
Improving Generalization Performance of
Adaptive Learning Rate by Switching from

Block Diagonal Matrix Preconditioning to SGD
Yasutoshi Ida

NTT Software Innovation Center
Tokyo, Japan

yasutoshi.ida@ieee.org

Yasuhiro Fujiwara
NTT Communication Science Laboratories

Tokyo, Japan
yasuhiro.fujiwara.kh@hco.ntt.co.jp

Abstract—Deep Neural Networks (DNNs) are widely used for
various applications. Although adaptive learning rate algorithms
are attractive for DNN training, their theoretical performance
remains unclear. In fact, published analyses consider only simple
optimization settings such as convex optimization, none of which
are applicable to DNN training. This paper proposes TSO-
ALRA, a two-stage optimizer using an adaptive learning rate
algorithm; it is based on a full analysis of two approaches that do
suit DNNs: parameter updates along geodesics on the statistical
manifold and covariance structure of gradients. Our analysis
reveals that the diagonal approximation used by existing adaptive
learning rate algorithms inevitably degrades their efficiency.
In addition, our analysis suggests that adaptive learning rate
algorithms suffer drops in generalization performance in the
last phase of training. To overcome these problems, TSO-ALRA
combines an effective approximation technique and a switching
strategy. Our experiments on several models and datasets show
that TSO-ALRA efficiently converges with high generalization
performance.

I. INTRODUCTION

Deep Neural Networks (DNNs) are widely used for many
applications such as image classification [1], [2], object detec-
tion [3], text classification [4] and artificial speech synthesis
[5]. To train DNNs, Stochastic Gradient Descent (SGD) [6]
remains a popular training algorithm. SGD uses the hyper-
parameter called the learning rate to determine how much
it updates parameters in DNNs during training. Since the
learning rate largely determines the convergence speed and
accuracy, it is one of the most important hyper-parameters for
DNN training.

Adaptive learning rate algorithms are often used as they
automatically adjust the learning rate for each dimension of
the parameter. When we use plain training algorithms such
as SGD, we typically set a scalar value as the learning rate,
and this value is applied in common to each dimension of
the parameter. On the other hand, since adaptive learning rate
algorithms adjust the learning rate for each dimension of the
parameter, they can effectively train models with parameters
of high dimensionality such as DNNs [7]. The initial method
in this line is AdaGrad [8]; it was proposed for convex opti-
mization. In order to apply the idea to DNNs, several variants
of AdaGrad such as RMSprop [9], Adadelta [10], Adam [11],

SDProp [12] and AMSGrad [7] have been proposed, and they
are widely used for DNN training.

However, the theoretical performance of adaptive learning
rate algorithms in training complex models such as DNNs is
unclear. The performance of AdaGrad, Adam and AMSGrad
has been assessed only for convex optimization although DNN
training involves non-convex optimization [7], [8], [11]. [13]
found that the behavior of RMSProp is similar to an equili-
bration preconditioner. Since the equilibration preconditioner
efficiently handles saddle points on the surface of the loss
function with respect to parameters, RMSProp can efficiently
train DNNs that have many saddle points [14]. However, RM-
SProp has a different formulation from the equilibration pre-
conditioner. In addition, the reason for the similarity between
RMSProp and the equilibration preconditioner is unclear.

In this paper, we propose TSO-ALRA, a two-stage op-
timizer using an adaptive learning rate algorithm for DNN
training; it is founded on our analysis of the behaviors of
existing adaptive learning rate algorithms. First, we investigate
the updating rule of adaptive learning rate algorithms through
an analysis of the geodesic on the statistical manifold. Intu-
itively, the geodesic is a straight line in a curved space. We
reveal that an adaptive learning rate algorithm can efficiently
train statistical models including DNNs if parameter updates
are performed along a geodesic on the statistical manifold.
However, standard adaptive learning rate algorithms such as
Adam cannot realize this benefit due to their use of diago-
nal approximation. To overcome this problem, we introduce
more accurate approximations than diagonal approximation
such that the algorithm updates parameters along a geodesic.
Next, we investigate the behavior of adaptive learning rate
algorithms in the last phase of training. In particular, we
analyze the behavior of diffusion around local minima via
the covariance matrix on gradients. Although the plain SGD
can escape from local minima via diffusion according to the
covariance matrix of gradients [15], we reveal that adaptive
learning rate algorithms swap the covariance matrix from an
identity matrix around local minima. This result suggests that
existing adaptive learning rate algorithms can be trapped in
bad local minima yielding significant generalization errors. To

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

deal with this problem, we use plain SGD in the last phase
of training so as not to change the covariance structure. Our
experiments show that TSO-ALRA efficiently converges with
high generalization performance on famous models and several
datasets.

II. PRELIMINARY

In this section, we briefly review Stochastic Gradient De-
scent (SGD) and adaptive learning rate algorithms.

A. Stochastic Gradient Descent

Let us consider training dataset Z = {z1, ..., zN}. In the
supervised setting, each sample is represented as zi = (xi, yi)
where xi and yi are input and label data, respectively, and
zi = xi in the unsupervised setting. Many training algorithms
minimize loss function Lθ(Z) with respect to parameter vector
θ ∈ RP of the model [16], [17]. SGD is a popular training
algorithm that uses samples from training dataset Z [6]. To
minimize the loss function, SGD iteratively updates θ with a
sample as follows:

θt+1 = θt − η∇Lθt(zt), (1)

where η ∈ is the learning rate, θt ∈ RP is the parameter vector
at time t, zt is the sample at time t, and ∇Lθt (zt) ∈ RP is
the first order gradient of the loss function with respect to the
parameter given by zt. When we use the mini-batch setting,
we treat zt as a subset of dataset Z.

B. Adaptive Learning Rate Algorithms

Adaptive learning rate algorithms efficiently train DNNs
by adjusting the learning rate η in Equation (1) for each
dimension of parameter vector θt. The full matrix version of
AdaGrad [8] is a basic adaptive learning rate algorithm that
updates parameters as follows:

θt+1 = θt − ηG−1/2
t ∇Lθt(zt), (2)

where
Gt =

∑t
i=1[(∇Lθi(zi))(∇Lθi(zi))T], (3)

which is a P × P matrix. Since the size of P is large when
we use large models such as DNNs, the following diagonal
approximation is used for matrix Gt in Equation (2):

θt+1 = θt − ηdiag(Gt)
−1/2∇Lθt(zt). (4)

RMSProp [9] changes this updating rule by using the follow-
ing Gt instead of Equation (3):

Gt = ρGt−1 + (1− ρ)(∇Lθt(zt))(∇Lθt(zt))T , (5)

where ρ is the decay rate used for computing the moving
average. This heuristic offers higher convergence speed and
accuracy compared than AdaGrad when we train DNNs [11].
AdaDelta [10], Adam [11] and AMSGrad [7] are variants of
RMSProp.

These adaptive learning rate algorithms commonly use
square roots of exponential moving averages of squared past
gradients G−1/2

t to efficiently train models. The regret analysis

can explain the role of G−1/2
t for convex optimization [8],

[11], however, its role is unclear for non-convex loss functions
such as those used in DNN training.

III. PROPOSED METHOD

In this section, we theoretically reveal two problems with
existing adaptive learning rate algorithms for DNN training,
and propose a two-stage optimizer using an adaptive learning
rate algorithm, TSO-ALRA, that overcomes the problems.
Our analysis focuses on the role of G−1/2

t because adaptive
learning rate algorithms have G−1/2

t in the updating rule as in
Equation (2) whereas plain SGD does not, see Equation (1).

First, we analyze the role of G−1/2
t for updating parameters

by using the concept of geodesics on the statistical manifold.
We show that an adaptive learning rate algorithm updates
the parameter along a geodesic on the statistical manifold;
the parameter can be effectively updated using this property.
However, we also show that standard adaptive learning rate
algorithms such as Adam suffer degraded effectiveness due
to their use of diagonal approximation. To overcome this
problem, we introduce more accurate approximations than di-
agonal approximations such as block diagonal approximation
and Kronecker factored approximation.

Next, we investigate the behavior of diffusion around local
minima via analysis of the covariance matrix on gradients.
Although plain SGD can escape from local minima via the
diffusion according to the covariance matrix of gradients [15],
we show that adaptive learning rate algorithms break the
covariance matrix; this property degrades the generalization
performance because the algorithms are unable to escape from
bad local minima triggering high generalization error. To deal
with this problem, we use plain SGD in the last phase of
training so that the covariance matrix does not break. Although
the strategy is simple, we show that TSO-ALRA surprisingly
improves the generalization performance in our experiments.
Note that above concepts do not assume convex loss functions
unlike previous works [8], [11].

A. Analysis of Geodesics

We analyze adaptive learning rate algorithms via geodesics
on the statistical manifold. Before the analysis, we introduce
several definitions. The following are definitions of statistical
model and Fisher metric, which are popular concepts in the
field of machine learning.

Definition 1 (Statistical Model). Let us consider a family of
probability distributions S. Suppose each element of S is a
probability distribution pθ ∈ S that is parametrized by θ ∈
RP . We call such S a P -dimensional statistical model.

Definition 2 (Fisher Metric). Let S be a P -dimensional
statistical model and pθ(z) be a probability distribution of
z. Given point θ, the Fisher metric of S at θ is defined as
follows:

Fθ = Epθ(z)[(∇log pθ(z))(∇log pθ(z))
T], (6)

where the size of Fθ is P×P , Epθ(z)[·] denotes the expectation
with respect to the distribution pθ(z) and ∇ = ∂

∂θ .

The following is the definition of the statistical manifold, a
central concept in Information Geometry [18].

Definition 3 (Statistical Manifold). For Riemannian manifold
(S, Fθ), we say the manifold Statistical manifold S is equipped
with Fisher metric Fθ. The tangent space at point pθ on
(S, Fθ) is denoted as TθS. Metric Fθ induces the inner product
in each tangent space TθS: we denote the inner product of
u, v ∈ TθS by 〈u, v〉Fθ = uTFθv. The norm of u ∈ TθS is
defined as ||u||Fθ =

√
〈u, u〉Fθ .

We define geodesic on a statistical manifold as follows:

Definition 4 (Geodesic). Let (S, Fθ) be a statistical manifold
and t ∈ R. The geodesic is defined as the constant speed
curve θ(t) : t → (S, Fθ) that is locally distance-minimizing
with respect to the distance induced by Fθ. The geodesic is
represented as the following second order differential equation
by using θ = θ(t):

dθk
dt2 +

∑
i,j Γkij

dθi
dt

dθj
dt = 0, (7)

where

Γkij = 1
2

∑
l(F

−1
θ)kl

(∂Fθjl
∂θi

+ ∂Fθil
∂θj
− ∂Fθij

∂θl

)
. (8)

Intuitively, the geodesic is a straight line in a curved space.
In our case, the curved space is the statistical manifold. When
we use negative log likelihood as a loss function such that
Lθt(zt) = −log pθt(zt), G−1/2

t in Equation (5) approximates
F

−1/2
θ in Equation (6) as an online estimator. Therefore, we

analyze the adaptive learning rate algorithm by investigating
F

−1/2
θ instead of G−1/2

t . Note that negative log likelihood is
widely used as the loss function for DNN training. First, we
have following property for F−1/2

θ :

Lemma 1. Let us consider u, v ∈ TθS on (S, Fθ).
Suppose that u and v are transformed into F

−1/2
θ u and

F
−1/2
θ v, respectively. Then, the inner product can written

as 〈F−1/2
θ u, F

−1/2
θ v〉Fθ = uT v; and the norm becomes

||F−1/2
θ u||Fθ =

√
uTu.

Proof. According to Definition 3, the inner product is
given by 〈F−1/2

θ u, F
−1/2
θ v〉Fθ = (F

−1/2
θ u)TFθF

−1/2
θ v =

uT v. In addition, the norm is given by ||F−1/2
θ u||Fθ =√

(F
−1/2
θ u)TFθF

−1/2
θ u =

√
uTu.

Notice that the inner product in Definition 3 is written as
uTFθv while in Lemma 1 it is uT v. In other words, the tangent
space of the statistical manifold is transformed into Euclidean
space by using F−1/2. In fact, Fisher metric Fθ is treated as
identity matrix I , that is the metric of Euclidean space. The
above yields the following lemma for the geodesic by using
Lemma 1:

Lemma 2. We assume that u ∈ TθS on (S, Fθ) and t ∈ R. If
we can transform u into F−1/2

θ u, the geodesic with direction
of F−1/2

θ u from θ can be written as θ + tF
−1/2
θ u.

Proof. According to Lemma 1, the Fisher metric Fθ can be
seen as identity matrix I by transforming u into F

−1/2
θ u as

described in Lemma 2. In other words, the space can be seen
as Euclidean space. In this case, since Γkij = 0 for Equation
(8) by following [18], we have the following geodesic from
Equation (7):

dθk
dt2 = 0. (9)

Then, we have the following solution for the above equation
when the initial value and moving direction are θ(0) = θ and
F

−1/2
θ u, respectively:

θk(t) = θk + t(F
−1/2
θ u)k, (10)

where (F
−1/2
θ u)k denotes the moving direction in the k

dimension. Therefore, the geodesic with direction of F−1/2
θ u

from θ is given by θ + tF
−1/2
θ u.

Lemma 2 reveals that geodesic θ(t) is the same as a straight
line in Euclidean space if tangent vector u is transformed
into F

−1/2
θ u. Notice that in order to traverse a geodesic,

we typically solve Equation (7), a second order differential
equation. Thus, when we update parameters on a statistical
manifold, the updating rules of training algorithms such as
SGD must, in essence, consider Equation (7). On the other
hand, Lemma 2 shows that we can use the more simple form of
θ+ tF

−1/2
θ u, rather than Equation (7), to traverse a geodesic.

Thus we can derive a more efficient updating rule in terms of
the geodesic by utilizing Lemma 2 as follows:

Theorem 1. Let us consider statistical model pθ and loss
function L(θ) that is defined as a negative log likelihood. We
assume that parameter θ is updated by an iterative algorithm
such as SGD, and θt denotes the parameter at the t iteration.
Then, we can update the parameter along the geodesic if we
use the following updating rule:

θt+1 = θt − ηF−1/2
θt

gt, (11)

where gt = ∇L(θt) and η is the learning rate.

Proof. We obviously have Equation (11) by iteratively apply-
ing Lemma 2 to each θt.

In addition, we have the following corollary by utilizing
the relation of G−1/2

t ≈ F
−1/2
θt

when we use negative log
likelihood as the loss function:

Corollary 1. If optimization is based on negative log like-
lihood, the adaptive learning rate algorithm updates the
parameter along the geodesic by solving Equation (2).

Corollary 1 shows that the adaptive learning rate algorithm
yields efficient parameter updates because it can update the
parameters along the geodesic while plain SGD cannot. Stan-
dard adaptive learning rate algorithms such as Adam and
RMSProp approximate Equation (11) in Theorem 1 by using
only the diagonal of Fθt . The updating rule with this diagonal
approximation is given by θt+1 = θt − ηdiag(Fθt)

−1/2gt
in RMPSrop. This formulation reduces the computation cost,

however, it is difficult to apply Theorem 1 due to its diagonal
approximation. In other words, it is difficult for standard
adaptive learning rate algorithms to update parameters along
a geodesic.

To overcome this problem, we use the following block
diagonal approximation that is more accurate than the diagonal
approximation:

θt+1 = θt − ηF̃−1/2
θt

gt, (12)

and

F̃θt =


F 11
θt

0 . . . 0
0 F 22

θt
. . . 0

...
...

. . .
...

0 0 . . . FLLθt

 , (13)

where F̃θt is a block diagonal matrix of Fisher metric, and F llθt
is the Fisher metric of the l DNN layer. Although F̃θt ignores
the correlation between layers, it handles all correlations
within each layer. Since standard adaptive learning rate algo-
rithms use Equation (4), which does not handle the correlation,
our Equation (12) approximates Fisher metric more accurately.
In terms of computation cost, if Wl ∈ Rm×n is a parameter
on the l layer and F llθt is an (mn)× (mn) matrix, the compu-
tation cost of (F llθt)

−1/2 is O(m3n3) because it needs Eigen-
decomposition. In addition, as the elements of F 11

θt
, ..., FLLθt

are independent of each other, we can effectively parallelize
the computation of F̃−1/2

θt
as (F 11

θt
)−1/2, ..., (FLLθt)−1/2.

Furthermore, we can reduce the computation cost from
O(m3n3) to O(n3 + m3) for each (F llθt)

−1/2 by utilizing
Kronecker factored approximation [19]. Let αl ∈ Rm and
sl ∈ Rn be input activations and output of the l DNN layer,
respectively. Then we have sl = WT

l αl. We assume that
βl = ∇Lsl(zt) which is computed by using back propagation.
As a result, we have ∇LWl

(zt) = αlt(β
l
t)
T , i.e. the first order

gradients of Wl. With this formula, we can approximate F llθt
by using Kronecker factored approximation as follows:

F llθt = E[glt(g
l
t)
T] = E[βlt(β

l
t)
T ⊗ αlt(αlt)T]

≈E[βlt(β
l
t)
T]⊗ E[αlt(α

l
t)
T] :=Blt ⊗Alt := F̄ llθt , (14)

where glt = vec(∇LWl
(zt)), ⊗ is the operation of Kronecker

product, and vec(·) is the operation of vectorization. Then we
can compute (F̄ llθt)

−1/2glt where glt represents the first order
gradients for the l-th layer as follows:

(F̄ llθt)
−1/2glt = {Blt ⊗Alt}−1/2glt

= {(Blt)−1/2 ⊗ (Alt)
−1/2}glt

= vec((Blt)
−1/2glt(A

l
t)

−1/2). (15)

The known identities of (Blt⊗Alt)−1/2 = (Blt)
−1/2⊗(Alt)

−1/2

and ((Blt)
−1/2⊗(Alt)

−1/2)glt = vec((Blt)
−1/2glt(A

l
t)

−1/2) are

used in the above equation. Finally, we have the following
updating rule:

θt+1 = θt − η

 (F̄ 11
θt

)−1/2g1t
...

(F̄LLθt)−1/2gLt


= θt − η

 vec((B1
t)−1/2g1t (A1

t)
−1/2)

...
vec((BLt)−1/2gLt (ALt)−1/2)

 . (16)

The computations of (Blt)
−1/2 and (Alt)

−1/2 in Equation (16)
have costs of O(n3) and O(m3), respectively. Therefore, the
total cost for the l-th layer is O(n3 + m3) as described
above. The updating rule is more efficient than the original
updating rule of Equation (11) because it has cost of O(P 3).
Since usually P >> m,n, we can effectively reduce the
cost by using the above block diagonal approximation and
Kronecker factored approximation. In addition, we can ef-
fectively parallelize the computation because Blt and Alt can
be computed simultaneously. Note that since Blt and Alt are
positive-semidefinite matrices in the definition of Equation
(14), all eigen values are greater than or equal to zero. Thus we
can safely compute the square root of the matrices (Blt)

−1/2

and (Alt)
−1/2 by combining damping technique [19] and

Eigen-decomposition such as (Blt)
−1/2 = U(Λ + εI)−1/2UT

where ε is a small constant value such as 10−6, U and Λ are
eigen vectors and eigen values of Blt, respectively.

To compute Blt and Alt in Equation (14), we use exponential
moving averages as follows:

B̄lt = (1− γ)B̄lt−1 + γβlt(β
l
t)
T (17)

Ālt = (1− γ)Ālt−1 + γαlt(α
l
t)
T (18)

where B̄lt and Ālt are estimated matrices of Blt and Alt,
respectively. γ ∈ [0, 1) is a hyper-parameter for computing the
exponential moving averages. In addition, we update (Blt)

−1/2

and (Alt)
−1/2 in Equation (16) for every Tint step to reduce

the number of computations of Eigen-decomposition following
[19].

B. Analysis of Covariance Structure

In this section, we show that the formulation of F−1/2
θt

gt can
negatively impact generalization performance. In particular,
the behavior of diffusion around local minima is isotropic
due to F

−1/2
θt

gt. Since the plain SGD can escape from local
minima via anisotropic diffusion [15], our result suggests that
existing adaptive learning rate algorithms can be trapped in
bad local minima yielding significant generalization error. In
our analysis, we assume the following Gaussian distribution
on the first order gradient around local minima, see [12], [20]:

gt ∼ N
(
ḡt,

1
bCt
)
, (19)

where gt := ∇Lθt(zt), ḡt is the full gradient at the t iteration
that is computed by using all data points, b is the size of the
mini-batch, and

Ct = ρCt−1 + (1− ρ)(gt − ḡt)(gt − ḡt)T . (20)

This is, in effect, an online estimator for the covariance
matrix of first order gradients. [20] discuss the validity of this
assumption near a local minimum. Since we are investigating
the covariance structure of first order gradients around local
minima, we use an assumption that will hold in the final phase
of SGD. According to the assumption, we derive the following
lemma:

Lemma 3. Let us consider local minimum θ∗. If C(θ∗) is
a covariance matrix around θ∗ that is computed by using
Equation (20), we have the following equation:

E[g(θ∗)g(θ∗)T] ≈ C(θ∗) ≈ G(θ∗), (21)

where g(θ∗) is the gradient around θ∗, and G(θ∗) is computed
around θ∗ by using Equation (5).

Proof. The covariance matrix around local minima is
E[g(θ∗)g(θ∗)T] by following [15]. Since the covariance ma-
trix is approximated by using the online estimator of Equa-
tion (20), we have E[g(θ∗)g(θ∗)T] ≈ C(θ∗). In addi-
tion, since g(θ∗) = ∇Lθ∗(z), we have E[g(θ∗)g(θ∗)T] =
E[∇Lθ∗(z)∇Lθ∗(z)T]≈G(θ∗) by using the online estimator
of Equation (5). As the result, we have E[g(θ∗)g(θ∗)T] ≈
C(θ∗)≈G(θ∗) as shown in Equation (21).

Lemma 3 shows that the result of Equation (5) is the same
as Equation (20) around local minima. Based on Lemma 3,
we have the following theorem for the adaptive learning rate
algorithm around local minima:

Theorem 2. Let us consider an adaptive learning rate algo-
rithm that updates parameters by using Equation (2) and (5).
Then we have the following Gaussian distribution on G−1/2

t gt
around local minimum θ∗:

G
−1/2
t gt ∼ N

(
G(θ∗)−1/2ḡt,

1
b I
)
. (22)

Proof. According to Equation (19) and Equation (21) in
Lemma 3, the Gaussian distribution can be approximated
around local minimum θ∗ as follows:

gt ∼ N
(
ḡt,

1
bG(θ∗)

)
. (23)

Since Gt = G(θ∗) around local minimum θ∗, we have
Equation (22) as follows:

G
− 1

2
t gt ∼ N

(
G(θ∗)−

1
2 ḡt,

1
bG(θ∗)−

1
2G(θ∗)(G(θ∗)−

1
2)T
)

= N
(
G(θ∗)−1/2ḡt,

1
b I
)
.

In addition, since G−1/2
t ≈ F

−1/2
θt

when we use negative
log likelihood as the loss function, we have the following
corollary:

Corollary 2. When we optimize a negative log likelihood, we
have the following Gaussian distribution instead of Equation
(22) in Theorem 2:

G
−1/2
t gt ≈ F−1/2

θt
gt ∼ N

(
F

−1/2
θ∗ ḡt,

1
b I
)
. (24)

Algorithm 1 TSO-ALRA.
Require: update interval Tint, hyper-parameter of exponential

moving average γ ∈ [0, 1), learning rate η
Require: t← 0, s← 0, initialize {Blt}Ll=1 and {Alt}Ll=1

1: while stopping criterion not met do
2: t← t+ 1
3: Update {Blt}Ll=1 and {Alt}Ll=1 by using Equation (17)

and (18)
4: if t ≡ 0 (mod Tint) then
5: Update {(Blt)−1/2}Ll=1 and {(Alt)−1/2}Ll=1 by using

Eigen-decomposition
6: s← s+ 1
7: end if
8: Update θt by using Equation (16), {(Bls·Tint)

−1/2}Ll=1

and {(Als·Tint)
−1/2}Ll=1

9: end while
10: while stopping criterion not met do
11: t← t+ 1
12: Update θt by using Equation (1)
13: end while

The theorem and corollary show that covariance matrix Ct
is diagonalized around local minima by using F

−1/2
θt

gt (or
G

−1/2
t gt) instead of gt. The plain SGD is diffuse according

to covariance matrix Ct, and can escape from bad local
minima that have high generalization error as shown in [15].
However, the diffusion of adaptive learning rate algorithm
is isotropic if it uses F

−1/2
θt

gt (or G−1/2
t gt) instead of gt

because the covariance matrix Ct changes to identity matrix
I in Theorem 2 and Corollary 2. The result suggests that
it is difficult to escape from bad local minima (which yield
high generalization error) when we use conventional adaptive
learning rate algorithms.

To deal with the above problem, we apply plain SGD
rather than the conventional adaptive learning rate algorithm
in the last phase of training so that the covariance matrix does
not turn into an identity matrix. Although we determine the
switchover point as a hyper-parameter by using validation data,
the same as the standard approach in machine learning, we
can also determine it by monitoring validation loss in real-
time, which is often necessary in deep learning. This real-time
strategy can be used for determining hyper-parameters such as
the decay schedule of the learning rate. In a similar way, we
can monitor the validation loss in each epoch, and can replace
the adaptive learning rate algorithm with plain SGD when the
minimum validation loss is not altered over several epochs.

C. Algorithm

We summarize TSO-ALRA as the pseudo code in Algo-
rithm 1. First, we compute Blt and Alt for each layer by
using Equation (17) and (18) (line 3). In Equation (18), αlt is
computed from the result of forward propagation. Similarly,
βlt in Equation (17) is computed from the result of back
propagation. Next, we compute (Blt)

−1/2 and (Alt)
−1/2 for

every Tint step (line 4-7). The computations can be made

by using Eigen-decomposition as in (Blt)
−1/2 = UΛ−1/2UT .

Note that the computations of (Blt)
−1/2 and (Alt)

−1/2 can
be parallelized. In addition, they can be parallelized for each
layer. Then, we update parameter θt by using Equation (16)
(line 8). Equation (16) effectively updates the parameter along
a geodesic as we proved in Theorem 1 and Corollary 1. Since
we update (Blt)

−1/2 and (Alt)
−1/2 for every Tint step, we use

(Bls·Tint)
−1/2 and (Als·Tint)

−1/2 in the equation. If a stopping
criterion is satisfied (line 1), we use plain SGD for the training
(line 11) until convergence. The stopping criterion is defined
by the user. Although we determine the switchover point
by using validation loss, the same as the standard approach
for determining hyper-parameters in machine learning, we
can also employ other rules for determining it as described
in the previous section. As shown by Corollary 2, we can
theoretically avoid breaking the covariance structure of first
order gradients by using plain SGD in the last phase of
training, and improve the generalization performance as the
diffusion of plain SGD helps the process to escape from local
minima.

IV. RELATED WORK

We introduce previous works in three areas related to our
work: adaptive learning rate algorithms, natural gradient and
switching strategy.

Adaptive learning rate algorithms. Before the Deep
Learning Era, adaptive learning rate algorithms were used
to accelerate the training of neural networks. There are two
approaches; adapting a global learning rate and local learn-
ing rates. Global learning rate is shared on all parameters.
The papers of [21]–[23] adapt global learning rate with the
full-batch setting. The on-line version of the approach was
proposed in [24]. On the other hand, [25] adapt local learning
rate that applies different learning rates to each parameter. [26]
proposed an on-line version of this approach.

In the Deep Learning Era, several adaptive learning rate al-
gorithms such as RMSProp [9], AdaDelta [10] and Adam [11]
were proposed; all were based on AdaGrad [8] an optimization
method for convex settings. Adam has been successful in
a wide range of applications (over 10,000 citations), and
several follow-up methods such as AMSGrad [7] have been
proposed. These methods have low computation costs so that
they can train DNNs even though they have large numbers
of parameters. However, the performance of these methods
was proved using convex settings which is not possible with
DNNs, and only empirical demonstrations on DNNs have been
published. In addition, some researchers have reported that
Adam does not converge to the optimal solution [7], and in fact
its generalization performance is worse than that of plain SGD
[27]. On the other hand, our analysis that focuses on geodesics
holds for DNNs with negative log likelihood cost functions.
Furthermore, since TSO-ALRA replaces the adaptive learning
rate algorithm with plain SGD in the last phase of training, it
offers superior generalization performance to Adam.

Natural gradient. Natural Gradient has been used as an
effective training algorithm for neural networks [28], and

recently for DNN training [19], [29], [30]. It uses Fisher In-
formation Matrix Fθ as the metric while the adaptive learning
algorithm uses F 1/2

θ . Natural Gradient computes the steepest
descent on the statistical manifold by using Fθ. However, the
role of F 1/2

θ in adaptive learning rate algorithms was unclear
for a long time as pointed out in [31]. Our analysis reveals
this role through Corollary 1; adaptive learning rate algorithms
update parameters along a geodesic by using F 1/2

θ .
Switching strategy. The strategy of replacing adaptive

learning rate algorithm with plain SGD has been used in
the practical training of neural networks such as Google’s
Neural Machine Translation System [32]. They showed that
this switching strategy improves the speed of convergence
and generalization performance. [33] proposed a switching
strategy that automatically determines the switchover point.
[34] use a similar strategy for training with large mini-batch;
it smoothly switches from the adaptive learning rate algorithm
to plain SGD. The above works have empirically confirm the
effectiveness of the switching strategy. Our analysis provides a
theoretical understanding of the effectiveness through Theorem
1, 2, Corollary 1 and 2.

V. EXPERIMENTS

We performed image classification experiments to confirm
that TSO-ALRA offers better (i) convergence speed and (ii)
generalization performance (test error) than other adaptive
learning rate algorithms.

A. Setting

We used four various datasets to investigate TSO-ALRA:
SVHN [35], Fashion-MNIST [36], Cifar-10 and Cifar-100
[37]. SVHN is the Street View House Numbers dataset that
has 10-class color house-number images from the real-world.
Fashion-MNIST contains 10-class gray scale images of fash-
ion products; image classification is harder to achieve than
standard the MNIST dataset. Cifar-10 and Cifar-100 are color
images datasets of various objects that have 10 and 100
classes, respectively. We divided each of the above datasets
into training, validation and test data; validation data is used
for determining hyper-parameters such as learning rate. We
used two famous models; AlexNet [1] and VGG [38]. AlexNet
and VGG are famous solutions proven in the competitions of
ILSVRC 2012 and 2014, respectively. The hyper-parameters
of the models such as kernel size and stride were modified to
fit the image sizes of each dataset.

The baseline algorithms are plain SGD, Adam, and AMS-
Grad. Adam is a variant of RMSProp; it integrates momentum
into RMSProp. AMSGrad is a state-of-the-art algorithm based
on Adam. For Adam and AMSGrad, we tuned the hyper-
parameters on {0.9, 0.99} using the coefficient of momen-
tum, and the learning rates of {10−1, 10−2, 10−3, 10−4}.
We also tuned the learning rate of plain SGD using
{10−1, 10−2, 10−3, 10−4}. In TSO-ALRA, the learning rate
and switchover point were tuned using {10−1, 10−2, 10−3},
and {5, 10, ..., 70, 75} epochs, respectively. In TSO-ALRA, the
learning rate was tuned using {10−1, 10−2, 10−3}. As a result,

0 50 100 150

of epochs

0.30

0.35

0.40

0.45

0.50

0.55

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(a) AlexNet

0 50 100 150

of epochs

0.16

0.18

0.20

0.22

0.24

0.26

0.28

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(b) VGG

Fig. 1. Test loss on SVHN

0 50 100 150

of epochs

0.25

0.26

0.27

0.28

0.29

0.30

0.31

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(a) AlexNet

0 50 100 150

of epochs

0.17

0.18

0.19

0.20

0.21

0.22
te

st
lo

ss
SGD
Adam
AMSGrad
ours

(b) VGG

Fig. 2. Test loss on Fashion-MNIST

we set the coefficient of momentum in Adam and AMSGrad to
0.99. The learning rates were 10−4 for SVHN/VGG, and 10−3

for the other combinations. In plain SGD, the learning rate was
10−1 for VGG and AlexNet/Fashion-MNIST. We set the learn-
ing rate to 10−2 for the other combinations. In our method,
the learning rate was 10−2 for all settings. The switchover
point was 70 for Fashion-MNIST/AlexNet, 25 for Fashion-
MNIST/VGG, 20 for SVHN, 15 for Cifar-10/AlexNet, 10
for Cifar-10/100/VGG, and 5 for Cifar-100/AlexNet. All al-
gorithms used the mini-batch size of 128. The number of
training epochs was 164. The learning rate was divided by 10
for 81 and 122 epochs. We measured the test loss (negative
log likelihood for test data) to investigate the generalization
performance.

B. Results

Figures 1, 2, 3 and 4 show the test losses of each dataset and
architecture. Our method reduced the test losses more rapidly
than SGD, Adam and AMSGrad for all datasets and combi-
nations. This is because our method utilizes block diagonal
approximation for F−1/2

θ , and effectively updates parameters
along a geodesic according to Theorem 1 and Corollary 1. On
the other hand, since Adam and AMSGrad approximate F−1/2

θ

by using diagonal approximation, parameter update seldom
follows a geodesic.

For many settings of Adam and AMSGrad, test losses
increased in the last phase of training (Figure 1(b), Figure 2(b),
Figure 3 and Figure 4). In more detail, test losses of Adam
and AMSGrad in Figure 1(b) and 4(a) are larger than those
of plain SGD, even though we tuned the hyper-parameters as
described above. On the other hand, our method prevented any
increase in test loss. Although the test loss of our method was
temporarily larger than that of Adam and AMSGrad around 80
epochs in Figure 4(b), Adam and AMSGrad suffered increased

0 50 100 150

of epochs

0.65

0.70

0.75

0.80

0.85

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(a) AlexNet

0 50 100 150

of epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(b) VGG

Fig. 3. Test loss on Cifar-10

0 50 100 150

of epochs

2.5

3.0

3.5

4.0

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(a) AlexNet

0 50 100 150

of epochs

1.5

2.0

2.5

3.0

3.5

4.0

te
st

lo
ss

SGD
Adam
AMSGrad
ours

(b) VGG

Fig. 4. Test loss on Cifar-100

test losses in the last phase of training, and our method finally
outperformed both of them. These results suggest that the
switching strategy based on Theorem 2 and Corollary 2 is
effective in avoiding over fitting.

VI. CONCLUSION

We proposed TSO-ALRA, a two-stage optimizer using an
adaptive learning rate algorithm, by analyzing the behaviors
of existing adaptive learning rate algorithms when training
DNNs. Our analysis examined two approaches suitable for
DNNs: geodesics on the statistical manifold and covariance
matrix of gradients. We revealed that existing adaptive learning
rate algorithms have two properties: (i) they approximately
update parameters along geodesics since they use F−1/2

θ , and
(ii) the covariance matrix changes into an identity matrix
around local minima as they use F

−1/2
θ . Although prop-

erty (i) achieves efficient training, standard adaptive learning
rate algorithms such as Adam can not realize this benefit
due to their use of diagonal approximation. To overcome
this problem, we introduced a more accurate approximation
technique than diagonal approximation such that parameter
updates closely follow geodesics on the manifold. Property
(ii) suggests that existing adaptive learning rate algorithms are
likely to suffer degraded generalization performance because
their diffusion around local minima is isotropic. Therefore,
we switch to plain SGD in the last phase of training to
prevent the covariance structure from breaking. Our image
classification experiments on four well-known datasets showed
that TSO-ALRA efficiently converges with high generalization
performance, and validated our theoretical findings. Note that
our theoretical findings are nontrivial because the role of
F

−1/2
θ in adaptive learning rate algorithms has been unclear

as regards DNN training whereas F−1
θ in Natural Gradient is

well understood.

REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In Annual
Conference on Neural Information Processing Systems (NeurIPS), pages
1106–1114, 2012.

[2] Yasutoshi Ida and Yasuhiro Fujiwara. Network Implosion: Effective
Model Compression for ResNets via Static Layer Pruning and Retrain-
ing. In International Joint Conference on Neural Networks, IJCNN,
pages 1–8. IEEE, 2019.

[3] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object Detection
via Region-based Fully Convolutional Networks. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 379–387,
2016.

[4] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level
Convolutional Networks for Text Classification. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 649–657,
2015.

[5] Andrew Gibiansky, Sercan Ömer Arik, Gregory Frederick Diamos, John
Miller, Kainan Peng, Wei Ping, Jonathan Raiman, and Yanqi Zhou. Deep
Voice 2: Multi-Speaker Neural Text-to-Speech. In Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 2966–2974,
2017.

[6] Herbert Robbins and Sutton Monro. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, pages 400–407, 1951.

[7] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence
of Adam and Beyond. In International Conference on Learning
Representations (ICLR), 2018.

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization. The Journal
of Machine Learning Research, 12:2121–2159, 2011.

[9] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
Gradient by a Running Average of its Recent Magnitude. COURSERA:
Neural Networks for Machine Learning, 2012.

[10] Matthew Zeiler. ADADELTA: An Adaptive Learning Rate Method.
arXiv preprint arXiv:1212.5701, 2012.

[11] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. International Conference in Learning Representations
(ICLR), 2014.

[12] Yasutoshi Ida, Yasuhiro Fujiwara, and Sotetsu Iwamura. Adaptive
Learning Rate via Covariance Matrix Based Preconditioning for Deep
Neural Networks. In IJCAI, pages 1923–1929, 2017.

[13] Yann Dauphin, Harm de Vries, and Yoshua Bengio. Equilibrated
Adaptive Learning Rates for Non-convex Optimization. In Annual
Conference on Neural Information Processing Systems (NeurIPS), pages
1504–1512, 2015.

[14] Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
Surya Ganguli, and Yoshua Bengio. Identifying and Attacking the
Saddle Point Problem in High-dimensional Non-convex Optimization.
In Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 2933–2941, 2014.

[15] Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The
Anisotropic Noise in Stochastic Gradient Descent: Its Behavior of
Escaping from Sharp Minima and Regularization Effects. In ICML,
pages 7654–7663, 2019.

[16] Yasuhiro Fujiwara, Yasutoshi Ida, Hiroaki Shiokawa, and Sotetsu Iwa-
mura. Fast Lasso Algorithm via Selective Coordinate Descent. In AAAI,
pages 1561–1567, 2016.

[17] Yasutoshi Ida, Yasuhiro Fujiwara, and Hisashi Kashima. Fast Sparse
Group Lasso. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 1700–1708, 2019.

[18] Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geom-
etry, volume 191. American Mathematical Soc., 2007.

[19] James Martens and Roger B. Grosse. Optimizing Neural Networks with
Kronecker-factored Approximate Curvature. In ICML, pages 2408–2417,
2015.

[20] Stephan Mandt, Matthew D. Hoffman, and David M. Blei. Stochastic
Gradient Descent as Approximate Bayesian Inference. Journal of
Machine Learning Research, 18:134:1–134:35, 2017.

[21] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L.
Alkon. Accelerating the Convergence of the Back-propagation Method.
Biological Cybernetics, 59(4):257–263, Sep 1988.

[22] Xiao-Hu Yu, Guo-An Chen, and Shixin Cheng. Dynamic Learning Rate
Optimization of the Backpropagation Algorithm. IEEE Trans. Neural
Networks, 6(3):669–677, 1995.

[23] Roberto Battiti. Accelerated Backpropagation Learning: Two Optimiza-
tion Methods. Complex Systems, 3(4), 1989.

[24] Yann LeCun, Patrice Y. Simard, and Barak Pearlmutter. Automatic
Learning Rate Maximization by On-Line Estimation of the Hessian’s
Eigenvectors. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 156–163. 1993.

[25] Robert A. Jacobs. Increased Rates of Convergence through Learning
Rate Adaptation. Neural Networks, 1(4):295–307, 1988.

[26] Lu’is Almeida, Thibault Langlois, Jos’e D. Amaral, and Rua Alves
Redol. On-Line Step Size Adaptation. Technical report, INESC. 9 Rua
Alves Redol, 1000, 1997.

[27] Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and
Benjamin Recht. The Marginal Value of Adaptive Gradient Methods
in Machine Learning. In Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 4151–4161, 2017.

[28] Shun-ichi Amari. Natural Gradient Works Efficiently in Learning.
Neural Computation, 10(2):251–276, 1998.

[29] Roger B. Grosse and James Martens. A Kronecker-factored Approxi-
mate Fisher Matrix for Convolution Layers. In ICML, pages 573–582,
2016.

[30] Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy
Ba. Second-order Optimization for Deep Reinforcement Learning using
Kronecker-factored Approximation. In Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 5285–5294, 2017.

[31] Lukas Balles and Philipp Hennig. Dissecting Adam: The Sign, Magni-
tude and Variance of Stochastic Gradients. In ICML, pages 413–422,
2018.

[32] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine
Translation. CoRR, abs/1609.08144, 2016.

[33] Nitish Shirish Keskar and Richard Socher. Improving Generalization
Performance by Switching from Adam to SGD. CoRR, abs/1712.07628,
2017.

[34] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely Large
Minibatch SGD: Training ResNet-50 on ImageNet in 15 Minutes. CoRR,
abs/1711.04325, 2017.

[35] Pierre Sermanet, Sandhya Chintala, and Yann LeCun. Convolutional
Neural Networks Applied to House Numbers Digit Classification. In
International Conference on Pattern Recognition (ICPR), pages 3288–
3291, 2012.

[36] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. CoRR,
abs/1708.07747, 2017.

[37] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of
Features from Tiny Images, 2009.

[38] Karen Simonyan and Andrew Zisserman. Very Deep Convolu-
tional Networks for Large-scale Image Recognition. arXiv preprint
arXiv:1409.1556, 2014.

