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Abstract—Conventional training mechanism for deep learning,
which is based on gradient descent, suffers from many notorious
issues such as low convergence rate, over-fitting, and time-
consuming. To alleviate these problems, a novel deep learning
algorithm with a different learning mechanism named Broad
Learning System (BLS) was proposed by Prof. C. L. Philip Chen
in 2017. BLS randomly selects the parameters of the feature
nodes and enhancement nodes during its training process and
uses the ridge regression theory to solve its output weights.
BLS has been widely used in many fields because of its high
efficiency. However, there is a fundamental problem that has not
yet been solved, that is, the appropriate value of the parameter
λ for the ridge regression operation of BLS is difficult to be set
properly, which often leads to the problem of over-fitting and
seriously limits the development of BLS. To solve this problem,
we proposed a novel Dense BLS based on Conjugate Gradient
(CG-DBLS) in this paper, in which each feature node is connected
to other feature nodes and each enhancement node is connected
to other enhancement nodes in a feed-forward fashion. The
recursive least square method and conjugate gradient method
are used to calculate the output weights of the feature nodes
and enhancement nodes respectively. Experiment studies on four
benchmark regression problems from UCI repository show that
CG-DBLS can achieve much lower error and much higher
stability than BLS and its variants.

Index Terms—broad learning system, conjugate gradient, neu-
ral networks with random weights, random vector functional link
neural network

I. INTRODUCTION

In recent years, deep learning based architectures, notably

Convolutional Neural Network (CNN) and Restricted Boltz-

mann Machines (RBM), have enabled rapid advances in the

field of artificial intelligence in general [3]. This progress has

triggered many real-world applications such as face detection

and recognition [12], blur image identification [16], mandible

segmentation [18], and speaker recognition [9]. But most

traditional deep learning algorithms are based on the gradient

descent method for model training, which suffers from many

disadvantages such as time-consuming.
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To alleviate these problems and improve the generalization

ability of neural networks, Prof. C. L. Philip Chen et al.

proposed the Broad Learning System (BLS) in 2017 [4],

which is based on the notion of Random Vector Functional

Link neural network (RVFL) [2], [15]. BLS provides a simple

and efficient method to train a flat network with randomized

parameters. Specifically, in BLS, the input weights of the

hidden layer nodes (both the feature nodes and the enhanced

nodes) are assigned randomly from a given range and the

output weights are calculated by using the ridge regression

theory. The learning process of BLS is non-iterative, which

is different from the traditional deep learning methods. This

characteristic makes BLS have very fast learning speed than

the traditional neural networks (i.e., neural networks trained

by the gradient descent algorithm). Up to now, there are many

BLS based algorithms have been proposed and widely used

to solve the real-life tasks [6], [13], [17], [20], [21]. For

example, to improve the modeling ability of BLS on uncertain

data, Jin et al. [10] proposed Regularized robust BLS (RBLS),

which assumes that the output weight and regression residual

error follow Laplacian error distribution. Jin et al. proposed

a new objection function for RBLS and used a new method

to calculate the output weights of the system. Later, Feng et

al. found that using the Takagi-Sugeno (TS) fuzzy system

and sparse auto-encoder can further compact the network

architecture of BLS and the number of the fuzzy rule can

be determined by k-means method [7].

Although BLS and its variants have shown great application

potential, there are still many basic problems that have not

been solved due to the relevant research just started. For

example, the regularization parameter λ is an indispensable

parameter for BLS based algorithms, but there is still no

effective method to choose an appropriate value for it in a

specific learning system. The existing BLS based algorithms

set the value of λ through the trial and error method, which

is very clumsy and time-consuming. What is worse, because

the generalization performance of BLS is relatively sensitive

to λ, so most of the BLS based algorithms are not very stable.

To solve this problem, we proposed a novel Dense BLS

based on Conjugate Gradient (CG-DBLS) in this paper. The

original idea of CG-DBLS is to connect each feature node

to other feature nodes and connect each enhancement node
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to other enhancement nodes in a feed-forward fashion, and

then calculate the output weights of the feature nodes and

enhancement nodes via the recursive least square method and

the conjugate gradient method respectively. CG-DBLS can

avoid manually selecting the value of λ, thereby improving the

stability and generalization ability of the model. We evaluate

the performance of CG-DBLS on four benchmark data sets

from the UCI repository and the experimental results show

that CG-DBLS significantly outperform BLS and fuzzy BLS

on all the case.

The contributions of this study can be summarized as

follows.

(1) We introduced a new dense architecture for BLS and

showed that the efficiency of this architecture is much higher

than that of the original BLS and its variants such as FBLS

[7].

(2) The recursive least square method and conjugate gra-

dient method were applied to solve the output weights of

BLS for the first time, which provides researchers with a new

perspective to improve BLS.

(3) This paper presents an example of the integration of

dense BLS, recursive least square method, and conjugate

gradient method, which can inspire researchers to design new

deep architecture for BLS.

The remaining of this paper is organized as follows. In

Sec. II, we briefly introduce the learning mechanisms of BLS

and FBLS. The conjugate gradient method, the proposed CG-

DBLS and its pseudo-code are presented in Sec. III. In Sec.

IV, we show the simulation experiments and the corresponding

analysis. In Sec. V, we conclude this study.

II. PRELIMINARIES

A. Broad Learning System

Given a training data set {X,Y} ∈ ℜ(d+t)×N , where d

denotes the feature dimension of the input data, t denotes the

number of the class in classification problem, and N denotes

the number of the training data. The activation function of

feature nodes and enhancement nodes in the Broad Learning

System (BLS) is piecewise and continuous. The model of BLS

with n feature nodes and m enhancement nodes is generally

expressed as a linear combination of functions as follows.

yn+m(X) =
n
∑

i=1

ωizi +
m
∑

j=1

ωn+jhj (1)

zi = φ(aei · X + bei), i = 1, 2, ..., n, z = [z1, z2, ..., zn], (2)

hj = ψ(ahj ·z+bhj), j = 1, 2, ...,m, h = [h1, h2, ..., hm], (3)

where

z refers to the outputs of the feature nodes,

h refers to the outputs of enhancement nodes,

aei is the weight vector connecting the input layer to the

ith feature node,

bei is the bias parameter of the ith feature node,

ahj is the weight vector connecting the feature node to the

jth enhancement node,

bhj is the bias parameter of the jth enhancement node,

ωi is the weight connecting the ith feature node to the output

layer,

and ωn+j is the weight connecting the jth enhancement

node to the output layer.

The output weight of BLS can be computed by using the

ridge regression approximation of pseudo-inverse

WBLS = [ω1, ..., ωn+m] = [z, h]† · Y (4)

The universal approximation of BLS has been proven by

using lemma II-A.

Lemma II-A [5] Given arbitrary compact set M ⊂ Id

and arbitrary continuous target function f ∈ C(Id), there is

a progression yn+m in BLS with n feature nodes and m en-

hancement nodes, and a respective progression of probability

measures τn+m, such that

lim
m,n→∞

ρM(f, yn+m) = lim
m,n→∞

√

E[

∫

M

(f − yn+m)2]

= 0.

(5)

B. Fuzzy Broad Learning System

To enhance the robustness of BLS, Feng et al. proposed

Fuzzy BLS (FBLS) [7]. The difference between FBLS and

BLS is that, in FBLS, the feature nodes are replaced by a

set of Takagi-Sugeno (TS) fuzzy subsystems. And K-Means

algorithm is used to block sort the input data, optimize the

centers of Gaussian membership functions and the number of

fuzzy rules for the fuzzy subsystems.

Given a training data set {X,Y} ∈ ℜ(d+t)×N , l fuzzy

subsystems, and p enhancement nodes, the model of FBLS

can be expressed as follow:

yl+p(X) =
l

∑

i=1

νiViϕi+

p
∑

j=1

γjuj =
l

∑

i=1

νiri+

p
∑

j=1

γjuj (6)

Vi = diag[
M
∑

t=1

ϑiktx1t, ...,

M
∑

t=1

ϑiktxNt],

ϕi = [ωi
1, ...,ω

i
q, ...,ω

i
Ki

],ωi
q = [ωi

1q, ..., ω
i
KNq

]

(7)

ri = Viϕi, i = 1, 2, ..., l, r = [r1, r2, ..., rl], (8)

uj = ψ(aFj ·r+bFj), j = 1, 2, ..., p, u = [u1, u2, ..., up], (9)

where

r refers to the outputs of the fuzzy subsystems,

u refers to the outputs of the enhancement nodes,

aFj is the weight vector connecting the fuzzy subsystems

to the jth enhancement node,

bFj is the bias parameter of the jth enhancement node,

ϑikt is the coefficient of the ith fuzzy sets,

and ϕi is the weighted fire strength for all fuzzy rules of

the ith fuzzy subsystem.

The output weights of FBLS are computed by using the

ridge regression approximation of pseudo-inverse

WFBLS = [ν1, ...νl, γ1, ..., γp] = [r, u]† · Y (10)



III. DENSE BROAD LEARNING SYSTEM BASED ON

CONJUGATE GRADIENT

To better introduce our method, we present this section

as the following steps. Firstly, we introduce the conjugate

gradient method in section III-A. Secondly, the details of the

proposed Dense Broad Learning System based on Conjugate

Gradient (CG-DBLS) are given in section III-B. Finally, we

share the pseudo-code of CG-DBLS in section III-C.

A. Conjugate Gradient Method

Conjugate gradient method (CG) [11] is one of the effective

methods for solving the linear system of equations. The fol-

lowing iteration process is used to generate an approximation

sequence.

xk+1 = xk + αkdk, k = 0, 1, 2, .... (11)

where xk refers to the point of current iteration, the step-

size αk is positive number, and the search direction dk is

represented as:

dk =

{

−gk, k = 0
−gk + βFR

k dk−1, k ≥ 1
(12)

where gk is the gradient, and the conjugate parameter βFR
k

[8] can be represented as:

βFR
k =

‖gk‖
2

‖gk−1‖
2
. (13)

B. Dense Broad Learning System based on Conjugate Gradi-

ent (CG-DBLS)

The network structure of CG-DBLS is shown in Fig. 1.

Given a training data set {X,Y} ∈ ℜ(d+t)×N , the activation

function of the feature nodes and enhancement nodes in CG-

DBLS is required to be piecewise and continuous, the model

of CG-DBLS with n feature nodes and m enhancement nodes

can be expressed as a linear combination of functions.

yn+m(X) =
n
∑

i=1

ρiZ̃i +
m
∑

j=1

δjH̃j , (14)

Zi = φ(aei · X + bei), εFi =
‖Zi‖

2

1 + ‖Zi‖
,

Z̃ = [Z1,Z2 + εF1Z1, ...,Zn +
n−1
∑

p=1

εFpZp],

(15)

Hj = ψ(ahj · Z̃ + bhj), εEj =
‖Hj‖

2

1 + ‖Hj‖
,

H̃ = [H1,H2 + εE1H1, ...,Hm +

m−1
∑

p=1

εEpHp],

(16)

where

εFi refers to the appropriate coefficients of the ith feature

node,

εEj refers to the appropriate coefficients of the jth enhance-

ment node,

TABLE I
DETAILS OF THE FOUR REGRESSION DATA SETS.

Dataset Instance Attributes

Airfoil Self-Noise 1503 6
Combined Cycle Power Plant 9568 4
Concrete Compressive Strength 1030 9
Energy efficiency 768 8

ρi is the output weight of the ith feature node, which is

calculated by using the recursive least square method,

and δj is the output weight of the jth enhancement node,

which is calculated by using the conjugate gradient method.

Fig. 1. Topological structure of CG-DBLS.

C. Pseudo-code of CG-DBLS

The pseudo-code of the proposed CG-DBLS can be sum-

marized as algorithm 1.

Next, we test the performance of the CG-DBLS on four

benchmark data sets.

IV. SIMULATION EXPERIMENTS AND

DISCUSSIONS

Four regression problems from the UCI repository were

used to test the generalization ability of CG-DBLS in this

paper. The details of the four regression data sets are shown

in table I. All the experiments were conducted in PC with

Intel(R) Core(TM) i7-3520M CPU with NVIDIA NVS 5400M

and 8GB RAM.

The performance statistical indexes include Root Mean

Square Error (RMSE), Ratio of Standard Deviation (RSD)

[19], and Mean of Percent Error (MPE) [14]. They can be

calculated using the following equations:

RMSE =

√

∑m

i=1(ui − ûi)2

m
, (17)

RSD =

√

∑m

i=1(ui − ũ)2
∑m

i=1(ûi − ū)2
, (18)



Algorithm 1 CG-DBLS algorithm

Input: A training data set {X,Y} ⊂ Rn × R.

Output: All the parameters of the CG-DBLS mod-

el.

1: Initialization: set e0 = Y.

2: for p = 1; p ≤ n do

3: Randomly assign the parameters connecting the input

layer to the feature node (aep, bep);
4: Calculate the output of the feature node Zp = [φ(aep ·

X + bep)];
5: Calculate the appropriate coefficient of the p-th feature

node εFp =
‖Zp‖

2

1+‖Zp‖
;

6: end for

7: Calculate the output matrix of the feature nodes for CG-

DBLS Z̃ = [Z1, ...,Zn +
∑n−1

i=1 εFiZi];
8: for k = 1; k ≤ m do

9: Randomly assign the parameters connecting the feature

node to the enhancement node (ahk, bhk);
10: Calculate the output of the enhancement node Hk =

[φ(ahk · Z̃ + bhk)];
11: Calculate the appropriate coefficient of the k-th en-

hancement node εEk = ‖Hk‖
2

1+‖Hk‖
;

12: end for

13: Calculate the output matrix of the enhancement nodes for

CG-DBLS H̃ = [H1, ...,Hm +
∑m−1

j=1 εEjHj ]
14: for q = 1; q ≤ n do

15: Calculate the output weight of the q-th feature node

ρq =
〈eq−1,Z̃q〉

‖Z̃q‖2
;

16: Calculate the network output error of CG-DBLS with

q feature nodes eq = Y −
∑q

i=1 ρiZ̃i;

17: end for

18: Calculate the network output error of CG-DBLS with n

feature nodes E = Y −
∑n

i=1 ρiZ̃i;

19: Randomly assign the parameters connecting the enhance-

ment node to the output layer WE0 = [δ1, ..., δm];
20: Given k = 0, ǫ > 0, and calculate the error r0 = (H̃)T ·

E − (H̃)T · H̃ · WE0;

21: while ‖rk‖ > ǫ do

22: k = k + 1;

23: if k = 1 then

24: p1 = r0;

25: else

26: pk = rk−1 +
(rk−1)

T ·rk−1

(rk−2)T ·rk−2

pk−1;

27: end if

28: end while

29: αk = (rk−1)
T ·rk−1

(pk)
T ·(H̃)T ·H̃·pk

,

30: WEk = WE(k−1) + αkpk,

31: rk = rk−1 − αk(H̃)T · H̃ · pk;

32: Set the output weight of the enhancement node to WEk.

33: return All the parameters of the neural network.

MPE =
1

m

m
∑

i=1

|
ui − ûi

ûi
| × 100%, (19)

where

ui refers to the predicted value,

ũ refers to the average of the predicted values,

ûi refers to the true value,

ū refers to the average of the true values,

and m denotes the number of the samples.

Note that the smaller the values of RMSE and MPE, the

better the prediction performance of the model; the larger the

value of RSD, the better the stability of the model.

To verify the efficiency of our method, we compared the

performance of CG-DBLS with BLS and FBLS on these data

sets. In our experiments, BLS, FBLS and CG-DBLS recruit the

parameters of enhancement nodes randomly from [−1, 1]d ×
[−1, 1], which are based on a uniform sampling distribution.

The enhancement nodes of BLS, FBLS, and CG-DBLS are a

hyperbolic tangent function of additive nodes. The number

of the enhancement node in BLS, FBLS and CG-DBLS

are determined from [40, 50, 60, 70, 80, 90, 100, 110, 120, 130],
and the number of the feature node in BLS, and CG-DBLS

is set to 25. The regularization parameter of BLS, FBLS,

and CG-DBLS is λ = 15000. In addition, FBLS includes 25

fuzzy subsystems, and the number of the rules in each fuzzy

subsystem is 2.

The experimental procedure of the 10-fold cross-validation

is as follows:

(1) The order of the samples is disrupted randomly;

(2) All the samples are divided equally into ten parts;

(3) Nine parts of the samples are chosen as the training data,

and the remaining part is set to be the testing data;

(4) Next, the step (3) is repeatedly run ten times, so one can

obtain ten RMSEs, RSDs, and MPEs from the experiments;

(5) The mean value of the ten RMSEs, RSDs, and MPEs is

the 10-fold cross-validation value.

The experimental results are shown in figures 2-5. Take

figure 2 as an example, from figure 2 we can observe that

the values of RMSE and MPE of the proposed CG-DBLS

are much smaller than that of BLS and FBLS, which means

that our method can achieve better prediction under the same

network complexity (i.e., with the same number of the en-

hancement node). Moreover, we can find that the values of

RSD of the proposed CG-DBLS are much higher than that

of BLS and FBLS, which implies that our method has better

stability than BLS and FBLS. Similar observations can also

be found in figures 3-5.

From the above experimental results, we can infer that the

proposed CG-DBLS can have a faster convergence rate than

the original BLS and its variant FBLS when solving the same

problem, and CG-DBLS can achieve a more compact network

architecture than other algorithms under the same error level.

Here we give an empirical explanation for the above ex-

perimental phenomena. Compared with BLS and FBLS, our

method adopts dense connection in the network structure,
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Fig. 2. Average 10-fold cross validation testing RMSE, RSD, and MPE for Airfoil Self-Noise.

40 50 60 70 80 90 100 110 120 130

Number of enhancement node

8

9

10

11

12

13

14

15

16

17

18

A
v
e
ra

g
e
 1

0
-f

o
ld

 c
ro

s
s
 v

a
li
d
a
ti
o
n
 t

e
s
ti
n
g
 R

M
S

E

BLS

FBLS

CGDBLS

40 50 60 70 80 90 100 110 120 130

Number of enhancement node

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
e
ra

g
e
 1

0
-f

o
ld

 c
ro

s
s
 v

a
li
d
a
ti
o
n
 t

e
s
ti
n
g
 R

S
D

BLS

FBLS

CGDBLS

40 50 60 70 80 90 100 110 120 130

Number of enhancement node

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

A
v
e
ra

g
e
 1

0
-f

o
ld

 c
ro

s
s
 v

a
li
d
a
ti
o
n
 t

e
s
ti
n
g
 M

P
E

BLS

FBLS

CGDBLS

Fig. 3. Average 10-fold cross validation testing RMSE, RSD, and MPE for Combined Cycle Power Plant.
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Fig. 4. Average 10-fold cross validation testing RMSE, RSD, and MPE for Concrete Compressive Strength.

which can make the data features get deeper transformation

and abstraction; Moreover, we use the recursive least square

method to solve the output weights of the feature nodes and

use the conjugate gradient method to calculate the output

weights of the enhancement nodes, which can make the

solution of the model more stable. Therefore, our method can

achieve better prediction performance and stability.

V. CONCLUSIONS

In this paper, we proposed an improved BLS algorithm

named Dense Broad Learning System based on Conjugate

Gradient (CG-DBLS). Different from the original BLS and

its variants such as FBLS, in CG-DBLS, the feature nodes

and enhancement nodes are directly connected to other the

same type of nodes respectively, and the output weights of the

feature nodes and enhancement nodes are calculated by using

the recursive least square method and the conjugate gradient

method respectively. In this way, we can avoid manually

selecting the value of λ, thereby improving the stability and

generalization ability of the model.

Extensive experimental results on four benchmark data sets

show that CG-DBLS can achieve higher accuracy than BLS
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Fig. 5. Average 10-fold cross validation testing RMSE, RSD, and MPE for Energy efficiency.

and FBLS on the same problems, and CG-DBLS has a faster

convergence rate and more compact network architecture than

other algorithms under the same conditions.

In the future, we would like to give more theoretical proof

for CG-DBLS and verify the effectiveness of CG-DBLS on

more complex data sets such as image classification tasks and

time-series problems [1].
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