
the simplified nature of the defined syntax rules does not
adequately associate labels that consist of different verbs or
nouns, but have identical semantic content. To alleviate this
deficiency, we define a set of more complex rules based on
the semantic context of sentences. To this end, we utilized
the sentence semantic similarity assessment method of Yuhua
et al. [19]. This approach extracts finer semantic similarity
associations with the use of semantic and word order related
metrics. The semantic similarity between two sentences is
expressed by sourcing information about word relations from a
structured lexical database and corpus statistics. Moreover, the
exploitation of word order information enriches the semantic
content expression, since word order affects the semantics of
a sentence. In detail, the aforementioned semantic expression
metrics are defined as follows.
Semantic similarity Sm: The semantic similarity Sm of two
sentences is defined by first computing the semantic vector that
characterize each sentence. The semantic vector of a sentence
is derived based on the word set Ti it contains. Given two
sentences and their word sets, the joint word set, T, can be
viewed as the semantic information on which their comparison
is based. For each sentence i we compute its lexical semantic
vector si based on T . The elements (corresponding to each
word) of the semantic vector of a sentence i are defined based
on the following criterion:

• If the word exists in both sets, then si(wk) is set to 1,
where wki is the k-th word of the sentence i.

• Otherwise, si(wk) is defined by considering the set of
synonyms (synset) of wk and a word of sentence j, the
path lengths connecting wki to wmj , and the relative
depth of the common ancestor word of wki and wmj

in WordNet.
In more detail, for the latter case, the semantic vector value
depends on synset overlapping cases which, briefly explained,
are defined as:

• Mutual synset: For words belonging to the same synset,
i.e. wki belongs to the synset of wmj

and vice versa,
si(wk) is set to 1.



• Indirect synset element sharing: For words not belonging
to the same synset, but whose synsets have common
words, the si(wk) is set to the constant e.

• Discrete synsets: For words that neither belong to the
same synset, nor have synsets containing common words,
the value of si(wk) is defined as a the product of (a) the
exponential function of the shortest path length between
wki and wmj , and (b) the hyperbolic tangent of the
relative depth of the common ancestor word. The second
function expresses the analogous increase of depth and
semantic similarity between words. This means that for
this case we need to search for the common ancestor with
the most relative semantic context to both words 1.

Finally, the semantic similarity Sm between two sentences is
defined as the cosine coefficient between their corresponding
lexical semantic vectors.

Word ordering So: We assign a unique index number for
each word in each sentence’s word set, Ti which refers to the
order in which the word appears in the sentence. To compute
the word order similarity, a word order vector ri, is formed for
each sentence’s word set, based on the joint word set T . The
ri estimation, for a sentence i, involves the following cases:

• For words present in both sentences i and j, ri is filled
with the word index.

• For words not present in both sentences, the most similar
word in Tj is found based on the synset inclusion. If the
similarity between the initial word and the most similar
word is greater than a preset threshold (set to 0.2 in [19]),
ri is filled with the index number of the similar word in
Tj . Otherwise, ri is filled with zero for that word.

The word ordering similarity So between the two sentences,
described by the their word order vectors, r1 and r2, is
expressed as:

So = 1− |r1 − r2|
|r1 + r2|

. (1)

Eventually, the overall sentence similarity is defined as a
combination of semantic similarity and word order similarity:

Stot = δ · Sm + (1− δ) · So (2)

where δ is a user-defined scalar controlling the influence
of each metric to the overall similarity score. Based on the
original paper guidelines, we set δ to 0.7, favoring semantic
similarity over syntax.

The final step is to use Stot to compute a normalized 2-D
weight matrix which expresses the degree of relation between
the label sentences based on overall sentence similarity.

C. Weighted classification loss

One way of exploiting prior knowledge about class sim-
ilarity derived by the lexical analysis of their action labels
is through the definition of penalization weights that can be
used in the loss function guiding the learning process of a
neural network architecture designed for the task of human

1For more details the interested reader is referred to the original paper [19]

activity recognition. The majority of existing works that apply
deep learning in human activity recognition, rely on the regular
categorical cross-entropy loss function. In our case, however,
we deviate from this trend and resort to the use of focal
loss [20]. The selection of focal loss stems from the fact that
in complex fine-grained activity datasets, such as the MPII
Cooking dataset, extreme class imbalance is present. In such
cases, as the authors argue, it is more logical to down-weight
the loss assigned to well-classified examples in order to again
focus on the misclassification cases. With the incorporation of
penalization weights the loss function is defined as:

Lloss = −
1

N

N∑
n=1

K∑
k=1

(wk + 1) (1− Yn,k)γ log (Yn,k) , (3)

where N is the number of training samples, K the number
of action classes, Y the estimated label, and w a vector of
similarity weights for each class compared to the rest, that is
generated from the employed NLP method. The loss function
contains a modulating factor (1 − Yn)γ to the cross entropy
loss, with tunable focusing parameter γ ≥ 0. When γ equals to
0, the loss is equivalent to the classic cross-entropy categorical
loss. As γ increases, the effect of the modulating factor is
enhanced. In [20] the authors verified experimentally that
when γ = 2, the loss achieved its full potential. We also
maintained this configuration in all of our experiments.

D. Extension to multi-stream NN architectures

Equation (3) can be extended to multi-stream neural ar-
chitectures, thus keeping up with the neural network design
directions of recent state-of-the-art methods. In fact, as we
present in the following section, it is more beneficial to
assign to each sub-network a specific input stream-related
weight generation strategy, and even try to reproduce the
levels of semantic complexity (from simple part-of-speech up
to semantic context similarity) in the deep neural network
architecture design.

IV. EXPERIMENTAL SET-UP

For the experimental assessment of the proposed weight
generation schemes we defined both single and multi-stream
(two-stream) architectures, using a custom, baseline spatio-
temporal neural network design based on Long-Short Memory
(LSTM) cells, Fully-Connected (Dense) and Convolutional
layers. The organization of the experiments and the presenta-
tion of the results are intended to (a) highlight the performance
gain when the proposed NLP-based weight generation process
is applied to both single and multi-stream DNN architectures,
(b) present the existence of a correlation between the selection
of the part-of-speech used in the label similarity assessment
and the type of input information used, (c) demonstrate the
way we can exploit this correlation in a multi-stream DNN
design, by also introducing the concept of semantic complexity
to the design, and, (d) show that the contribution of the
generated weights is reinforced if we constrain the region of
action introduced in the DNN architecture to the region of the
actor performing the action and the object being manipulated.



A. Neural network architecture
In the context of evaluating our proposal we designed a sin-

gle stream spatio-temporal action recognition neural network
architecture, which is easily modifiable into a multi-stream
design. The architecture consists of two sub-networks that
follow the standard modeling structure of an action sequence
recognition pipeline, with the first being responsible for the
frame-wise feature extraction task and the second for the tem-
poral modeling of the feature sequence and the classification.
In order to evaluate possible correlations between the selection
of part of the speech and the type of input, we evaluate the
architecture (s) in the use of RGB and color-encoded optical
flow frame data.
Feature extraction: Instead of designing a new spatial model-
ing network, we opted to utilize the widely used VGG-16 [2]
network. From this network we extract 2-D feature vectors
from the last 2-D layer, resulting in a feature tensor of 7-by-
7-by-512 for each frame of the sequence, as well as the 1-by-
2048-dimensional feature vector from the last fully-connected
layer. In the case of RGB frames we do not fine-tune the
network and maintain the learned weights from the training on
ImageNet [21]. For optical flow data we fine-tune the VGG-16
layers starting from the last 2-D layer and above on optical
flow data from the KTH dataset [22], freezing the rest with
the weight values from ImageNet.
Temporal modeling: The sub-network for this task consists of
two Bidirectional Long Short-Term Memory (BiLSTM) layers,
followed by three fully-connected (FC/Dense) layers with
Leaky ReLU and soft-max activation functions. Moreover,
between the first and second FC layers we introduce batch
normalization, and between the second and third, dropout with
0.7 unit rejection fraction rate. For the sake of the execution
speed of the performed experiments, and to further evaluate
the recognition capacity of the designed temporal architecture,
we defined two variations based on the input dimensionality:

• 1-D feature sequences: If the frame-wise input is a 1-by-
2048 feature vector, we use BiLSTM cells.

• 2-D feature sequences: If the frame-wise input is a 7-
by-7-by-512 feature map, we alternate the BiLSTM cells
with 2-D Convolutional BiLSTM cells.

We expect the second variant to have better overall perfor-
mance since the spatial relations between neighboring regions
are maintained, enriching its representational expressiveness.

B. Datasets
To evaluate the performance of the proposed weight gen-

eration strategies we employed three widely used human
activity recognition datasets, namely the MHAD [23], the J-
HMDB [24] and the MPII Cooking Activities [25] datasets.
The datasets are exemplar cases of coarse-grained, mid-range,
and, fine-grained activity sets. Additionally, in these datasets
the action complexity is reflected by the size and complexity of
the action label descriptions. Table I presents statistics based
on the size, number of unique verbs/nouns as well as the
average number of classes to which a class is related to and
the minimum/maximum number of relevant associations.

TABLE I
DATASET LABEL STATISTICS

Datasets
MHAD J-HMDB MPII Cooking

Num unique verbs 9 verbs 19 verbs 42 verbs
Num unique nouns 5 nouns 6 nouns 28 nouns
Avg num verbs/lbl 1.128 verb/lbl 1.0 verb/lbl 1.188 verbs/lbl
Avg num nouns/lbl 0.700 noun/lbl 0.333 noun/lbl 0.610 nouns/lbl
Avg lbl length 3.182 PoS/lbl 1.333 PoS/lbl 2.297 PoS/lbl
Avg asc via verb 0.545 asc/lbl 0.286 asc/lbl 1.656 asc/lbl
Avg asc via noun 0.818* asc/lbl 0.191 asc/lbl 0.844 asc/lbl
Max/min asc verb 1/0 asc 2/0 asc 5/0 asc
Max/min asc noun 3/0* asc 1/0 asc 3/0 asc

Abbreviations utilized in the table contents are the following, Avg: average,
num: number, PoS: part-of-speech, lbl: label, Average asc: average number of
classes a single class is related to based on a part-of-speech, asc: associations,
refers to the amount of class label lexical relations based on a specific PoS.
*: In this dataset we also include the word hand(s) as noun despite the fact
it refers to a human body part rather than an object.

Moreover, these datasets cover a wide range of action
characteristics. MHAD and MPII consist of action sequences
in a constrained environment, whereas J-HMDB (which is a
sub-set of HMDB dataset [26]), consists of action sequences
in the wild, with videos taken from YouTube. MHAD con-
sists of 11 action classes with no large scene and actor
appearance variation and without human-object interactions.
J-HMDB consists of 21 classes, with large variations in the
scene appearance containing human-object interaction. MPII
Cooking is the most challenging of the three datasets, con-
sisting of 64 classes, with low inter-class and high intra-class
similarities, and human-object interactions. In general, these
three datasets are quite diverse with respect to the number of
action classes, the complexity of the actions and the intra-class
action similarities.

In the experimental part, we follow the standard experimen-
tal protocol described in the corresponding baseline dataset
papers and report, for the case of multiple splits, the average
accuracy across all splits.

V. EXPERIMENTAL RESULTS

We now present the results of the experiments presented in
section IV. The batch size for MPII and J-HMDB was set to
72 samples per batch, whereas for MHAD to 64. The networks
were trained for 20K iterations for MHAD and J-HMDB and
for 38K iterations for the MPII dataset, in a Nvidia Quadro
P6000 GPU. The loss minimization is performed using the
Adadelta optimizer. For MPII Cooking, due to the large range
of action segment sizes, we train the networks with video clips
of 10 frames, sampled uniformly across the entire sequence.

A. Linguistic analysis complexity in relation to input type and
activity complexity

The first set of experiments aims at investigating the
correlation between the complexity of the natural language
processing approach (part-of-speech or semantic sentence
similarity), the input type (appearance-RGB, motion-Optical



TABLE II
INPUT SOURCE AND WEIGHT STRATEGY RELATION

Architecture Datasets
Design MHAD J-HMDB MPII Cooking
RGB - BiLSTM (baseline) 63.19% 38.81% 30.69%
RGB - BiLSTM & WV 67.81% 38.92% 30.25%
RGB - BiLSTM & WN 69.20% 40.35% 32.48%
RGB - BiLSTM & WSM 66.04% 37.69% 33.10%
OF - BiLSTM (baseline) 72.40% 38.33% 31.87%
OF - BiLSTM & WV 75.14% 40.88% 33.55%
OF - BiLSTM & WN 73.55% 38.19% 32.36%
OF - BiLSTM & WSM 74.32% 35.81% 34.19%

Mean accuracy for each dataset. We refer to the weight generation strategies
as follows. Baseline: without weighting, WV: verb-based, WN: noun-based,
WSM: semantic similarity-based.

Flow) and the complexity and degree of similarity between
the actions/activities. Table II presents our experimental results
regarding all possible relations between the weight generation
strategy and the input source. To evaluate this, we use the
single-stream temporal architecture with 1-D input feature
vectors only, i.e., we do not consider at this point the 2-
D variant. This is entirely due to issues of computational
performance, learning cost, and the fact that the incorporation
of weights to the learning process is independent of the input
dimensionality. In Table II we can observe that there exists
a direct correlation between the input type and the goal of
the lexical analysis. In the case of optical flow data, which
imprints the motion information in an action, the application
of a verb-based lexical analysis and weight generation is
more beneficial since actions with similar motion motifs will
most likely be described by a similar verb. Analogously, for
RGB image data which encode the appearance information
of the scene, the adoption of a noun-based direction leads
to better results, since actions containing the same object-in-
use will have similar appearance characteristics. Overall, the
introduction of NLP-driven weights into the learning process
of a neural network architecture is beneficial, as long as the
label annotation provides meaningful descriptions.

Regarding the underlying association between activity, label
sentence complexity and lexical analysis direction, we can
observe that in dataset cases with simplistic and small-length
label sentences, adopting an analysis focused in a specific part-
of-speech instead on a global semantic level is better. In con-
trast, for datasets with larger and more complex action labels
with larger semantic context (such as in MPII) the contribution
of the semantic similarity weight generation strategy is greater.
This can be attributed to the fact that this natural language
processing method is able to consider the semantic context of
the sentences compared to the token-focused methods (verb,
noun) that are not able to encapsulate semantic context due to
their simplified structure.

In any case, the lexical analysis of any kind appears to
improve the accuracy obtained by the baseline networks that
do not involve it.

Fig. 1. The employed temporal modeling architecture, a two-stream BiLSTM
cell-based design. Last layers are fused together via concatenation. The fused
feature vectors are processed with a set of fully connected layers. The
minimization loss is three-fold. The motion-related loss is weighted using
a verb-based approach, the appearance-related loss with noun-based weights
and the merge loss is weighted using the semantic similarity-based approach.

B. DNN design complexity and weight applicability

We also investigate the relationship between the number of
input sources and sub-networks in the temporal NN design,
with the NLP-assisted weight penalization method applied to
each of them depending on the type of input, taking advantage
of the previous findings. For this set of experiments we com-
pare a single-stream (RGB or optical flow) deep architecture
to a two-stream (RGB, optical flow), whose abstract design
specifications were provided in Section IV. For the two-
stream design, based on the previous findings, we apply verb-
based weights to the sub-network introduced with optical flow
data, and noun-based weights to the RGB-induced sub-net.
Moreover, following the literature guidelines [27], we fuse
the representations of the two sub-networks via concatenation
and forward the outcome to a set of two fully-connected layers
that produce the final classification. An illustration of the two-
stream DNN architecture is provided in Figure 1. This design
direction reforms the minimization loss into:

Ltotal = Lappear + Lmotion + Lfused. (4)

The previous formulation resembles the hierarchical structure
of a linguistic sentence describing an action. By concatenating
the appearance and motion representations we attempt to
encode the semantic context of the action. To this end, we
examine whether the application of class similarity weights
reflecting semantic information of the same level generated
from the label sentence, can further assist the learning process.
Finally, we examine the benefit of using 2-D features as
network inputs, instead of 1-D feature vectors. The results
of these set of experiments are presented in Table III. The
obtained experimental results verify the modeling approach
followed by the research community which states that the



TABLE III
RELATION BETWEEN ARCHITECTURE COMPLEXITY AND NLP-ASSISTED

WEIGHT INCORPORATION INTO LEARNING.

Architecture Datasets
Design MHAD J-HMDB MPII
RGB, BiLSTM & WN 69.20% 40.35% 32.48%
OF, BiLSTM & WV 75.14% 40.88% 33.55%
Both, BiLSTM, (WWL,WWL,WWL) 77.57% 39.84% 34.12%
Both, BiLSTM, (WN,WV,WWL) 79.08% 42.36% 36.78%
Both, BiLSTM, (WN,WV,WSM) 82.57% 47.10% 39.46%
Both, BiLSTM2D, (WN,WV,WSM) 85.13% 49.89% 41.50%

Mean accuracy for each dataset. We refer to the weighting strategies of the
three architecture sub-networks as WWL: without weight learning, WV: verb-
based, WN: noun-based weight generation, WSM: semantic similarity-based.
The rest of the abbreviations are BiLSTM: Bidirectional Long Short-Term
Memory, BiLSTM2D: Bidirectional Convolutional Long Short-Term Memory
with 2-D inputs.

combined motion and appearance-related information leads to
an accuracy increase. In fact, regarding the non-weighted deep
architectures, the improvement reached up to 5%.

The NLP-assisted weight generation and the incorporation
of such a policy into the learning process of DNNs appears to
be beneficial for both single-stream and multi-stream DNN
architectures, with an additional improvement in the range
of 1.5% to 2.5%, with the rate of increase being inversely
proportional to the complexity of the action and the features of
the dataset. Moreover, the adoption of a multi-level weighting
strategy that reflects the different levels of interpretation of
the action label semantics and its application to a multi-stream
DNN architecture, assists the learning process, leading to an
overall accuracy increase in the range of 4% to 7%, compared
to a non-weighted multi-stream design.

C. Focusing on the actor and on the object-in-use

The purpose of the last set of experiments is to examine
the impact of refining the region of interest with the scope
of strengthening the underlying relation between the input
source characteristics and the linguistic description of the
action in the label sentence. The factors that contribute more
significantly in recognizing the action in an video sequence
are the actor’s and the manipulated object’s characteristics
(motion or appearance). Restricting the region of interest to
the region(s) of these contributors is considered a standard
approach in recent methods, increasing performance since
noisy/irrelevant information is removed.

In a linguistic description of an action (such as the action
label) the object-in-use is most likely included as a noun (e.g.,
throw a ball). In the following experiments we also investi-
gate whether the application of noun-based wight generation
indirectly requires the presence of the object appearance and
motion information in order to be effective.

To detect the actor and object-in-use regions of interest
we used Mask-RCNN [28]. We did not define and retrain
Mask-RCNN to the individual dataset and the object classes
they contain, but we rather used the pre-trained Mask-RCNN
weights obtained on the COCO [29] dataset. This choice is

TABLE IV
ACTOR, OBJECT-IN-USE IMPACT

Architecture Datasets
Design MHAD J-HMDB MPII
FF, BiLSTM, (WN,WV,WSM) 82.57% 47.10% 39.46%
A, BiLSTM, (WN,WV,WSM) 84.40% 46.55% 37.72%
AO, BiLSTM, (WN,WV,WSM) 86.19% 50.02% 43.85%
AO, BiLSTM2D, (WN,WV,WSM) 90.38% 52.09% 45.65%

Mean accuracy for each dataset. New abbreviations in this table are FF: Full
frame as input A: Actor region as input, AO: Actor and Object regions as
inputs, with the corresponding feature vectors fused via concatenation. Both
appearance and optical flow features are used in all cases.

justified by the fact that the majority of the objects in the
employed datasets are included in COCO. To distinguish the
object most likely in use by the actor from the set of other
detected objects, we consider the Euclidean distance between
the centroid of each candidate object and the centroid of the
actor’s hand. The hand centroid is generated based on the 2-D
locations of hand key-points, extracted using OpenPose [30].

Table IV presents the accuracy variation due to the intro-
duction of the actor-object detection, and the indirect relation
between noun-based weighting and object presence. Regarding
MHAD, which is a coarse-grained action dataset without
human object interactions, we verified that the detected and
selected object remains the same for all action cases. It can
be verified that restricting the action modeling to the regions
containing the actor and the manipulated object provides more
informative cues regarding the performed action. Moreover,
as expected, preserving the spatial (appearance and motion-
based) characteristics of both actor and object is beneficial for
the majority of methods. Even more, combining this strategy
with the proposed weight generation scheme, improves further
the recognition capabilities of the architecture.

Regarding indirect relations between the actor, object de-
tection and the weighting strategy, the results indicate that the
contribution of noun-centered weights on the appearance sub-
network is higher when object-related information accompa-
nies the actor-related. This indicates an underlying association
between the visual and linguistic representation of objects.

Overall, we can observe that human-object interaction ac-
tion datasets appear to benefit more from an action label-
oriented similarity weight penalization, compared to datasets
that do not exhibit this characteristic.

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated the applicability of natural language
processing on action label sentences to derive potential action
class similarities. We demonstrated that these derivations,
when formulated as misclassification penalization weights, can
be incorporated in the learning process of DNN architectures
to assist and enhance the modeling capacity and the clas-
sification accuracy of such architectures. The experimental
results indicate that the incorporation of this a priori knowl-
edge increases performance, by guiding the network to learn
finer representations for actions that share similar linguistic



descriptions. Moreover, it has been shown that there exists an
indirect association between the input type and the selected to-
kenization strategy. Specifically, appearance-based input types
benefit from noun-based similarity extraction whereas motion-
based input types from a verb-based similarity extraction.
Even more, this formulation is applicable to any deep learning
action recognition architecture, without the requirement of
intervening on the architecture design.

However, this work also revealed additional requirements
and limitations of this strategy. A requirement for extracting
meaningful and correct class associations is the existence of
informative label annotations in the form of action verbs and
nouns for objects, for human-object interaction activity cases.
Regarding the choice between a local, token-specific and a
global, semantic context encoding analysis, it is evident that
the criterion lies on the size and lexical complexity of the
action label. Yet, further investigation is required to define the
boundaries, parameters and refine the natural language pro-
cessing methods so as to distill more accurately the underlying
associations between the action classes based on their labels. It
is also evident that the information of the semantic context of
label sentences introduces additional knowledge regarding the
formulation and complexity of the action/activity. This could
inspire new designs that exploit the different levels of semantic
relations to produce finer and clearer representations, with
the potential to achieve higher recognition scores. Ongoing
research is focused in that direction.
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