
Zero-Shot Source Code Author Identification: A
Lexicon and Layout Independent Approach
Pegah Hozhabrierdi∗
Department of EECS
Syracuse University

Syracuse, USA
phozhabr@syr.edu

Dunai Fuentes Hitos∗
Independent Researcher

Huelva, Spain
dunai.fuenteshitos@alumni.epfl.ch

Chilukuri K. Mohan
Department of EECS
Syracuse University

Syracuse, USA
mohan@syr.edu

Abstract—We tackle the challenge of Zero-Shot identification
of authors of source code, which can be used with no prior
samples of authors outside of the training data. In our approach,
a feedforward neural network is first trained on a multi-class
classification task. Then, a substantial part of this network is
duplicated and reused to compare code samples. We refer to
this design as Feedforward Duplicated Resolver (FDR) model.
We propose new input features to train this model, called
Variable-Independent Nested Bigrams, extracted from the Abstract
Syntax Trees of code samples. These features provide robustness
against lexical and layout obfuscation attacks frequently used
in plagiarism attempts. This approach performs accurately even
on code samples from unknown authors, on data obtained from
Google Code Jam, an international coding competition platform.
For example, for the task of predicting whether a pair of samples
from 43 unknown authors have been written by the same person,
we obtain an AUC of 0.96 and 0.91 for non-obfuscated and
obfuscated code, respectively.

Index Terms—Author identification, Source code stylometry,
Zero-shot learning, Obfuscation

I. INTRODUCTION

Source code author identification attempts to discover the
true authors of source code samples, and is important in many
challenging applications such as detecting classroom plagia-
rism, copyright violations, and malware authorship attribution
[1], [3], [13], [24].

Current source code author identification models rely heav-
ily on a rich set of code samples from each author for training
[4], [6], [7], [11]. However, in a real-world setting, scarcity of
the historical record of the authors’ code samples makes such
training impossible. Additionally, to support identification of
yet unseen authors, model retraining is needed.

We address an important question unanswered by most
existing studies: How can we identify unknown authors with
no available prior code samples? Many real-world scenarios
fall under this category. For example, consider the classroom
plagiarism detection task for programming assignments, with
very few or no prior samples per student that could be
used for training a classifier. To address this problem, many
plagiarism tools in educational institutions use lexical and/or
layout similarities between the submitted assignments [19].

*Equal contribution

These similarities, mostly borrowed from text authorship attri-
bution, can be obfuscated easily. Lexical and layout features
(examples shown in Table I) can be manipulated by simple
changes in variable names, spacing, and ordering of the
statements without altering the syntax. Hence there is a need
for a classifier that (1) requires no prior samples (zero-shot
classification); and (2) is robust against lexical and layout
attacks (obfuscation independence) [26].

TABLE I: Source code stylometric features

Features Examples

Lexical

Number of occurrences of keywords
Number of unigrams
Number of comments
Number of strings, character, and numeric literals

Layout

Number of tab characters
Number of space characters
Number of empty lines
Number of whitespace characters

Syntactic

Nested Bigrams
Maximum depth of an AST node
Term frequency AST node bigrams
Term frequency of code unigrams in AST leaves

Dynamic

Number of function calls
Average running time per module
Memory usage of each function
Memory access patterns

Zero-shot learning is important for scenarios in which:
1) Acquiring prior code samples written by an author is an

infeasible task if their identity is unknown.
2) The number and/or length of the samples may be insuf-

ficient for learning.
This paper presents the first work that successfully im-

plements zero-shot learning of coding style, integrating a
zero-shot solution and a similarity measure that help protect
against layout and lexical obfuscations. The model used here is
based on duplicating a trained feedforward network, extensible
to authors with no prior samples in the training or feature
extraction phase. We will refer to this model as Feedforward
Duplicated Resolver (FDR) throughout the paper. To vectorize
code samples, we use two different feature sets. First is the
Nested Bigrams (NB) representation, proposed in our previous
work [11]. To provide robustness against lexical obfusca-
tion attacks, we introduce a lexicon-independent variation,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Variable-Independent Nested Bigrams (VINB), as our second
feature set. These features are extracted from the Abstract
Syntax Tree (AST) of the code, and capture the coding style
without the need for additional features.

The language selected for this study is Python, due to its
growing popularity and the paucity of plagiarism studies for
it. However, our approach can be applied to other languages
and embeddings as well. On a dataset of 246 authors with 8
Python code samples per author from Google Code Jam, we
obtained AUC results of 0.96 and 0.91 for Nested Bigrams
and Variable Independent Nested Bigrams respectively.1

In Section II, we discuss related work. Section III describes
the feature sets we use. Section IV presents our neural network
architecture and training approach. Experimental setup and
results are discussed in Section V. The last section presents
conclusions and future work.

II. RELATED WORK

Prior work (in [2], [5], [6], [11], [14], [20], [22]) has
addressed authorship attribution as a classification task. Given
a set of authors, each code sample must be attributed to
one member of this restricted set. Models are trained to
discriminate between these classes, a “closed-world” task.
These models are not useful for identifying the authorship of
a code sample outside the set of known authors or the training
distribution, an “open-world” task. Comparing code samples
from previously unseen authors and determining their stylistic
similarity is an important and practical real-world problem that
has received little attention so far.

Two existing works are of interest in the context of the
problem we address:

Caliskan et al. [6]: The existence of an unknown author
is considered in the context of a binary class discrimination
problem. This is achieved by setting a threshold on the number
of consenting trees in a random forest classifier. If the set of
the majority vote has less trees than the threshold, the code
is labeled as “unknown”. Their classifier cannot capture the
similarity of different samples written by the same unknown
author. For the addition of new unknown authors, the classifier
has to be retrained.

Wang et al. [25]: They generalize the classifier to unseen
authors by using Siamese matching networks [16]. Their
matching classifier, SUNDAE, uses both dynamic and static
features, examples of which are shown in Table I. This study
suffers from the following shortcomings:

• Choice of evaluation metric: Using the overall accuracy
to evaluate a classifier is misleading when the data set
is imbalanced. Indeed, their accuracy of 99.91% for a
dataset of 1,159 authors, with 229 code samples per
author, can be achieved merely by categorizing every
data point as belonging to the majority class (i.e. “no
match”); the number of pairs of code samples belonging
to the same author is

(
229
2

)
× 1, 159 whereas the total

1Our model and implementation details are available at https://github.com/
Pegayus/zeroshot-code-authorship.

number of pairs of code samples is
(
1,159×229

2

)
, and the

ratio is < 0.1%. In such cases, it is necessary to evaluate
the classifier using diagnostic test assessments such as
negative and positive predictive values (NPV and PPV),
F1 score, and AUC.

• Execution-dependence: The extraction of dynamic fea-
tures require executing code, which can be costly and
risky (e.g., due to malicious code fragments).

• Necessity of dynamic features: Performance is much
poorer when restricted to static features.

• Slow Training: For a set of n code samples, the Siamese
network is to be trained with

(
n
2

)
pairs of code samples.

The required time for training SUNDAE grows quadrat-
ically as a function of its sample size.

• Slow Testing: Comparing a new code sample against a
large database, even with precomputed vector representa-
tions, implies applying a trained binary classifier for each
pair to predict the likelihood of a match.

III. FEATURE SET

Since the early studies on source code stylometric analysis,
finding the right feature set has remained a major challenge. In
our previous work [11], we introduced new syntactic features,
Nested Bigrams (NB), and showed their efficacy in capturing a
Python programmer’s coding style while being robust against
layout obfuscation. This section describes Nested Bigrams
and then introduces Variable-Independent Nested Bigrams,
new features that are resilient against both layout and lexical
obfuscation attempts.

A. Nested Bigrams

Nested Bigrams represent parent-child node pairs in the
abstract syntax tree, where each node carries the information
of all its descendants. They use nesting of subtrees to preserve
the information between non-adjacent nodes, including sibling
nodes and descendants, in the abstract syntax tree (AST).

For example, in Figure 1, the left hand side shows a simple
code snippet (in Python) whose AST is depicted on the right.
Nodes Assign and Call are sibling nodes, and UAdd is a
non-immediate descendent of Assign. The parent-child pair
(Assign , UnaryOp) is a bigram. The corresponding Nested
Bigram includes the information concerning subtrees (and all
descendants) of nodes Assign and UnaryOp respectively,
i.e. (Assign(Name(Store),UnaryOp(UAdd, Num)),
UnaryOp(UAdd, Num)).

Nested Bigrams embedding vectorizes the source code using
the frequencies of bigrams in the code. When the embedding is
applied to two code samples from the same author, the results
are expected to be similar; but if the authors are different, the
embedding maps them to substantially dissimilar vectors. For
each AST, we omit the non-informative root node Module in
the feature extraction step.

Nested Bigrams are both fast to extract and accurate in
representing the coding style of an author, maintaining in-
formation about the long-distance connections in the AST
without the use of complicated encoding mechanisms [4]. The

https://github.com/Pegayus/zeroshot-code-authorship
https://github.com/Pegayus/zeroshot-code-authorship

Fig. 1: A Python code snippet (left) and its abstract syntax tree (right); (ImportFrom, alias(myfunc)) is an example of a Nested
Bigram. Nodes highlighted in yellow contain the names of variable/functions, and are replaced by a default keyword in VINB.

performance of Nested Bigrams is compared with prior state-
of-the-art features in [11].

B. Variable-Independent Nested Bigrams
Layout and lexical obfuscation techniques are among the

most widely used methods for obfuscating code [26]. Nested
Bigrams are sensitive to the lexical information in the names
chosen for the variables and functions. The dependency of
Nested Bigrams on lexical features degrades their performance
in the presence of such obfuscation attacks (Figure 6b). To
solve this problem, we replace the variable and function
names by a default keyword (such as ‘VAR’) in the abstract
syntax tree. We refer to the Nested Bigrams of this modified
syntax tree as Variable-Independent Nested Bigrams (VINB).
In Figure 1, the nodes containing layout information are high-
lighted (yellow). In a variable-independent AST, the values of
these nodes will be replaced by a default keyword before the
extraction of Nested Bigrams.

In the case of non-obfuscated code, a slight drop of perfor-
mance can be expected for VINB when compared to Nested
Bigrams. The choices of specific names in a non-obfuscated
script can reflect the personal taste and style of a programmer,
exhibited repeatedly in much of their source code. Despite
losing this valuable information, VINB offers competitive
performance for unseen authors and with obfuscated code.

IV. FEEDFORWARD DUPLICATED RESOLVER (FDR)
NEURAL NETWORK MODEL

Siamese networks have been used for one-shot and zero-shot
learning tasks in image recognition and short text classification
[16], [27]. A Siamese network uses two identical networks to
generate two output vectors from a pair of samples. These two
vectors are then compared to determine whether they belong
to the same class. Siamese networks are trained by matching
pairs (or triplets [10]) of samples from available data. Instead
of a class label, they receive a binary label.

Training Siamese networks is often slow and inefficient.
Recently, it has been demonstrated [21] that a SoftMax loss on

a multi-class classification problem is equivalent to a smoothed
triplet loss. Hence, instead of using Siamese Networks, we
propose to use SoftMax loss minimization. During inference,
as in the Siamese case, the network is duplicated to compare
samples. We refer to this new approach as the Feedforward
Duplicated Resolver (FDR), consisting of the following com-
ponents:

1) A feedforward multi-class discrimination neural net-
work is first trained, with its inputs being the NB/VINB
feature vectors, as shown in Figure 2b. The output
layer of this network applies a SoftMax function to
the outputs of the final layer of “hidden nodes” in
the network. The training objective is to minimize the
categorical cross-entropy loss. Our experiments use a
feedforward network with two layers, with Dropout
[23], ReLU activation, and Batch Normalization [12].
The implementation is in PyTorch [8]. Training is done
with the Adam [15] optimizer using a learning rate
schedule with warm restarts [17]. We do not apply any
data augmentation techniques, which highlights the data
efficiency of this approach.

2) The duplicated part of the system consists of two copies
of the above trained feedforward module without the
SoftMax layer.

3) The resolver compares the outputs of the above (final)
feature vectors, using input (NB/VINB) vectors from
two code samples, that may be of unknown origin,
including authors whose code has not been previously
encountered. We measure the cosine similarity between
different output vectors for the final fully connected
layer (Figure 2). Training the feedforward network to
minimize the categorical cross-entropy maximizes the
cosine similarity of samples of the same class.

Baselines. We compare different methods to construct code
embeddings:

• Nested Bigram Normalized Frequencies: Vectorization of
the samples into bigram frequencies provides a powerful

(a) Feedforward NN

(b) Multi-Class Training with Known Authors

(c) Testing with Unknown Authors

Fig. 2: FDR Approach: (a) Feedforward neural network used as backbone in (b) and (c). (b) Multi-class training of the
feedforward network: The feature extraction block obtains the frequencies of the most frequent bigrams (B1, B2, ..., Bi) among
all samples, normalized by sample’s length. The samples are further encoded into the corresponding feature space and used
to train the network. The numbers shown beneath each layer of the feedforward network denote the output dimensions. (c)
Testing on unseen authors: The feature projection block maps each sample into the feature space obtained above. The three
colored diamonds identify the three different embeddings used in experiments; the exact location of the red diamond is shown
in (a).

TABLE II: Evaluation of different embedding methods in the 81-class classification task, using a k Nearest Neighbor classifier
(with k =5). Accuracy is reported for unseen code samples from authors within the training distribution.

Method Output Dimension Metric Driving Force Accuracy (%)
Random Guess NA NA NA 1.23
Nested Bigrams 7,269 Cosine NA 55.55
PCA 300 Cosine Maximum Variance 54.32
Siamese Network 5 Euclidean Contrastive Loss [9] 60.49
SUNDAE-NB 500 NA Binary Cross-Entropy Loss 40.74
Feedforward NN 81 Cosine Cross-Entropy Loss 95.06

embedding.
• Principal Component Analysis (PCA): This method can

be used to reduce the dimension of Nested Bigram
embedding.

• Siamese Network: We train a Siamese network [28] to
minimize intra-class and maximize inter-class distance.
The final fully connected layer has as many units as the
embedding space dimensionality (instead of the number

Fig. 3: SUNDAE-NB architecture; the number below each
layer denotes the output dimension of the layer.

of target classes).
• SUNDAE-NB: This network uses NB/VINB feature sets

along with a neural network classifier built on top of a
Siamese network [25], as shown in Figure 3.

• Feedforward NN Hidden Layer Outputs: We use interme-
diate outputs of a neural network classifier, i.e., outputs
of the last fully connected layer in Figure 2a.

Similarity Metrics. Similarity between samples in the
embedding space can be computed in many ways. We have
experimented with (1) spatial proximity, as given by the
Euclidean Distance, and (2) direction alignment, as given by
the Cosine Similarity.

Dataset. Google Code Jam (GCJ) is an annual international
programming competition that has been in operation since
2003. With a publicly available code repository on a variety
of algorithmic problems, GCJ has been used in previous
studies on code de-anonymization ([4], [6], [11]). We use this
repository due to its popularity in the field and the richness
of data. To build the corpus, we crawled seven years of
competition submissions (2006 - 2014) in Python, and sorted
them by the number of submissions per user. The experiments
reported in this section were performed on a dataset of 81
users with 9 problems each. This is a smaller subset of data
than used for the experimental results reported in Section V.

Experiments. To evaluate our approach, we compared
different embeddings and similarity metrics. Tests were con-
ducted in the first fold of stratified cross-validation, ensuring
that each class label appears during training. To compute
within-training-distribution performance, we first train the em-
bedding model and then train a 5-Nearest Neighbor classifier
using the pairwise distance matrix of the resulting embeddings.
We evaluate its accuracy on newly embedded inputs from a
test set of code samples from the same authors. We have
optimized the output dimension and other hyper-parameters
for each baseline, when applicable (hence the different output
dimension in Table II).

Results. As shown in Table II, the feedforward neural
network approach outperforms others by a considerable mar-
gin. Reducing the dimensionality of Nested Bigrams using
PCA from over 7000 to 300 resulted in little change in
the performance. Further dimensionality reduction with PCA,
however, affected the performance negatively. A Siamese
network trained with Contrastive Loss [9], the best performing
configuration found with Siamese training, could achieve
dimensionality reduction to a number as low as 5.

V. ZERO-SHOT AUTHOR IDENTIFICATION

Our goal is to identify the similarity of any pair of code sam-
ples using the FDR network. The backbone is the feedforward
neural network, trained for multi-class classification of a large
set of code samples from known authors. After training the
backbone, we duplicate it and use it as a resolver for testing,
measuring the cosine similarity between the outputs.

A. Experimental Setup

Dataset. In the following experiments, we use a dataset
of 246 authors with 8 code samples each from GCJ. We
choose this larger dataset (compared to that in section IV)
to demonstrate an important behavior discussed below and
shown in Figure 5. We use up to 160 authors for training,
43 for validation, and the remaining 43 authors for testing.

Training. We consider the learning task on a dataset
of ntrain labeled source code samples belonging to atrain
authors. To keep the training unbiased towards an author’s
style, we let code samples be uniformly distributed among
authors, i.e., each author has ctrain number of code samples
and ntrain = atrain × ctrain. The feature extraction block
extracts the most frequent NB/VINB features from training
data. We restrict the number of bigrams, taking only the most
frequent ones that are used by at least two authors. This helps
to avoid overfitting and aims to establish a general feature
space. Taking only the most frequent nested bigrams also
helps establish a linear growth rate for our dataset size with
increasing number of samples (Figure 4). Then, the processed
data is used to train our feedforward neural network on the
supervised task of author classification.

The effect of varying the number of nested bigrams and
the number of authors (on the validation AUC) can be seen
in Figure 5. We find that the top-8000 most frequent nested
bigrams constitute a good feature space (the same results
were obtained for VINB). This validation has been done for
different values of x in top-x features (from 500 to 10,000
over intervals of 500), omitted from Figure 5 for clarity. The
number of all bigrams for each number of training authors is
annotated on the All Frequent curve in Figure 5.

Testing Outside of Distribution. To test the performance
of the model on unknown authors (i.e., with no samples in
the training set), we construct a mixed set of ntest = atest ×
ctest source code samples that belong to authors outside of the
training distribution. The first step is to map these samples into
the feature space of the training set. No new bigrams are added
to the feature set in this stage. We build the Resolver network
by adopting the trained feedforward neural network module,
and estimating the similarity of each pair, e.g., using Cosine
Similarity, defined as:

K(e1, e2) =
< e1, e2 >

||e1|| · ||e2||

where ei is the bigram embedding of the ith source code.
The results are reported for (atrain, ctrain) = (160, 8) and
(aval, cval) = (43, 8) for selecting the optimal number of
nested bigrams, and (atest, ctest) = (43, 8).

20 40 60 80 100 120 140 160
Number of authors with 8 samples

0
10
20
30
40
50
60
70

Si
ze

 (M
B)

All frequent
Top 8000

Fig. 4: Memory requirement for Nested Bigrams/VINB. All
frequent includes all bigrams that have been used by at least
two authors. The size of this feature set grows exponentially
with respect to number of authors. Restricting the set to the
top 8000 bigrams eliminates this effect.

20 40 60 80 100 120 140 160
Number of Authors in Training Set

0.65

0.70

0.75

0.80

0.85

0.90

AU
C

in
 V

al
id

at
io

n
Se

t

12
79

27
85 46

28 64
29 80

76

97
48

11
27

7

13
05

7

Top 500
Top 1000
Top 8000
All Frequent (Annot.)

Fig. 5: AUC results for different numbers of nested bigrams
and authors. Each curve corresponds to a specific limit to
the number of nested bigrams considered, with the red curve
corresponding to no limit. The red curve is annotated by the
number of bigrams.

B. Results

Using the three embeddings extracted from the locations
indicated using shaded diamonds in Figure 2c, the ROCs are
shown in Figure 6 for both Nested Bigrams and VINB. The
bigram embeddings (PRIMARY features) are both weaker
than the FINAL embeddings generated by the proposed FDR
network model. The best AUC values for both bigrams are
achieved by the FINAL features embedding, with a 5-point
reduction in AUC for VINB, a trade-off for being robust to
lexical obfuscation.

Discussion. A drawback of selecting only “the most fre-
quent” bigrams across authors (in the training set) is the
elimination of the unique properties of an author that cannot
be generalized to others (e.g., the specific choices of names for
variables and class structures). We show this effect by com-
paring the performance of “the most frequent” or PRIMARY

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

ALL (auc: 0.93, ci: [0.912 - 0.941])
FINAL (auc: 0.96, ci: [0.953 - 0.975])
INTERMEDIATE (auc: 0.96, ci: [0.947 - 0.97])
PRIMARY (auc: 0.90, ci: [0.883 - 0.918])

(a) Nested Bigrams, non-obfuscated code samples

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

ALL (auc: 0.62, ci: [0.589 - 0.65])
FINAL (auc: 0.64, ci: [0.604 - 0.665])
INTERMEDIATE (auc: 0.64, ci: [0.605 - 0.666])
PRIMARY (auc: 0.60, ci: [0.567 - 0.629])

(b) Nested Bigrams, obfuscated code samples

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC

ALL (auc: 0.69, ci: [0.659 - 0.715])
FINAL (auc: 0.91, ci: [0.891 - 0.922])
INTERMEDIATE (auc: 0.90, ci: [0.878 - 0.912])
PRIMARY (auc: 0.69, ci: [0.667 - 0.722])

(c) VINB, obfuscated code samples

Fig. 6: ROC for zero-shot learning using (a) Nested Bigrams,
(b) Nested Bigrams extracted from obfuscated code and (c)
Variable-Independent Nested Bigrams (VINB) extracted from
obfuscated code. FINAL, INTERMEDIATE, and PRIMARY
features refer to the embeddings indicated in Figure 2c. ALL
feature includes all Nested Bigrams/VINB extracted from the
set of samples with unknown authors; and ci is the 90 percent
confidence interval of the reported AUC.

2 1 0 1 2 3
1

0

1

2

3

(a) NB-PRIMARY

20 15 10 5 0 5 10 15

4

2

0

2

4

6

(b) NB-FINAL

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5

0

1

2

3

(c) VINB-PRIMARY

6 4 2 0 2
10

8

6

4

2

0

2

4

(d) VINB-FINAL

Fig. 7: UMAP 2D visualizations of embeddings computed for 72 code samples from 9 unseen authors, 8 code each. Samples
with the same authorship are displayed with the same color. For PRIMARY, the embedding space is defined by the Nested
Bigrams / VINB of a disjoint set of 203 authors. For FINAL, projections to the embedding space were learned from the same
disjoint set of authors. We use the same UMAP hyperparameter for all plots, namely: 10 neighbors and 0 minimum distance.

features to that of all bigrams (not limited to those in the
training set) or ALL features. The ROC for these features
is shown in the dashed magenta curve. Since these features
include all bigrams of each source code sample, they are 10
times larger in size than the PRIMARY feature space.

The results surpass the PRIMARY features for zero-shot
recognition, but only when variable names are considered. In
general, the ROC curves for Nested Bigrams show a slightly
better discriminative ability than those for VINB. This hints
at the importance of user-defined variable names in character-
izing one’s coding style. However, this small drop in VINB
performance in zero-shot recognition can be an acceptable
trade-off for immunity against lexical obfuscation attacks. For
a more intuitive understanding, we present a visualization in
Figure 7 of a 2D UMAP [18] with the projections of the code
samples for the first 9 authors from our test set.

Plagiarism Detection. Challenges confronted (in the class-
room scenario) include the lack of prior coding samples
from students, and the possibility that the layout and lexical
features of the code are changed by plagiarizers. With our
proposed FDR solution, the coding assignments of a class can
be evaluated without any prior information on new students’
coding habits. Only a training set obtained from previous
students in the course is needed. This is due to our model’s

capability of identifying the similarity of two source code
samples written by the same author, without having prior
samples from this author in the database.

VI. CONCLUSION

We introduced the challenge of zero-shot recognition for
source code author attribution. We showed that among many
possible embeddings for source code, including the previous
studies, the internal representations of feedforward neural
networks trained on multi-class classification yields the highest
inside-distribution accuracy (95 percent) when used along
with the k-Nearest Neighbor approach. The implementation
of this network as a Resolver for outside-distribution testing
demonstrates a strong discriminative capability for unseen
authors (with the AUC of 0.96 for 43 unknown authors). We
also presented a new code vectorization method resilient to
lexical and layout obfuscations, Variable Independent Nested
Bigrams (VINB), and showed competitive performance with
the same setup. Our contributions are as follows:

1) We introduced the Zero-Shot Code Authorship Identi-
fication challenge on a dataset of 1,968 source code
belonging to 246 authors from Google Code Jam.

2) We proposed a Feedforward Duplicated Resolver net-
work model to answer the zero-shot recognition chal-

lenge. This model is trained in a multi-class classifi-
cation task, using a feedforward neural network and a
SoftMax. We showed that this training scheme is faster
and more accurate than training of Siamese networks on
binary (match/no-match) labels.

3) We introduced a modification of the Nested Bigrams rep-
resentation, i.e., Variable Independent Nested Bigrams
(VINB), shown to be robust against lexical and layout
obfuscation attacks.

4) Our zero-shot plagiarism detection package is open-
sourced for Python source code and can be used in
practical settings, such as classrooms.

Limitations. This study has focused on Python source code
de-anonymization on the Google Code Jam dataset; data from
other application contexts remain to be explored. A possible
scenario in which our approach can miss the classification of
unknown authors is where the length of the provided sample
code is too small to capture a specific coding behavior. An
interesting study would be the analysis of optimal minimum
code length for which satisfactory performance is achieved. Fi-
nally, we note that Nested Bigrams and VINBs are appropriate
when sufficient nestedness is observed in the code samples;
when there is no nesting behavior in the code samples, the
Nested Bigrams will be equivalent to term frequency of node
bigrams (in ASTs).

Future Work. We plan to apply this approach to code from
other languages such as Ruby. Other directions of future work
include applying the proposed network model using additional
sets of features, including dynamic features, where available
(e.g., from sandbox testing). We would also like to explore
a clustering-based network model such as LVQ, instead of
the feedforward network module, which may help when the
same author’s coding style may follow more than one pattern.
Adding a multiple-authorship detection method on top of
the current model may add more insight to the final results.
Finding features that are globally resilient to more complex
obfuscation attacks also remains a challenge. Finally, it will
be of interest to analyze the performance of our FDR model
on a larger set of code samples.

REFERENCES

[1] Cheryl L Aasheim, Paige S Rutner, Lixin Li, and Susan R Williams.
Plagiarism and programming: A survey of student attitudes. Journal of
information systems education, 23(3):297–313, 2012.

[2] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan.
N-gram-based detection of new malicious code. In Computer Software
and Applications Conference, 2004. COMPSAC 2004. Proceedings of
the 28th Annual International, volume 2, pages 41–42. IEEE, 2004.

[3] Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang.
On the feasibility of malware authorship attribution. In International
Symposium on Foundations and Practice of Security, pages 256–272.
Springer, 2016.

[4] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis,
and Rachel Greenstadt. Source code authorship attribution using
long short-term memory based networks. In European Symposium on
Research in Computer Security, pages 65–82. Springer, 2017.

[5] Steven Burrows and Seyed MM Tahaghoghi. Source code authorship
attribution using n-grams. In Proceedings of the Twelth Australasian
Document Computing Symposium, Melbourne, Australia, RMIT Univer-
sity, pages 32–39. Citeseer, 2007.

[6] Aylin Caliskan-Islam, Richard Harang, Andrew Liu, Arvind Narayanan,
Clare Voss, Fabian Yamaguchi, and Rachel Greenstadt. De-anonymizing
programmers via code stylometry. In 24th USENIX Security Symposium
(USENIX Security), Washington, DC, 2015.

[7] Edwin Dauber, Aylin Caliskan, Richard Harang, Gregory Shearer,
Michael Weisman, Frederica Nelson, and Rachel Greenstadt. Git
blame who?: Stylistic authorship attribution of small, incomplete source
code fragments. Proceedings on Privacy Enhancing Technologies,
2019(3):389–408, 2019.

[8] Adam Paszke et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[9] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction
by learning an invariant mapping. In null, pages 1735–1742. IEEE, 2006.

[10] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network.
In International Workshop on Similarity-Based Pattern Recognition,
pages 84–92. Springer, 2015.

[11] Pegah Hozhabrierdi, Dunai Fuentes Hitos, and Chilukuri K Mohan.
Python source code de-anonymization using nested bigrams. In 2018
IEEE International Conference on Data Mining Workshops (ICDMW),
pages 23–28. IEEE, 2018.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[13] Mike Joy, Georgina Cosma, Jane Yin-Kim Yau, and Jane Sinclair.
Source code plagiarism—a student perspective. IEEE Transactions on
Education, 54(1):125–132, 2010.

[14] RI Kilgour, AR Gray, PJ Sallis, and SG MacDonell. A fuzzy logic
approach to computer software source code authorship analysis. 1998.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[16] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese
neural networks for one-shot image recognition. In ICML Deep Learning
Workshop, volume 2, 2015.

[17] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts. arXiv preprint arXiv:1608.03983, 2016.

[18] Leland McInnes, John Healy, and James Melville. Umap: Uniform
manifold approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426, 2018.

[19] Mohamed El Bachir Menai and Nailah Salah Al-Hassoun. Similarity
detection in java programming assignments. In 2010 5th International
Conference on Computer Science & Education, pages 356–361. IEEE,
2010.

[20] Paul W Oman and Curtis R Cook. Programming style authorship
analysis. In Proceedings of the 17th conference on ACM Annual
Computer Science Conference, pages 320–326. ACM, 1989.

[21] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin.
Softtriple loss: Deep metric learning without triplet sampling. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 6450–6458, 2019.

[22] Eugene H Spafford and Stephen A Weeber. Software forensics: Can we
track code to its authors? 1992.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural
networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[24] Dewi Tresnawati, Arief Syaichu, et al. Plagiarism detection system
design for programming assignment in virtual classroom based on
moodle. Procedia-Social and Behavioral Sciences, 67:114–122, 2012.

[25] Ningfei Wang, Shouling Ji, and Ting Wang. Integration of static and
dynamic code stylometry analysis for programmer de-anonymization. In
Proceedings of the 11th ACM Workshop on Artificial Intelligence and
Security, pages 74–84. ACM, 2018.

[26] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R Lyu. On secure and
usable program obfuscation: A survey. arXiv preprint arXiv:1710.01139,
2017.

[27] Leiming Yan, Yuhui Zheng, and Jie Cao. Few-shot learning for short text
classification. Multimedia Tools and Applications, 77(22):29799–29810,
2018.

[28] Zhi-Hua Zhou. A brief introduction to weakly supervised learning.
National Science Review, 5(1):44–53, 2017.

