
FAuto: An Efficient GMM-HMM FPGA
Implementation for Behavior Estimation in

Autonomous Systems
Junde Li, Navyata Gattu, Swaroop Ghosh

School of Electrical Engineering and Computer Science
Pennsylvania State University, University Park, PA 16802 USA

{jul1512, nug323, szg212}@psu.edu

Abstract—Driving behavior estimation in car-following sce-
nario based on contextual traffic information is an essential
capability for autonomous driving systems. Real-time motion
planning based on incomplete environment perception requires
complicated probabilistic model for interactions with surround-
ing objects and road conditions. Hidden Markov Model (HMM)
with Gaussian emissions has been used to model driving be-
haviors for its ability of inferring unobserved states. While
the high-dimensional contextual data is continuously processed,
the system should be high-performance and power-efficient to
make real-time decisions for safe operations. Field Programmable
Gate Array (FPGA) is being increasingly used on embedded
System-on-Chip (SoC) for mobile applications mainly because
of its parallel computation and low-power consumption. This
paper implements FAuto: the framework of HMM coupled with
GMM algorithm on a Xilinx PYNQ-Z2 board for autonomous
systems. We design the hybrid GMM-HMM model in python,
and train the model using Next Generation SIMulation (NGSIM)
trajectory data on a CPU platform. The hardware accelerator is
designed through Vivado HLS 2018.2, and verified with Jupiter
notebook. FAuto achieves 2.59 TOPS/W power efficiency, and
10.39x speedup compared to Python software implementation
running on quad-core i7-7500U CPU.

I. INTRODUCTION

Safety and reliability are top priorities for autonomous
driving. Accurate driving behavior estimation for motion plan-
ning is the key to achieve the above goal. One particular
example is estimating lane keep and lane change behavior
from target vehicles that should be continuously estimated
either for human drivers or self-driving cars. Fig. 1 shows
the basic idea of behavior estimation based on contextual
traffic information. Host vehicle (Veh h) extracts contextual
features such as longitudinal and lateral velocity of target
vehicle (Veh t), distance and speed differences between target
vehicle and surrounding vehicles to decide whether to change
lane or keep it.

Such intention prediction problem has been addressed by
using classification algorithms, such as Support Vector Ma-
chine [1], Quantile Regression Forests [2], and Hidden Markov
Model (HMM) [3]. Further, it has been claimed [4] that
two HMMs with Gaussian emissions performs better for lane
change or lane keep estimation because of HMM’s capability
for handling temporal contextual information. Limited by
training difficulty caused by NGSIM data imbalance between

Fig. 1. Driving behavior estimation based on contextual traffic information.
The self-driving car is the red-colored vehicle denoted by Veh h; and Veh t
denotes the target vehicle whose behavior intention needs to be estimated
using features from surrounding vehicles and itself.

lane change and keep scenarios, and possible vanishing gradi-
ent issue for large sequence length, recurrent neural network
of high model complexity is not considered in this study.
Therefore, the hybrid Hidden Markov Model with Gaussian
emissions (GMM-HMM) is focused on in this work for
software and hardware implementation. Fig. 2 shows the high-
level GMM-HMM framework for driving behavior estimation.
For both lane change and lane keep scenarios, contextual traffic
information is extracted, then fed into Gaussian Mixture Model
(GMM) for outputting emission probability bj for each hidden
state. Finally, the bj combined with transition probability aij
are processed for obtaining the respective lane change and
keep probabilities.

The mission critical nature of the autonomous vehicles
demands timely estimation of behavior and planning for safe
operation. Software implementation of behavior estimation is
slow and power intensive. Efficient hardware accelerators can
address both of these bottlenecks. This observation aligns well
with the recent trend of adoption of accelerators in the CPUs
and GPUs to address challenges faced by autonomous systems.
Few examples include NVidia’s ray tracing accelerator using
RTX technique in GPUs [5] and Intel’s Vision accelerator
using DLDT kit in Intel Arria 10 FPGAs [6].

Field Programmable Gate Array (FPGA) has been increas-
ingly exploited in embedded systems due to customized recon-
figuration, high parallelism and power efficiency. FPGA has
been used for pedestrian detection in autonomous vehicles, and
real-time path planning in unmanned aerial vehicles [7], [8].
FPGA based Gaussian Mixture Model has been designed for
pattern recognition [9] where linear piece-wise approximation

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2. Hybrid GMM-HMM framework for driving behavior estimation.

is developed for handling exponential calculation. Similarly,
FPGA based HMM is designed for speech recognition in
[10] and DNA sequence analysis in [11]. GMMs are able
to cluster contextual information into different groups, and
HMM models the dynamics of contextual information over
a time period. However, HMM with Gaussian emissions for
autonomous systems has never been attempted before.

In this paper, we propose the FAuto framework for acceler-
ation of HMM with Gaussian emissions for driving behavior
estimation using FPGAs. FAuto can estimate millions of lane
change or lane keep intention per second, greatly exceeding
traffic contextual data sampling rate. The hardware design
of HMM with Gaussian emissions is fully implemented on
the embedded system using Vivado High-Level Synthesis
(HLS) for higher portability and lower resource utilization.
Overall FAuto consumes 1.787W, achieving 2.59 teraopera-
tions/second/W (TOPS/W). To the best of our knowledge,
FAuto is the fastest behavior inference classifier for NGSIM
trajectory data. It is an ideal prediction and control platform
for autonomous driving. We make following contributions in
this paper:

• We holistically introduce the application of hybrid Hidden
Markov Model with Gaussian emissions;

• We design a customized FPGA implementation of HMM
with Gaussian emissions;

• Flexible batch size of input vectors can be processed with
a parameterized hardware design;

• FAuto is effectively optimized, and serves as a highly
power efficient embedded system for real-time driving
behavior estimation;

• FAuto is suitable for other applications such as, robotics
and speech recognition systems. This design performance
can be a FGPA design benchmark in these fields.

The rest of this paper is organized as follows. Section
II presents the background of GMM and HMM with Gaus-
sian emissions; Section III describes software implementation,
FPGA accelerator design, and experimental setup; Section IV
presents the experimental results; and Section V concludes the
paper.

II. BACKGROUND AND APPROACH

This section presents an overview of Gaussian Mixture
Model, and describes the approach to driving behavior esti-
mation, i.e., Hidden Markov Model with Gaussian emissions
in detail, as no previous work introduced such GMM-HMM
framework for applications in a holistic manner.

A. Gaussian Mixture Model
GMMs are probabilistic models used to represent sub-

population distributions within an overall larger population.
Data distribution of a Gaussian mixture model with two com-
ponents would follow the sum of two scaled and shifted normal
distributions as indicated in an example Fig. 3. For a Gaussian
mixture model of K components, the kth component would
have a mean of µk and a variance of σk. The components
can be univariate or multivariate in nature. A multivariate
component has a mean ~µk and the variance ~σk. The mixture
component weights are defined as φk for a component Ck,
provided that,

K∑
i=1

φi = 1 (1)

This will achieve a normalized probability distribution. For a
one-dimensional model, the probability distribution function
is given by

p(x) =

K∑
i=1

φiN (x |µi, σi) (2)

where,

N (x |µi, σi) =
1

σi
√

2π
exp

(
− (x− µi)

2

2σ2
i

)
(3)

For a multi-dimensional model, the probability distribution
function is given by

p(~x) =

K∑
i=1

φiN (~x | ~µi,Σi) (4)

where,

N (~x | ~µi,Σi) =
1√

(2π)
K |Σi|

exp

(
−1

2
(~x− ~µi)

T
Σ−1

i (~x− ~µi)

)
(5)

Fig. 3. Probability density function of a GMM in 1D. An simple example of
GMM with two components, com1 with weight of 0.4 and com2 with weight
of 0.6.

An iterative algorithm called Expectation Maximization
(EM) is used to estimate the mixture model’s parameters. It is
a maximum likelihood estimation technique which starts with
an initial estimate of the parameters of the GMM and then
iteratively updates these parameters until the model converges.
Each iteration constitutes an E-step and an M-step. E-step or
the estimation step, involves the calculation of the expectation
of the component assignments Ck for each data point xiεX
when provided with the parameters φk, µk and Σk. M-step or
the maximization step, is the maximization of the expectation
calculated in the E-step. The model parameters φk, µk and
σk are updated according to the maximum expectation at the
end of this step. After every parameter update, the maximum
likelihood method is used to find the θ that maximizes the
occurrence probability of data sequence ~x.

L(θ) =

M∑
t=1

ln(p(xt; θ)) (6)

where θ = {φk, µk,Σk} are the parameters of the GMM.
This iterative process repeats until the log-likelihood L(θ) con-
verges, i.e., the magnitude of difference between its estimates
at time t and t-1 measures less than a certain threshold ε. In
[12], the E-step for a multivariate GMM is given by

γ̂ik =
φ̂kN (~x | ~µi,Σi)

K∑
j=1

φ̂jN (~x | ~µi,Σi)

∀i, k (7)

Where, γ̂ik is the probability of the component Ck gen-
erating the data point xi. The M-step, calculates the model
parameters by using the γ̂ik that is computed in the E-step.

φ̂k =

N∑
i=1

γ̂ik
N

; µ̂k =

N∑
i=1

γ̂ikxi

N∑
i=1

γ̂ik

(8)

Σ̂k =

N∑
i=1

γ̂ik(xi − µ̂k)(xi − µ̂k)T

N∑
i=1

γ̂ik

(9)

In this work, 11 features of the car following scenario
have been observed, and 4 Gaussian components are chosen
(referred from [4]) to form the GMM. Each of 4 Gaussian
components, which maps all input vectors with these features
shown in Table I, is a weighted part of multivariate Gaussian
distributions, B. The likelihood of the GMM is maximized
by the E-M steps and the final observation probability matrix
B is given as input to the HMM as indicated in Fig. 2, to
compute the maximum likelihood of the observation sequence
and compute the probability of car lane change and lane keep.

TABLE I
FEATURES OF CAR FOLLOWING SCENARIO.

Feature
Longitudinal velocity of veh t
Lateral velocity of veh t
Lateral offset from target lane market to veh t
Longitudinal speed difference between veh t and veh p
Longitudinal speed difference between veh t and veh h
Longitudinal speed difference between veh t and veh ft
Longitudinal speed difference between veh t and veh rt
Longitudinal distance between veh t and veh p
Longitudinal distance between veh t and veh h
Longitudinal distance between veh t and veh ft
Longitudinal distance between veh t and veh rt

B. Hybrid GMM-HMM Algorithm

A Markov Chain constitutes a sequence of observable states
whose probability is dependent only on the current state and
not previous states. Given a set of states Q = {q1, q2, . . . , qN},
the chain may start in any state qi and moves to the next
state qj and so on in successive steps. The probability with
which the chain steps from one state to another is transition
probability aij . According to [13], the Markov assumption
states that only the present matters when predicting the future:

P (qi = a | q1 . . . qi−1) = P (qi = a | qi−1) (10)

Formally, the components of the Markov Chain are a set Q
of N states, a transition probability matrix A = {a11a12 . . .
ann} where each element is the transition probability aij such
that

∑n
j=1 aij = 1 ∀i, and, an initial probability distribution

π = {π1π2 . . . πN} which is the probability with which the
Markov Chain will start in state i, such that

∑n
j=1 πi = 1 [13].

While the markov chain is useful to compute the probability
of observable events, there exist some cases where the events
are hidden in nature. In these cases, the HMM can be used to
consider both types of events to build a probabilistic model.
The components of an HMM are the same as those of a
Markov Model, augmented with the following components,
a sequence T of observations denoted by O = {o1o2 . . . oT },
a sequence B = bi(ot) of observation likelihoods or emission
probabilities, each expressing the probability of an observation
ot being generated by a state i.

In addition to following the Markov Assumption, the HMM
assumes output independence. The probability of the output
observation oi depends only on the state qi, that produced it.

P (oi | q1 . . . qi, . . . , qT , o1, . . . oi, . . . , oT) = P (oi | qi) (11)

Assuming the emission probabilities and the transition ma-
trix is provided, the hidden states can be determined by HMM.
Given an observation sequence O, its maximum likelihood is
determined by using the Forward Algorithm. The best hidden
state sequence Q that most likely produces the observation
sequence O is then determined by decoding using the Viterbi
Algorithm. Further, the HMM can be trained to learn its
parameters, given an O and a Q.

Given an HMM λ = (A,B) and an observation sequence O,
the likelihood is given by P (O |λ). In an HMM, each hidden
state produces a single observation which implies that the
length of hidden state sequence Q and O are equal. Therefore,

P (O |Q) =

T∏
i=1

P (oi | qi) (12)

The total probability of an observation sequence can be
computed by summing over all possible hidden state se-
quences.

P (O) =
∑
Q

P (O,Q) =
∑
Q

P (O |Q)P (Q) (13)

For an HMM with T observations and N states, the total
number of possible hidden state sequences would be NT .
In real scenarios, the N and T can be very large numbers,
which would make the likelihood computation exponential in
nature. To overcome this, an O(N2T) algorithm called the
Forward Algorithm that cumulatively computes the likelihood
probability by storing intermediate values [13]. As shown in
Fig. 4, the probability of being in state j after generating the
first t observations, is denoted as αt(j). Each αt(j) is a single
cell of the forward trellis, where,

αt(j) = P (o1, o2 . . . ot, qt = j |λ) =

N∑
i=1

αt−1(i)aijbj(ot)

(14)
Where, αt−1 is the previous forward path probability from

the previous time step. Therefore, the forward algorithm
constitutes the following steps:
Initialization:

α1(j) = πjbj(o1), 1 ≤ j ≤ N (15)

Recursion:

αt(j) =

N∑
i=1

αt−1aijbj(ot), 1 ≤ j ≤ N, 1 < t ≤ T (16)

Termination:
P (O |λ) =

∑
j=1

NαT (i) (17)

Similar to the parameters of the GMM, the parameters of
the HMM i.e. the transition matrix A and Gaussian emission
matrix B, can be learned. The Forward-Backward algorithm
trains the parameters A and B by taking an observation
sequence O and a set of hidden states Q as inputs.

The Backward algorithm starts with an estimate of A
and B, following which these parameters are updated with

Fig. 4. Visualization of Forward Algorithm path trellis.

better values with each iteration. Given that the state under
consideration is i at a time t, the probability of seeing the
observations from time t− 1 to the start is computed in each
iteration. This probability is called the Backward probability
β.

βt(i) = P (ot+1, ot+2 . . . oT | qt = I, λ) (18)

The Backward Algorithm has three steps:
Initialization:

βT (i) = 1, 1 ≤ i ≤ N (19)

Recursion:

βt(i) =

N∑
j=1

aijbj(ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t < T

(20)
Termination:

P (O |λ) =

N∑
j=1

πjbj(o1)β1(j) (21)

The Baum Welch Algorithm is a special case of EM
algorithm, and is used here for finding HMM parameters. It
starts with an estimate of parameters, λ = (A,B). In the E-
step, the expected state occupancy count γ and the expected
state transition count ξ is computed from the previous A and B
probabilities. New A and B probabilities are computed using
the γ and ξ in the M-step. E-step:

γt(j) =
αt(j)βt(j)

αT (qF)
, ∀ t and j (22)

ξt(j) =
αt(i)aijbj(ot+1)βt+1(j)

αT (qF)
, ∀ t, i, and j (23)

M-step: The re-estimated HMM parameters are given by:

µ̂j =

T∑
t=1

γt(j)xt

T∑
t=1

γt(j)

(24)

Σ̂j =

T∑
t=1

γt(j)(xt − µ̂j)(x− µ̂j)
T

T∑
t=1

γt(j)

(25)

âij =

T∑
t=1

ξt(i, j)

N∑
k=1

T∑
t=1

ξt(i, k)

(26)

In this work, we employ separate GMM-HMM hybrid
models to compute lane change and lane keep probabilities.
Fig. 5 shows a detailed data flow chart of each of these models.
The parameters used in the flow chart are defined in Table II.
The lane change GMM and HMM are denoted as GMMlc

and HMMlc respectively. Similarly, GMMlk and HMMlk

are lane keep models. In general, each of the GMM-HMM
hybrid models take the 11 features listed in Table I as input.
These features have different values based on whether they are
considered for lane change or lane keep. Initially, the weights
wlc, wlk, and the parameters µlc, µlk, Σlc and Σlk are assigned
to untrained values. The GMMlc and GMMlk compute the
Gaussian emissions Blc for the lane change and Blk for the
lane keep case respectively, using their parameters. The EM
steps train the parameters to maximize the likelihood of the
GMMs until the final probabilities converge to a value < ε.
The trained values are fed back to the GMM and a final Blc

and Blk is computed. The Blc is then fed to the HMMlc

to compute lane change probability P (O |λlk). Similarly, the
Blk is fed to the HMMlk to compute lane keep probability
P (O |λlk).

The transition matrices Alc and Alk are assigned to initial
values and later estimated to values corresponding to max-
imum likelihood of the observation sequences, by the EM
steps in the HMMs. The Forward algorithm in each of the
HMMs takes the Alc, Blc and the Alk, Blk matrices as inputs
respectively and computes the probabilities of lane change
(P (O |λlc)) and lane keep (P (O |λlk)). Finally, the decision
whether to change lane or keep lane is made by comparing
P (O |λlc) and P (O |λlk).

III. IMPLEMENTATION

A. Python Framework Deployment

The labeled NGSIM trajectory dataset from [4] is used for
intention estimation classifier training. Fig. 5 shows the data
flow chart for GMM-HMM training. 11 features (p = 11) in-
cluding relative distance and speed differences between target
vehicle and surrounding vehicles are extracted from separated
lane change and lane keeping scenarios. Two separate HMMs

Fig. 5. GMM-HMM data flow chart (lc: lane change; lk:lane keep). The steps
and parameters are described in Section 2.2 and Table II.

TABLE II
FAuto PARAMETERS AND THEIR DEFINITIONS.

Parameter Lane Change Lane Keep
Length of input LEN LEN
Number of hidden states Q Q
Number of Gaussian components M M
Number of features p p
Input stream Inputlc Inputlk
Weights of GMM wlc wlk

Mean µlc µlk
Covariance Σlc Σlk

Gaussian Emissions Blc Blk

Forward probability αlc αlk

Transition matrix Alc Alk

Initial probabilities πlc πlk
Backward probability βlc βlk
Expected state occupancy count γlc γlk
Expected state transition count ξlc ξlk
Threshold ε ε
Final probability P (O |λlc) P (O |λlk)

with Gaussian emissions are developed for estimating driving
behavior and further supporting host vehicle control. The lane
keeping framework is of the same structure as lane change
in this study. Basically the hybrid model is trained based on
the parameter setting described in [4]. Gaussian components
of 4 (M = 4) are mixed for modeling each of the three
hidden states (Q = 3), which represents the beginning, the end,
and the middle movements of target vehicles during certain
observation period. Length of input vectors LEN varies from
period to period as driving behavior is different in duration of
lane keeping or change.

It is worth noting that diagonal covariance matrices of
Gaussian components are chosen for modeling each hidden
state, as sparsity in the framework helps to reduce system
power consumption. Zero elements in the matrix-vector multi-
plication results in zero partial sums where multiplication and

Fig. 6. Acceleration system architecture. Input vectors are transferred to
FAuto accelerator and written back to DRAM after computation.

accumulation are skipped for saving memory access. Initial
values of prior vector π is set to 1/3 for each element; and all
other parameters (ω, µ, σ, A) are randomly initialized. Ter-
mination threshold ε is set to 1e−7 for convergence checking.
After HMMs are trained in Python, only the parameters are
saved, rather than the whole model, to reduce chip memory.

B. FAuto Accelerator Design

FAuto accelerator is designed using HLS technique that con-
verts C++ description of the architecture into custom logic. It
also reduces design and compile time relative to Hardware De-
scription Language such as, Verilog. Optimization techniques
such as, for-loop unrolling and pipelining can be efficiently
implemented by specifying relative optimization directives.
Finally IP is created by exporting RTL in Vivado HLS. Fig. 6
shows the acceleration system architecture. The Programmable
Logic (PL) design is implemented on an Xilinx PYNQ-Z2
FPGA chip running at 126 MHz. The Processing System (PS)
is the dual-core Cortex-A9 processor. Data transfer between
PL and PS is realized by AXI DMA module which maps the
data of AXI Stream to memory address, and vice versa.

As shown in Fig. 7, the top-level block diagram of FAuto ac-
celerator consists of Gaussian Mixture Unit (GMU) and HMM
Forward Unit (HFU). When running GMU input vectors x are
subtracted from mean vector µ, and determinant and inverse
of covariance matrix are calculated. Given a diagonal covari-
ance matrix Σ, determinant |Σ| is the product of non-zero
elements in matrix diagonal; and inverse Σ−1 is calculated by
only getting the reciprocal of non-zero values. Next, matrix
multiplication MxM between x − µ and Σ−1 can possibly
be optimized for concurrency by adopting a heterogeneous
streaming architecture [14], though it is not adopted in this
work. Finally GMU performs exponential operation for getting
emission probability. As forward probability α is expressed
in recurrence relation, HFU requires a register file to store
previous time αt−1.

C. Design Optimizations

This section explains how GMU and HFU are optimized
using HLS design optimization techniques. The system is

Fig. 7. Block diagram of FAuto accelerator. Weights are stored in BRAM,
while every batch of input vectors are fetched from DRAM through Direct
Memory Access (DMA).

optimized separately by adding compiler directives (pragmas)
with high-level synthesis tools.

Pipelining Speedup: a set of nested loops in GMU are
imperfect because Gaussian emission probability is initial-
ized for every hidden state iteration. Thus directives of
PIPELINE with default Initialization Interval (target II = 1)
and full UNROLL are performed for achieving highest possible
throughput. After synthesis with pipelining and unrolling,
the achieved II is 64 for GMU and 18 for HFU. Since
input data length is parameterized in final system design,
ARRAY_PARTITION cannot be applied here for increasing
number of block RAM ports.

Data Flow Optimization: data flow pipelining creates a
parallel process architecture that allows execution of tasks to
overlap, thereby increasing design throughput. In this design,
input arrays are set as streaming interface of type ap_fifo
to reduce FIFO elements to minimum level.

Latency of system with input length of 10 is reduced from
initial 216021 clock cycles to 8418 clock cycles. Then input
length is parameterized in the design for meeting the demand
for variable data length of lane change or keep sections. Data
dependencies between sequential functions, as shown in Fig.
7, restrict further pipeline rate improvement of the system. The
overall design optimization effect is later shown in Section 4.3.

D. Experimental Setup

Accelerator block design is developed by adding the IP
created from HLS into the repository. Then the design is
synthesized and implemented for bit stream generation on Vi-
vado 2018.2. Fig. 8 shows the implementation of acceleration
system on an Xilinx PYNQ-Z2 board. FAuto is designed to
accelerate HMM with Gaussian emissions that is the core
part of the behavior estimation classifier for enabling further
motion planning and control in autonomous driving. As indi-
cated in [15], energy consumption is dominated by memory
access more than arithmetic operations. Overlay API manages
the data transfer between PL and PS, and also read or write
between PL master interface and DRAM. After input vectors

Fig. 8. System-on-chip setup on Xilinx PYNQ-Z2. PYNQ is connected with
PC for uploading .tcl and .bit files, powered by connecting to the PC USB
slot. An SD Card storing the PYNQ image is inserted.

are calculated by FAuto accelerator, result is immediately
written back to DRAM.

IV. EXPERIMENTAL RESULTS

This section provides the overview of experimental results
in terms of throughput, hardware resource utilization, speedup
relative to CPU, accuracy, and power efficiency.

A. Throughput

According to our accelerator design, the number of arith-
metic operations required for getting a single behavior estima-
tion likelihood is shown in Table III. Note that the numbers
of comparisons are not counted and computational complexity
between different arithmetic calculations are not discriminated.
The effective throughput is defined as below:

Eff. throughput =
fp operations

time
(27)

Assuming a batch of 10 input vectors is streamed to
FAuto, effective throughput is evaluated by measuring the time
required for a single likelihood output. Time used for getting
the final likelihood is 7.936 ns, thus effective throughput of
the accelerator is 4.63 TOPS.

TABLE III
OPERATIONS IN THE ACCELERATOR.

Ops mul add div sub pow exp total
19023 15933 120 1320 240 120 36756

B. Hardware Resource Utilization

The hardware resource utilization and percentages are re-
ported in Table IV. Since NGSIM data is sampled 10 times
per second, input data of dimension 10x11 is transferred to
FAuto for estimating driving behavior. Thus lower percentage
of FPGA resources is utilized. Since the accelerator contains
many MAC operations, DSP utilization efficiency is addition-
ally reported according to the method proposed in [16].

As a DSP block is potentially instantiated for floating-point
multiplication and accumulation, its utilization efficiency can
be evaluated in a similar way of measuring MAC computation

Fig. 9. Runtime for FAuto, FAuto with optimization and CPU with Python.
Mean and variance of CPU runtime are 12.60ms and 6.234ms, respectively.
The corresponding values for FAuto are 1.21ms and 0.002ms, respectively.

TABLE IV
FAUTO HARDWARE UTILIZATION.

Resource BRAM DSP FF LUT
Used 26 111 17039 13713

Available 280 220 106400 53200
Percentage 9.29% 50.45% 16.01% 25.78%

efficiency without considering the factor of memory access
bandwidth limit. The formula is defined as follows:

Potential Peak Throughput = 2 ∗ (#DSP) ∗ frequency (28)

DSP Utilization Efficiency =
Eff. throughput

Potential Peak Throughput
(29)

C. Computation Speedup

To estimate the computation speedup of FAuto accelerator,
10,000 input vectors in 1,000 batches are randomly chosen
from NGSIM I-80 dataset for intention estimation inference.
Input vectors and all parameters are processed in floating point
double precision format both in FAuto accelerator and i7-
7500U CPU. Fig. 9 shows the runtime in 1000 batches on
both platforms. As PYNQ board supports Python language
for constructing SoC, we compare the performance of FAuto
accelerator to CPU platform with Python implementation
instead of more efficient languages like C.

Overall FAuto accelerator runs 10.39x faster and is more
stable than CPU platform in inferencing 1000-batch behavior
intentions. Mean and variance of CPU runtime are 12.60ms
and 6.234ms, respectively. The corresponding values for FAuto
are found to be 1.21ms and 0.002ms, respectively. The opti-
mized design denoted as FAuto opt in Fig. 9 shows another
32.72% decrease in mean runtime (mean = 0.82ms) than
FAuto, while it maintains the same level of variance (var =
0.004ms).

Besides, it is worth noting that accelerator function is called
and input vectors are fetched for each batch, FAuto speed
calculation is pessimistic due to the extra latency overhead
incurred.

D. Prediction Accuracy

In total 200 batches of input vectors of variable length,
100 batches from each datasets due to limited lane change
scenarios, are selected for testing driving behavior estimation
accuracy of FAuto system. Each batch of testing data is
separately feed to GMM-HMM frameworks for lane change
and lane keep estimation. The driving behavior is estimated
by comparing the forward probabilities generated from two
frameworks. Estimation results from accelerator match with
that from software implementation on CPU as both use double
precision floating point format. The overall prediction accuracy
is 89.5%, while the accuracy for lane change and keep is 84%
and 95%, respectively. The overall prediction accuracy shows
comparable result with [4]. The relative lower accuracy of lane
change is attributed to the less number of lane change training
sets from NGSIM dataset.

E. Power Efficiency and Overall Comparison

Total on-chip power is 1.787W based on Vivado power
analysis from implemented netlist. Since effective throughput
is 4.63 TOPS, the power efficiency of the accelerator (i.e.,
throughput/power) is 2.59 TOPS/W.

In absence of prior GMM-HMM FPGA accelerator perfor-
mance, the comparison for this work is made with separate
GMM and HMM FPGA designs even though they are imple-
mented for different applications. The performance of FAuto
is summarized in Table V.

TABLE V
FAUTO PERFORMANCE SUMMARY.

Parameter This work GMM [17] HMM [18]
Platform PYNQ Virtex-6 Kintex
Frequency (MHz) 126 400 250
Throughput (TOPS) 4.63 0.5 ∼ 0.71a
Power (Watts) 1.79 22 12.4
aSign ∼ indicates our estimated value.

V. CONCLUSION

In this paper, we presented a low-power, real-time GMM-
HMM accelerator FAuto using HLS for driving behavior esti-
mation. The hybrid model is first trained using NGSIM dataset
with basically similar parameter settings as [4]. The hardware
design is implemented on an Xilinx PYNQ board running at
126 MHz. Input vectors and trained parameters are processed
in floating point double precision. Flexible batch size of input
vectors can be processed with an LEN-parameterized hardware
design. The FAuto accelerator achieves an effective through-
put of 4.63 TOPS, and DSP utilization efficiency 187.6x.
The embedded system consumes estimated on-chip power
of 1.787W, and achieves power efficiency of 2.59 TOPS/W.
The design performance of this work can be a benchmark
for later FPGA embedded autonomous systems. In our future
work, hardware system co-design with HLS and Verilog and
multiple data precision types will be further studied; and
energy consumption will be measured at the block-level for
further optimization.

ACKNOWLEDGEMENT

This work is supported by SRC (2847.001) and NSF (CNS-
1722557, CCF-1718474, DGE-1723687 and DGE-1821766).

REFERENCES

[1] H. M. Mandalia and D. Salvucci, “Using support vector machines
for lane-change detection,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 49, 09 2005.

[2] Y. Hu, W. Zhan, and M. Tomizuka, “Probabilistic prediction of vehicle
semantic intention and motion,” CoRR, vol. abs/1804.03629, 2018.
[Online]. Available: http://arxiv.org/abs/1804.03629

[3] T. Streubel and K. H. Hoffmann, “Prediction of driver intended path at
intersections,” in 2014 IEEE Intelligent Vehicles Symposium Proceed-
ings, June 2014, pp. 134–139.

[4] Y. Zhang, Q. Lin, J. Wang, S. Verwer, and J. M. Dolan, “Lane-change
intention estimation for car-following control in autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. 3, no. 3, pp. 276–286,
Sep. 2018.

[5] “Introduction to real-time ray tracing with vulkan,”
https://devblogs.nvidia.com/vulkan-raytracing/, 2018.

[6] “Intel vision accelerator design with an intel arria 10 fpga,”
https://software.intel.com/en-us/vision-accelerator-design-fpga-user-
guide/, 2018.

[7] A. Moussawi, K. Haddad, and A. Chahine, “An fpga-accelerated design
for deep learning pedestrian detection in self-driving vehicles,” CoRR,
2018. [Online]. Available: http://arxiv.org/abs/1809.05879

[8] F. C. J. Allaire, M. Tarbouchi, G. Labonté, and G. Fusina, “Fpga
implementation of genetic algorithm for uav real-time path planning,”
Journal of Intelligent and Robotic Systems, vol. 54, no. 1, pp. 495–510,
Mar 2009.

[9] M. Shi, A. Bermak, S. Chandrasekaran, and A. Amira, “An efficient
fpga implementation of gaussian mixture models-based classifier using
distributed arithmetic,” in 2006 13th IEEE International Conference on
Electronics, Circuits and Systems, Dec 2006, pp. 1276–1279.

[10] M. Mosleh, S. Setayeshi, M. M. Lotfinejad, and A. Mirshekari, “Fpga
implementation of a linear systolic array for speech recognition based
on hmm,” in 2010 The 2nd International Conference on Computer and
Automation Engineering (ICCAE), vol. 3, Feb 2010, pp. 75–78.

[11] S. Ren, V. Sima, and Z. Al-Ars, “Fpga acceleration of the pair-
hmms forward algorithm for dna sequence analysis,” in 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
Nov 2015, pp. 1465–1470.

[12] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker iden-
tification using gaussian mixture speaker models,” IEEE Transactions
on Speech and Audio Processing, vol. 3, no. 1, pp. 72–83, Jan 1995.

[13] D. Jurafsky and J. H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguis-
tics, and Speech Recognition, 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2000.

[14] C. J. Newburn, G. Bansal, M. Wood, L. Crivelli, J. Planas, A. Duran,
P. Souza, L. Borges, P. Luszczek, S. Tomov, J. Dongarra, H. Anzt,
M. Gates, A. Haidar, Y. Jia, K. Kabir, I. Yamazaki, and J. Labarta,
“Heterogeneous streaming,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2016,
pp. 611–620.

[15] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[16] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “Deltarnn: A
power-efficient recurrent neural network accelerator,” in Proceedings of
the 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’18. New York, NY, USA: ACM, 2018, pp. 21–
30. [Online]. Available: http://doi.acm.org/10.1145/3174243.3174261

[17] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R. G. Dreslinski, T. Mudge, V. Petrucci, L. Tang, and J. Mars,
“Sirius: An open end-to-end voice and vision personal assistant and
its implications for future warehouse scale computers,” SIGPLAN Not.,
vol. 50, no. 4, pp. 223–238, Mar. 2015.

[18] M. Ito and M. Ohara, “A power-efficient fpga accelerator: Systolic array
with cache-coherent interface for pair-hmm algorithm,” in 2016 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS XIX),
April 2016, pp. 1–3.

