
Adversarial Reinforcement Learning under Partial
Observability in Autonomous Computer Network

Defence

Yi Han∗, David Hubczenko†, Paul Montague†, Olivier De Vel†, Tamas Abraham†,
Benjamin I. P. Rubinstein∗, Christopher Leckie∗, Tansu Alpcan‡, Sarah Erfani∗

∗School of Computing and Information Systems

The University of Melbourne, Parkville, Australia, 3010

Email: {yi.han, benjamin.rubinstein, caleckie, sarah.erfani}@unimelb.edu.au
†Defence Science and Technology Group, Australian Department of Defence

Edinburgh, Australia, 5111

Email: {david.hubczenko, paul.montague, olivier.devel, tamas.abraham}@dst.defence.gov.au
‡Department of Electrical and Electronic Engineering

The University of Melbourne, Parkville, Australia, 3010

Email: tansu.alpcan@unimelb.edu.au

Abstract—Recent studies have demonstrated that reinforce-
ment learning (RL) agents are susceptible to adversarial manip-
ulation, similar to vulnerabilities previously demonstrated in the
supervised learning setting. While most existing work studies the
problem in the context of computer vision or console games, this
paper focuses on reinforcement learning in autonomous cyber
defence under partial observability. We demonstrate that under
the black-box setting, where the attacker has no direct access
to the target RL model, causative attacks—attacks that target
the training process—can poison RL agents even if the attacker
only has partial observability of the environment. In addition,
we propose an inversion defence method that aims to apply
the opposite perturbation to that which an attacker might use
to generate their adversarial samples. Our experimental results
illustrate that the countermeasure can effectively reduce the
impact of the causative attack, while not significantly affecting
the training process in non-attack scenarios.

Index Terms—adversarial reinforcement learning, partial ob-
servability, cyber security.

I. INTRODUCTION

The adversarial machine learning [1]–[4] literature has

demonstrated that machine learning models are vulnerable

to both exploratory (test-time) and causative (training-time)

attacks. These attacks are typically crafted by applying calcu-

lated perturbations to the test or training instances, in order to

either cause misclassification or poison the training process.

More recent studies [5]–[8] have shown that similar attacks can

also be effective against reinforcement learning algorithms.

Unlike the majority of the literature that mainly focuses on

the vision domain or console games, in previous work we [7]

analyse how reinforcement learning agents react to different

forms of poisoning attacks in the context of autonomous de-

fence in software-defined networking (SDN) [9]. Specifically,

we first demonstrate that without any poisoning attacks, an

RL agent can be successfully trained to identify the optimal

strategy for preventing the attacker from propagating through

the network. Then we investigate the effect of two different

types of poisoning attacks on the RL training process, and

show that the RL agent can be misled into making non-optimal

decisions, causing a significantly larger part of the network to

be compromised by the attacker. Section II provides a more

detailed description.

However, there are two limitations with the previous

work [7]: (1) full observability of the (network) states is as-

sumed in the analysis, which is often not the case in real-world

situations, especially for the attacker; (2) while an important

topic, treatment of RL defence mechanisms is preliminary,

and the proposed method does not work effectively in the

new setup as introduced below. In this work, we address these

limitations and make the following contributions:

First, we impose partial observability for the attacker.

Since it is unlikely that the attacker can map out the entire

network topology, we consider the scenario where the defender

has full observability of the network, but the attacker only

knows part of the topology. Specifically, Fig. 1 depicts the

running example network studied in this paper. The network

is comprised of 100 nodes and 172 links, and the attacker

has an initial foothold of a handful of compromised nodes.

They aim to propagate through the network to take control

of a specific node corresponding to the critical server, which

in response can be migrated by the defender to some pre-

determined alternate nodes.

As shown in the figure, two setups are considered, where

the attacker can observe around one-third and half of all

the nodes, respectively. Under each setup, the defender trains

a reinforcement learning agent to (1) protect the critical

server from being compromised, and (2) maintain the network

functionality as much as possible, i.e., maximise the number

of nodes that can reach the critical server. On the other hand,

the attacker only has partial observability, which restricts their

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

action set: they cannot compromise an adjacent node unless

the link to the node is known.

Second, we propose a new inversion defence method
to counteract the causative attack on reinforcement learning

algorithms. Our experimental results suggest that the approach

introduced in [7] does not work well in our setup (Fig. 1).

Instead, we design a method that requires no prior knowledge

about the attacker, and attempts to undo attacker poisoning

of the RL training process. We demonstrate the effectiveness

of the new defensive algorithm, and show that it has limited

impact in non-attack scenarios.

The remainder of this paper is organised as follows: Sec-

tion II summarises the problem of applying reinforcement

learning for autonomous defence in computer networks; Sec-

tion III introduces the causative attack via state perturbation

and Section IV the defence mechanism; Section V presents

the experimental verification; Section VI reviews previous

work in adversarial machine learning; and finally Section VII

concludes the paper and offers directions for future work.

II. PROBLEM: REINFORCEMENT LEARNING FOR

AUTONOMOUS NETWORK DEFENCE

We now overview the problem of autonomous defence in

computer networks using reinforcement learning.

A. Background on Reinforcement Learning

Reinforcement learning [10] deals with a sequential decision

making problem where an agent interacts with the environment

to maximise its rewards. At each time step t, the agent (1)

receives an observation st of the environment; (2) takes an

action at based on its policy π, which is a mapping from

states to actions; and (3) obtains a reward rt based on state st ,
action at , and the environment’s transition to a new state st+1.

The goal of the agent is to maximise its cumulative rewards,

i.e., Rt =
∑∞

τ=t γ
τ−trτ , where γ ∈ (0,1] is a discount factor

which affects the present importance of long-term rewards.

We focus our experiments on two widely used RL

algorithms—Double Deep Q-Networks (DDQN) [11] and

Asynchronous Advantage Actor-Critic (A3C) [12]—and the

transferability of attacks between them.

B. Autonomous Network Defence with Reinforcement Learn-
ing

Maintaining the security of cyber environments without

affecting the normal exchange of information is a challenging

task. Although the problem of cyber defence has been studied

for decades, most deployed solutions are still rule-based that

require a significant human involvement and are prone to gen-

erating false alarms—rules are formulated based on previously

seen threats, and may not be applicable to new vulnerabilities.

In addition, for those solutions that do employ machine learn-

ing, traditional one-class or two-class prediction algorithms

are often used, which require prior knowledge on existing

attacks to make accurate decisions. However, acquiring the

prior knowledge on all existing attacks is almost impossible,

as more sophisticated attacks are generated everyday.

In this work, we investigate the feasibility of applying RL

for autonomous cyber defence, as RL has the ability to adapt

and generalise, and has been successfully used for autonomous

control in a wide range of applications.

Specifically, we consider a computer network of |N | nodes,

N = {n1,n2, ...,n |N | }, and |L | links, L = {l1, l2, ..., l |L | } (e.g.,
Fig. 1), where ND ⊂ N is the set of critical servers to be

protected (one or more blue nodes), NM ⊂ N is the set of

possible migration destinations for node n ∈ ND (one or more

green nodes), and NA ⊂ N is the set of nodes that have

been compromised (red nodes). In addition, while the defender

knows all the nodes and links, the attacker is only able to map

out a subset of them—NO and LO, where NO ⊆ N, LO ⊆ L.

The attack scenario we consider is a cyber attack against the

network infrastructure. Here, the attack spreads through the

network, and aims to take control of the critical servers (note

that we assume that the attacker has to compromise all nodes

on the path). However, they can compromise a node n only

if there is a link l ∈ LO between n and a compromised node

n′ ∈ NA. That is NA keeps expanding as the attack proceeds.

In order to protect the critical servers from being compro-

mised, the defender trains an RL agent that:

1) Monitors the system state. The system state is represented

using a binary feature representation. The state representation

has a number of bits equal to the sum of the number of nodes

and number of links in the network. A bit corresponding to a

node is 0/1 to represent whether that node is un/compromised.

A bit corresponding to a link is 0/1 to represent whether that

link is down/up. Note that detection is not our focus—we are

not studying how to detect the attacker, nor how the attacker

can escape detection. Therefore, we have modeled the defender

as having in place a detection system. Our experiments suggest

that as long as the system achieves a reasonable detection rate,

e.g., ≥ 75%, it does not have an obvious impact on the final

results. In our experiment, the detection rate is set to 90%.

2) Chooses an appropriate action to take when in a given

system state. The actions that are available comprise: (i)

isolating and patching one node; (ii) reconnecting one node

and its links; (iii) migrating the critical server to a certain

destination; and (iv) taking no action. Note that for actions (i)

or (ii), only one node can be isolated or reconnected during

each action cycle.

The reward function that the RL agent is trained on is given

in (1), where Ut is the number of nodes unreachable from the

critical server after the current tth step, Ct is the number of

newly compromised nodes at the tth step, rc is the reward for

an additional node to be compromised, rm is the migration

cost, 1a=m = 1 iff the action a is to migrate the critical server,

and α, β ≥ 1.0.

rt =

{
−1, n ∈ ND is compromised or the action is invalid(
1 − α · Ut

|N |
· βt

)
− Ct · rc · βt − 1a=m · rm, otherwise

(1)

As we can see, the reward is based on (i) whether any

critical server has been compromised; (ii) the validity of an

action, e.g., if a node has already been isolated, it cannot be

Fig. 1: Network setups: (a) the attacker can observe 34 nodes and 46 links; (b) the attacker can observe 51 nodes and 80 links.

isolated again; (iii) the number of nodes reachable from the

critical servers; (iv) the number of newly compromised nodes;

and (v) the migration cost. Note that the term βt encourages

RL agents to find the optimal solution with minimal steps.

For each of the setups in Fig. 1, we train multiple DDQN

(with Prioritised Experience Replay [13]) and A3C agents with

different structures, i.e., different numbers of hidden layers and

different numbers of neurons per layer. These agents help us

identify the optimal policy without tampering (see Fig. 2): (1)

under the first setup, isolating nodes in the order of 10, 53,

81, 80, which results in a total of 92 out of 100 nodes being

preserved. Note that there are several other equally optimal

solutions for this case; (2) under the second setup, isolating

nodes in the order of 90, 53, 62, 22, 31, which results in a

total of 82 out of 100 nodes being preserved.

However, the above cyber attack scenario and resulting

trained RL agents leave important questions unanswered: if
the attacker has the ability to poison the training process,
can the agents still identify the optimal actions? What can
the defender do to mitigate attack impact? We seek to address

these questions.

III. PARTIALLY-OBSERVABLE POISONING ATTACKS ON RL

BY STATE MANIPULATION

In order for RL techniques to be successfully applied in

autonomous cyber defence, it is crucial to analyse the suscep-

tibility of RL agents to potential causative attacks. However,

most existing adversarial attacks against RL agents are based

on gradient descent optimisation [5], [6], [8], [14], and in our

case the attacker aims to manipulate the binary state of a node

(note again that the purpose of the attack is not to escape

detection/cause misclassification). Therefore, gradient descent-

based attacks are not applicable. Instead, we have investigated

the following attack mechanisms:

1) Tampering with a small number (e.g., 5%) of rewards to

maximise the defender’s loss. Specifically, the gradient of

the loss with respect to the rewards, is used to select which

rewards to tamper with;

2) Random perturbation of the observed states;

3) Manipulating the states to minimise the defender’s rewards;

4) Manipulating the states to minimise the probability of

taking the optimal action.

In our preliminary unreported experiments we found that

the last attack mechanism was the most effective and hence

we subsequently use it as the attacker’s strategy.

A. Threat Model

We focus on the scenario where the attacker tampers with

the states observed by the RL agents, so that the trained model

learns sub-optimal actions. Specifically, suppose that the agent

observes an experience (s,a, s′,r) without any attacks, where

s is the current system state, a is the action taken by the

agent, s′ is the new state, and r is the reward. When the

system reaches the new state s′, the agent would continue

to take the next optimal action a′. The attacker can counteract

this by introducing false positive (FP) and false negative (FN)

readings in s′, meaning that uncompromised (compromised)

nodes will be reported as compromised (uncompromised) to

the defender. Consequently, the agent observes (s,a, s′ + δ,r ′)
(where δ represents the FP and FN readings) instead of

(s,a, s′,r), and hence may not take action a′ next.

The key issue here is how the attacker chooses the nodes

to manipulate. We consider the following strategy:

1) Against the DDQN agent: loop through all observable

nodes to find δ that minimises the Q-value of the optimal

action a′ for state s′ + δ, i.e., argminδ Q(s′ + δ,a′);

2) Against the A3C agent: loop through all observable nodes

to find δ that minimises the probability of taking the optimal

action a′ for state s′ + δ, i.e., argminδ π(a′ |s′ + δ).

We next abstract the threat model for adversarial learning

in autonomous cyber defence as follows:

Black-box approach. The attacker does not have access to

the defender’s training model as per our partial observability

assumption. This constitutes a form of black-box attack, which

means the attacker needs to train their own surrogate model

first, based on the partial topology visible to them.

90

17

21

20

19

23

22

34

3533

32

31

30 27
29

28

25

26

24
36

3738

40

39

42 41

43
44

45
79

78

76 77

74

75
6453

63
73

6252
51 61 72 71

70 69
87

86

83

6050
59

49
58

48

47

46 54

55

56

57

66
68

67

65 80

93 10088

89
81

82
85

84

99

98
92

91

96
979594

18
2

11

12
3

4

5

67

89

10

14

13 16

15

1
2

11

12
3

4

5

67

89

10

14

13 16

15

1 17

21

20

19

23

22

34

3533

32

31

30 27
29

28

25

26

24
36

3738

40

39

42 41

43
44

45
79

78

76 77

74

75
6453

63
73

6252
51 61 72 71

70 69
87

86

83

6050
59

49
58

48

47

46 54

55

56

57

66
68

67

65 80

93 10088

89
81

82
85

84

99

98
92

91

96
979594

18
2

11

12
3

4

5

67

89

10

14

13 16

15

1

Nodes compromised in Step 4

1717

3434

35353333

3232

2727

2828

2525

2626

2424
3636

37373838

40

3939

4242 4141

4343
4444

4545
7979

7878

7676 7777

7474

7575

7373
5252

5151 6161 7272 7171
7070 6969

8787

8686

8383

60605050
5959

4949
58

4848

4747

4646 5454

5555

5656

5757

6666
6868

6767

6565 8080

9393 1001008888

8989
8181

8282
8585

8484

9999

9898
9292

9191

9696
979795959494

1818
22222

11111111

12121212
33333

44444

55555

6666677777

8888899999

1111
9090

17

21

20

19

23

22

34

3533

32

31

30 27
29

28

25

26

24
36

3738

40

39

42 41

43
44

45
79

78

76 77

74

75
6453

63
73

6252
51 61 72 71

70 69
87

86

83

6050
59

49
58

48

47

46 54

55

56

57

66
68

67

65 80

93 10088

89
81

82
85

84

99

98
92

91

96
979594

18
2

11

12
3

4

5

67

89

10

14

13 16

15

1
2

11

12
3

4

5

67

89

10

14

13 16

15

1 17

21

20

19

23

22

34

3533

32

31

30 27
29

28

25

26

24
36

3738

40

39

42 41

43
44

45
79

78

76 77

74

75
6453

63
73

6252
51 61 72 71

70 69
87

86

83

6050
59

49
58

48

47

46 54

55

56

57

66
68

67

65 80

93 10088

89
81

82
85

84

99

98
92

91

96
979594

18
2

11

12
3

4

5

67

89

10

14

13 16

15

1

Initially compromised nodes
Critical node
Possible migration destination

Nodes, links only visible to the defender
Nodes, links visible to the defender & the attacker

Nodes compromised in Step 1
Nodes compromised in Step 2

Nodes compromised in Step 3

1717

2121

2020

19

2323

2222

3434

35353333

3232

3131

3030 2727
2929

2828

2525

2626

2424
3636

37373838

40

3939

4242 4141

4343
4444

4545
7979

7878

7676 7777

7474

7575

6363
7373

62625252
5151 6161 7272 7171

7070 6969
8787

8686

8383

60605050
5959

4949
58

4848

4747

4646 5454

5555

5656

5757

6666
6868

6767

6565

9393 100100

8282
8585

8484

9999

9898
9292

9191

9696
979795959494

1818
22222

11111111

12121212
33333

44444

55555

6666677777

8888899999

14141414

13131313 16161616

15151515

1111

(a) Setup 1 (b) Setup 2

Fig. 2: Optimal results in response to a cyber attack against the network (in the absence of attacking the RL algorithm).

Limited choice of potential false positive and false negative
nodes. It is unlikely that the attacker can falsify the state of all

observable nodes. Therefore, we limit the nodes whose states

can be perturbed by the attacker. Section V further explains

how these nodes are selected.

Limits on the number of false readings per time step. In

our experiments, the number of FP and FN nodes that can be

introduced per time step are no more than two per case.

Our view is that this model of attacker information/control is

a key point of interest in exploring domains beyond computer

vision. Algorithm 1 details this attack against DDQN. The

algorithm for attacks against A3C is similar and so is omitted.

IV. THE INVERSION DEFENCE MECHANISM

For the defender we aim to design a defence mechanism

that (1) effectively mitigates the impact of the above causative

attack, (2) requires minimum knowledge of the attacker, and

(3) does not affect the training when there is no attack. Specif-

ically, we propose a countermeasure that generates training

instances by applying a perturbation counter to simulated

adversarial samples.

Since the attacker adds false readings δ into the observed

states, can δ be reversed? If the defender knows the nodes that

are visible to the attacker, limits on the FP & FN nodes, and the

number of FPs and FNs added per time step, then they may

find these false readings, by solving the inverse problem of

how the attacker generates the adversarial samples: while the

attacker receives (s,a, s′,r), and loops through all observable

nodes to find δ that either minimises the Q-value Q(s′ + δ,a′)

or the probability π(a′ |s′ + δ) of action a′ for state s′ + δ, the

defender receives (s,a, s′+δ,r ′), and searches within the same

nodes to find δ′ that maximises Q(s′ + δ + δ′,a′) for DDQN,

and π(a′ |s′ + δ + δ′) for A3C. In other words, δ′ = −δ.

However, the defender does not know (1) the attacker’s

partial knowledge of the network topology, (2) the limits on

the choice of FP & FN nodes, and (3) the number of false

readings per time interval/step. As shown in Algorithm 2, we

propose the following to address these obstacles:

1) Instead of looping through the nodes observable to the at-

tacker, the defender necessarily goes through all network nodes

to find δ′—this solves the first two issues, but increases the

training time. We further discuss the overhead in Section V-C1;

2) Test the scenarios where compared with the actual number

of false readings introduced by the attacker at each time step,

the defender assumes less, the same and more added—as

demonstrated in our experiments (Section V-C), even if the

defender does not know the exact number of false readings,

the inversion defence method is still effective.

δ′ obtained in such a way may not exactly match δ, and

the defender can choose to either keep both (s,a, s′ + δ,r ′)
and (s,a, s′ + δ + δ′,r ′), or only the latter. This method does

not make any assumptions about the attacker, except that they

falsify the states of certain nodes. However, as demonstrated

by the results in Section V, the method is effective against

the causative attack, and it does not prevent the agent from

learning the optimal actions in the non-attack scenario.

V. EXPERIMENTAL RESULTS

We next introduce our experimental setup, present how

DDQN and A3C agents are affected by causative attacks, and

demonstrate effectiveness of the proposed defence.

A. SDN Experimental Environment

In order to better cope with today’s dynamic and high-

bandwidth traffic, software-defined networking (SDN) [9] is

designed as a next-generation tool chain for computer network

management. SDN adopts a three layer architecture: (1) in

the top application layer, applications that deliver services

communicate their network requirements to the controller;

(2) in the middle layer, the SDN controller translates the

received requirements into low-level controls, and passes them

to the bottom infrastructure layer; (3) the infrastructure layer

includes switches that control forwarding and data processing.

Under such an architecture, the controller has a centralised

view of the whole network, and is directly programmable since

network control is decoupled from forwarding functions. It is

thus convenient to monitor and reconfigure network resources.

Algorithm 1: Causative attack against DDQN via state

perturbation

Input : The original experience, (s,a, s′,r);
The list of observable nodes, NO;

The list of nodes that can be perturbed as

false positive (false negative) by the attacker,

LFP (LFN);

The main DQN, Q;

Limit on the number of FPs and FNs per

time, LIMIT

Output : The tampered experience (s,a, s′ + δ,r ′)

1 FN = FP = {};

2 minQFN = minQFP = {};

3 a′ = argmaxa∗ Q(s′,a∗);
4 for node n in NO do
5 if n is compromised and n in LFN then
6 mark n as uncompromised;

7 if Q(s′ + δ,a′) < any value in minQFN then
// δ represents the FP and/or FN readings

8 insert n and Q(s′ + δ,a′) into appropriate

positions in FN and minQFN ;

9 if |FN | > LIMIT then
10 remove extra nodes from FN and

minQFN ;

11 restore n as compromised;

12 else if n is uncompromised and n in LFP then
13 mark n as compromised;

14 if Q(s′ + δ,a′) < any value in minQFP then
15 insert n and Q(s′ + δ,a′) into appropriate

positions in FP and minQFP;

16 if |FP | > LIMIT then
17 remove extra nodes from FP and

minQFP;

18 restore n as uncompromised;

19 Change nodes in FN to uncompromised;

20 Change nodes in FP to compromised;

21 return (s,a, s′ + δ,r ′)

There have been a number of proprietary and open-source

SDN controller software platforms. In this paper, we choose

OpenDaylight [15], the most popular open-source SDN con-

troller available. Specifically, we use Mininet [16], a popular

network emulator, to create the network with 100 nodes and

172 links as shown in Fig. 1. Once the network is created,

OpenDaylight is added as the controller. It provides APIs

for the RL agent to retrieve network information and execute

different types of operations as defined in Section II.

We want to emphasise that SDN is only one platform we
choose for demonstration purposes—although it is used in
production. The studied causative attacks and the proposed
defence method are not coupled to any particular platform.

Algorithm 2: The inversion defence mechanism

Input : The potentially tampered experience,

(s,a, s′ + δ,r ′);
The main DQN, Q;

The list if all nodes, N;

The estimate of the attacker’s limit on the

number of FPs and FNs per time, LIMIT ′

Output : The corrected experience (s,a, s′ + δ + δ′,r ′)

1 FN = FP = {}; // FN(FP) is a list of potentially false

negative (false positive) nodes tampered by the

adversaries that need to be corrected

2 maxQFN = maxQFP = {};

3 a′ = argmaxa∗ Q(s′ + δ,a∗);
4 for node n in N do
5 if n is compromised then
6 mark n as uncompromised;

7 if Q(s′ + δ + δ′,a′) > any value in maxQFP
then

// δ′ represents the correction introduced by

the defender

// n is potentially a false positive node

8 insert n and Q(s′ + δ + δ′,a′) into

appropriate positions in FP and maxQFP;

9 if |FP | > LIMIT ′ then
10 remove extra nodes from FP and

maxQFP;

11 restore n as compromised;

12 else if n is uncompromised then
13 mark n as compromised;

14 if Q(s′ + δ + δ′,a′) > any value in maxQFN
then

// n is potentially a false negativnode

15 insert n and Q(s′ + δ + δ′,a′) into

appropriate positions in FN and maxQFN ;

16 if |FN | > LIMIT ′ then
17 remove extra nodes from FN and

maxQFN ;

18 restore n as uncompromised;

19 Change nodes in FN to compromised;

20 Change nodes in FP to uncompromised;

21 return (s,a, s′ + δ + δ′,r ′)

B. Causative Attacks via State Perturbation

As described in Section III, we are considering a black-box

setting, which means that the attacker does not have direct

access to the target RL model, and needs to train its own

model. For each of the setups in Fig. 1, we achieve this by

training a DDQN agent using the partial topology visible to the

attacker. The model is then used as the surrogate to attack both

of the defender’s models (i.e., both DDQN and A3C agents).

In addition, there is a limit on the nodes that the attacker

can perturb. This is an appropriate threat model—even if the

attacker can map out part of the network topology, it is very

unlikely that they can manipulate the states of all those nodes.

We run the attack by adding one FP and one FN per time

interval/step but without any limits on the choices of FPs

and FNs. In this way, we are able to find the nodes that are

most frequently selected as FPs and FNs. LFP and LFN in

Algorithm 1 are then initialised with these nodes. Note that

the nodes in LFP and LFN are different under the two setups,

and within each setup they are also different for the DDQN

and A3C agents. The attacker is only allowed to manipulate

the states of these nodes.

Furthermore, the attacker also needs to limit the number

of false positive and false negative readings added per time

interval. Considering the practicality of the attack, two settings

are used in our experiments: (i) one FP & one FN, and (ii)

two FPs & two FNs.

Fig. 3 shows the effectiveness of the attack under different

settings, where the top four, six, eight FP nodes and top two

FN nodes are selected, i.e., |LFP | = 4,6 or 8, while |LFN | = 2.

|LFN | is set to 2 because additional experiments with multiple

combinations suggests that further increasing |LFN | does not

have an obvious impact. The results demonstrate that:

1) The causative attack designed in Algorithm 1 is effective

against both DDQN and A3C agents when there is no form of

defence—under both setups a significant percentage of attacks

either cause the critical server to be compromised (the red

bars), or cause fewer nodes to be preserved (the blue bars).

Note that this also demonstrates the existence of transferability

between RL algorithms [17]—attackers do not need to have

knowledge of the defender’s model and hence attempting to

keep the model secret is not an effective countermeasure

against adversarial reinforcement learning attacks.

2) Under the second setup where the attacker observes more

nodes, the attacks are more effective in general—the average

number of preserved nodes is much lower in most cases.

This is because the effectiveness of the attack depends on

how close the surrogate and target models are, and with a

larger observable topology, the attacker is more likely to train

a surrogate that resembles the target RL agent.

3) Given the same number of false readings per time step,

the stricter the limits on the choices of FPs and FNs, i.e., the

smaller |LFP | and |LFN | are, the less powerful the attacks are—

not only do the limits restrict which nodes can be manipulated,

they also decrease the number of steps that are poisoned in

each training episode.

4) Interestingly, if we compare the second and fourth bars in

all four figures, when |LFP | = 6, adding one FP & one FN per

time step is more effective than adding two FPs & two FNs

per time step. This is because more training steps are likely to

be poisoned in the former case given that |LFP | is the same.

In the next section, we test our proposed countermeasure

against the most powerful form of attack as illustrated in

Fig. 3, where |LFP | = 8, |LFN | = 2, and two FPs & two FNs

are added per time step under the second setup.

1) Discussion on the attack efficiency: The limited choice

of potential false positive and false negative nodes, i.e., LFP
and LFN , not only makes the attack more practical but also

increases the efficiency of the attack, as the attacker only needs

to loop through these two lists of nodes to find the FPs and FNs

instead of checking all the visible nodes. Our experimental

results suggest that the attack does not cause an obvious delay

to the normal training process.

2) Discussion on the Impact of Partial Observability: As

we mentioned earlier, a subset of nodes are more frequently

selected as FPs and FNs. Therefore, the attack will become

more effective if the attacker can take control over more of

these most damaging nodes. For future work, we intend to

further study the relation between partial observability and

attack effectiveness. Specifically, we will identify a minimum

set of nodes that the attacker needs to control for a given level

of efficiency.

C. Countermeasure

Our inversion defence method only assumes that attackers

perturb the states of a certain number of nodes in each training

step, and aims to identify & revert the manipulations. However,

the defender has to loop through all the nodes rather than the

nodes in LFP & LFN , and has to estimate the number of false

readings added per step.

Specifically, four scenarios are investigated under the second

setup: in the first three scenarios, the attacker adds two FPs

& two FNs per training step, and |LFP | = 8, |LFN | = 2 (i.e.,
the most powerful form of attack studied in the experiments),

while the defender assumes that there are (1) one FP & one

FN, (2) two FPs & two FNs, (3) three FPs & three FNs per

training step. In the last case, the defender assumes that two

FPs & two FNs are added per time step, but in fact there is

no attack. The first three scenarios investigate the situations

where the defender either does or does not know the limit

on the number of false readings added per time, while the

last scenario is designed to study whether the normal learning

process will be impacted when the defender falsely assumes

the presence of an attack.

Comparing the rightmost bars in Figs. 3c & 3d and the left

three bars in Figs. 4a & 4b, we can see that the proposed

defence method can effectively mitigate the impact of the

causative attacks—the percentage of experiments where the

critical server is compromised drops from almost 100% to

less than 30% on average. In addition, the two rightmost bars

in Fig. 4 also indicate that in most cases the defence method

will not prevent the agent from learning the optimal actions

when there is no attack—in all the cases represented by the

blue bar in Fig. 4a, only one less node is preserved.

1) Discussion on the Overhead: A disadvantage of the

inversion defence method is that it significantly slows down

the training process, as it is time-consuming to loop through all

the nodes to find the potential FPs and FNs. We aim to improve

the performance in our future work. Specifically, we find that

not all nodes are equally important in terms of preventing the

critical server from being compromised—incorrect readings

 1 FP + 1 FN,
 FP {41, 87,
 31, 80},
 FN {88, 19}

 1 FP + 1 FN,
 FP {41, 87,
 31, 80, 55, 81},
 FN {88, 19}

 1 FP + 1 FN,
 FP {41, 87,
 31, 80, 55,
 81, 79, 34},
 FN {88, 19}

 2 FPs + 2 FNs,
 FP {41, 87,
 31, 80, 55, 81},
 FN {88, 19}

 2 FPs + 2 FNs,
 FP {41, 87,
 31, 80, 55,
 81, 79, 34},
 FN {88, 19}

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

20

40

60

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rsHave no impact

Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(a) Setup 1: attacks against DDQN

 1 FP + 1 FN,
 FP {41, 31,
 55, 80},
 FN {19, 52}

 1 FP + 1 FN,
 FP {41, 31,
 55, 80, 87, 81},
 FN {19, 52}

 1 FP + 1 FN,
 FP {41, 31,
 55, 80, 87,
 81, 47, 79},
 FN {19, 52}

 2 FPs + 2 FNs,
 FP {41, 31,
 55, 80, 87, 81},
 FN {19, 52}

 2 FPs + 2 FNs,
 FP {41, 31,
 55, 80, 87,
 81, 47, 79},
 FN {19, 52}

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

20

40

60

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rsHave no impact

Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(b) Setup 1: attacks against A3C

 1 FP + 1 FN,
 FP {42, 32,
 85, 34},
 FN {64, 90}

 1 FP + 1 FN,
 FP {42, 32,
 85, 34, 48, 50},
 FN {64, 90}

 1 FP + 1 FN,
 FP {42, 32,
 85, 34, 48,
 50, 49, 89},
 FN {64, 90}

 2 FPs + 2 FNs,
 FP {42, 32,
 85, 34, 48, 50},
 FN {64, 90}

 2 FPs + 2 FNs,
 FP {42, 32,
 85, 34, 48,
 50, 49, 89},
 FN {64, 90}

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

20

40

60

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

Have no impact
Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(c) Setup 2: attacks against DDQN

 1 FP + 1 FN,
 FP {43, 32,
 31, 34},
 FN {10, 90}

 1 FP + 1 FN,
 FP {43, 32,
 31, 34, 30, 15},
 FN {10, 90}

 1 FP + 1 FN,
 FP {43, 32,
 31, 34, 30,
 15, 50, 66},
 FN {10, 90}

 2 FPs + 2 FNs,
 FP {43, 32,
 31, 34, 30, 15},
 FN {10, 90}

 2 FPs + 2 FNs,
 FP {43, 32,
 31, 34, 30,
 15, 50, 66},
 FN {10, 90}

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

20

40

60

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

Have no impact
Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(d) Setup 2: attacks against A3C

Fig. 3: Attacks against the DDQN & A3C agents. The bars

indicates the percentage of attacks (left y−axis) that (1) have

no impact; (2) cause fewer nodes to be preserved; and (3)

cause the critical server to be compromised. The lines indicate

the average number of preserved servers (right y−axis).

from certain nodes can cause more damage. Therefore, we

will be investigating improving the efficiency of the defence

method by only looping through those crucial nodes.

VI. RELATED WORK

This section first summarises adversarial machine learning

against supervised classifiers, and then reviews recent work on

similar attacks against reinforcement learning models. Finally,

we discuss existing defence mechanisms.

A. Adversarial Machine Learning

Adversarial machine learning aims to minimise the modifi-

cations to the input, i.e., either the test instance or the training

 Dfn: 1 FP + 1 FN
 Att: 2 FPs + 2 FNs

 Dfn: 2 FPs + 2 FNs
 Att: 2 FPs + 2 FNs

 Dfn: 3 FPs + 3 FNs
 Att: 2 FPs + 2 FNs

 Dfn: 2 FPs + 2 FNs
 No attack

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

10

20

30

40

50

60

70

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

Have no impact
Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(a) Defence against attacks on DDQN

 Dfn: 1 FP + 1 FN
 Att: 2 FPs + 2 FNs

 Dfn: 2 FPs + 2 FNs
 Att: 2 FPs + 2 FNs

 Dfn: 3 FPs + 3 FNs
 Att: 2 FPs + 2 FNs

 Dfn: 2 FPs + 2 FNs
 No attack

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 a

tta
ck

s

0

10

20

30

40

50

60

70

80

N
o.

 o
f p

re
se

rv
ed

 s
er

ve
rs

Have no impact
Cause fewer nodes to be preserved
Cause the critical server to be compromised
Average number of preserved nodes

(b) Defence against attacks on A3C

Fig. 4: Defence against attacks on the DDQN & A3C agents.

sample, to cause a malfunction of the machine learning model.

Biggio et al. [3], [18] formulate the problem of evading

a machine learning classifier as optimisation of the model’s

continuous scores, and use gradient descent to generate adver-

sarial samples. Szegedy et al. [4] highlight the observation that

modifications imperceptible to humans can cause deep neural

networks to misclassify, and they design the Fast Gradient

Sign Method [19] for the attack. Since then a number of

different methods for creating adversarial samples have been

proposed [17], [20]–[26], among which the C&W attack [25]

is empirically the most efficient exploratory attack so far. In

addition, more recent work has also studied adversarial attacks

in other domains, such as graph-based models [27], [28].

B. Adversarial Reinforcement Learning

It has been shown that reinforcement learning models are

also vulnerable to the above attacks against classifiers. For

example, Huang et al. [5] demonstrate that both white-box and

black-box attacks using the Fast Gradient Sign Method [19]

are effective against deep RL.

Behzadan & Munir [6] were the first to investigate causative

attacks against RL agents. They show how adversaries can

perturb the observed state, in order to prevent the DQN agent

from learning the correct policy.

Lin et al. [14] propose two types of attacks against deep

RL: (1) strategically-timed attack, which aims to decrease the

number of time steps to launch the attack; (2) enchanting

attack, which aims at misleading the agent to a specific state.

Pattanaik et al. [8] show that even the naı̈ve attack, that

is, adding random noise into the current state, is effective

against deep RL—this is contrary to our experimental findings.

However, our scenario is different to that described by the

authors, including the dimensions of the state, the action space,

and they design a gradient based attack that aims to maximise

the probability of taking the worst possible action.

C. Existing Defence Mechanisms

Generally speaking, existing defence methods against adver-

sarial machine learning can be categorised into two classes: (1)

data-driven defence, which either filters adversarial samples,

injects adversarial samples into training—a.k.a., adversarial

training, or projects inputs into a lower dimension; (2) learner

robustification, which stabilises the training, applies moving

target, or leverages ideas from robust statistics.

Countermeasures against attacks on RL models adopt simi-

lar approaches. Mandlekar et al. [29], Pattanaik et al. [8] pro-

pose different adversarial training algorithms. Lin et al. [30]

use previous images to predict future input and detect adver-

sarial examples. Havens et al. [31] propose the Meta-Learned

Advantage Hierarchy framework that measures the underlying

changes in a task to detect the attack. Another line of work

initiates the study of formal verification of deep RL [32].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that in the context of autonomous

defence in cyber networks, RL agents can be manipulated by

attacks that target the training process, even if the attacker

only has partial observability of the environment and defensive

algorithms. In order to defend against the attack, we propose

an inversion method that aims to revert the perturbations

added by the attacker. Our experimental results demonstrate

the effectiveness of the proposed approach, and show that

it causes limited impact in non-attack scenarios. Our work

focuses on learning in software-defined networking, which

brings with it novel threat models of independent interest to

adversarial learning research.

For future work, we plan to work on three directions—(1)

partial observability: (i) impose partial observability also on

the defender, as the defender may not obtain the correct states

of all the nodes all the time; (ii) identify the minimum set

of nodes the attacker needs to control for a certain level of

effectiveness. (2) Consider a more powerful attacker that can

(i) expand their partial observability as the attack proceeds; and

(ii) spread more freely through the network, instead of having

to compromise all the nodes on the paths to the critical server.

(3) Replace the binary state with a continuous state.

VIII. ACKNOWLEDGEMENTS

This work was supported by the DST Group Next Gener-

ation Technologies Fund (Cyber) program via Data61 CRP

‘Adversarial Machine Learning for Cyber’.

REFERENCES

[1] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The Security
of Machine Learning,” Machine Learning, vol. 81, no. 2, pp. 121–148,
Nov. 2010.

[2] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in AISec. ACM, 2011, pp. 43–58.

[3] B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks against Support
Vector Machines,” in ICML, Scotland, 2012, pp. 1467–1474.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing Properties of Neural Networks,”
arXiv:1312.6199, 2013.

[5] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adver-
sarial Attacks on Neural Network Policies,” arXiv:1702.02284, 2017.

[6] V. Behzadan and A. Munir, “Vulnerability of Deep Reinforcement
Learning to Policy Induction Attacks,” arXiv:1701.04143, 2017.

[7] Y. Han, B. I. P. Rubinstein, T. Abraham, T. Alpcan, O. De Vel, S. Erfani,
D. Hubczenko, C. Leckie, and P. Montague, “Reinforcement learning for
autonomous defence in software-defined networking,” in Decision and
Game Theory for Security. Springer, 2018, pp. 145–165.

[8] A. Pattanaik, Z. Tang, S. Liu, G. Bommannan, and G. Chowd-
hary, “Robust deep reinforcement learning with adversarial attacks,”
arXiv:1712.03632, 2017.

[9] “SDN architecture,” Tech. Rep., Jun. 2014. [Online].
Available: https://www.opennetworking.org/wp-content/uploads/2013/
02/TR SDN ARCH 1.0 06062014.pdf

[10] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[11] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” arXiv:1509.06461, Sep. 2015.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” in ICML, 2016, pp. 1928–1937.

[13] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience
Replay,” CoRR, vol. abs/1511.05952, 2015.

[14] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and
M. Sun, “Tactics of Adversarial Attack on Deep Reinforcement Learning
Agents,” arXiv:1703.06748, 2017.

[15] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in IEEE WoWMoM, Jun.
2014, pp. 1–6.

[16] “Mininet: An Instant Virtual Network on your Laptop,”
http://mininet.org/, 2017.

[17] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in Ma-
chine Learning: from Phenomena to Black-Box Attacks using Adver-
sarial Samples,” arXiv:1605.07277, 2016.

[18] B. Biggio, I. Corona, B. Nelson, B. I. Rubinstein, D. Maiorca,
G. Fumera, G. Giacinto, and F. Roli, “Security evaluation of support
vector machines in adversarial environments,” in Support Vector Ma-
chines Applications. Springer, 2014, pp. 105–153.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing
Adversarial Examples,” arXiv:1412.6572, 2014.

[20] A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are Easily
Fooled: High Confidence Predictions for Unrecognizable Images,” in
CVPR, 2015, pp. 427–436.

[21] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in EuroS&P, 2016, pp. 372–387.

[22] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
ACM on AsiaCCS, 2017. ACM, 2017, pp. 506–519.

[23] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal Adversarial Perturbations,” arXiv:1610.08401, 2016.

[24] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A
Simple and Accurate Method to Fool Deep Neural Networks,” in CVPR,
2016, pp. 2574–2582.

[25] N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” arXiv:1608.04644, 2016.

[26] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv:1706.06083,
2017.

[27] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” KDD, pp. 2847–2856, 2018.

[28] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song,
“Adversarial attack on graph structured data,” arXiv:1806.02371, 2018.

[29] A. Mandlekar, Y. Zhu, A. Garg, L. Fei-Fei, and S. Savarese, “Adversar-
ially robust policy learning: Active construction of physically-plausible
perturbations,” in 2017 IROS, 2017, pp. 3932–3939.

[30] Y.-C. Lin, M.-Y. Liu, M. Sun, and J.-B. Huang, “Detecting adversarial
attacks on neural network policies with visual foresight,” CoRR, vol.
abs/1710.00814, 2017.

[31] A. J. Havens, Z. Jiang, and S. Sarkar, “Online robust policy learning
in the presence of unknown adversaries,” CoRR, vol. abs/1807.06064,
2018.

[32] Y. Kazak, C. W. Barrett, G. Katz, and M. Schapira, “Verifying deep-
RL-driven systems,” in NetAI@SIGCOMM. ACM, 2019, pp. 83–89.

