
SASRM: A Semantic and Attention Spatio-temporal
Recurrent Model for Next Location Prediction

1st Xu Zhang
Department of Computer Science and Technology

Chongqing University of Posts and Telecommunications
Chongqing, China

zhangx@cqupt.edu.cn

2nd Boming Li
Department of Computer Science and Technology

Chongqing University of Posts and Telecommunications
Chongqing, China

s170201094@stu.cqupt.edu.cn

3rd Chao Song
National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data(PSPRC)

China Academy of Electronics and Information Technology
Beijing, China

songch35@mail.ustc.edu.cn

4th Zhengwen Huang
Department of Electronic and Computer Engineering

Brunel University London
London, United Kingdom

zhengwen.huang@brunel.ac.uk

5th Yan Li
Department of Computer Engineering

Inha University
Incheon, South Korea
leeyeon@inha.ac.kr

Abstract—Predicting user’s next location is of great importance
for a wide spectrum of location-based applications. However,
most prediction methods do not take advantage of the rich
semantic information contained in trajectory data. Meanwhile,
the traditional LSTM-based model can not capture the spatio-
temporal dependencies well. In this paper, we propose a Semantic
and Attention Spatio-temporal Recurrent Model (SASRM) for
next location prediction. Firstly, the SASRM put forward a
method for encoding semantic vectors and concatenating vectors
(location, time and semantic vectors) as input to the model. To
capture the spatio-temporal dependencies, we design a variant
recurrent unit based on LSTM. Further, an attention layer is used
to weight hidden state to capture the influence of the historical
locations on the next location prediction. We perform experiments
on two real-life semantic trajectory datasets, and evaluation
results demonstrate that our model outperforms several state-
of-the-art models in accuracy.

Index Terms—Location Prediction, Semantic Trajectory, At-
tention, LSTM

I. INTRODUCTION

With the development of mobile positioning technology,
people’s trajectories [1] are abundantly preserved. Spatial and
temporal contextual information plays a key role for analyzing
user behaviors and is helpful for predicting where he or she
will go next [2] [3]. For example, we can provide route
recommended [4], location advertisement recommendation [5]
and urban traffic planning [6] based on prediction of the future
locations people tend to visit. Human mobility trajectories
enriched with spatial and temporal contextual information
are called semantic trajectories. Twitter [7], Foursquare and
Instagram allow users to record their locations as well as their

Fig. 1. Language sequence and trajectory sequence.

semantic information, such as location contextual information
(e.g. restaurants, bookstores), ongoing activity contextual in-
formation (playing basketball, dancing, singing). This seman-
tic information also has a greater impact on the user’s next
location prediction, which was not fully considered in most
existing work. The famous recurrent network model LSTM
[8] was originally designed for language model modeling
[9], which has been introduced into the field of trajectory
data analysis and achieved good results. Trajectory sequences
have the same properties as language sequences. As shown in
Fig.1, compared with the language sequence Wi, the trajectory
sequence Pi includes spatio-temporal contextual information

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

such as time ∆t and distance ∆d of movement. Therefore,
more and more methods do trajectory prediction task based
on LSTM. The attention technique [10] has been applied on
LSTM to find the relevant part of the information that helps
generate a better output. The combination of the recurrent net-
work model and attention technique improves the performance
of many challenging tasks, such as machine translation [11],
generation of image captions [12], video description [13], and
speech recognition [14].

Location prediction from semantic trajectories is not trivial
because of three challenges: 1) How to encode the semantic
information into a prediction model. 2) How to effectively
capture the spatio-temporal dependencies of the trajectories. 3)
How to incorporate historical information in recurrent model
training. To solve these challenges, we propose a Semantic
and Attention Spatio-temporal Recurrent Model (SASRM) for
next location prediction.

In general, our contributions are in the following areas:
• Different from the previous method, we adopt the sen2vec

method to encode the semantic vector and concatenate lo-
cation, time and semantic vectors as the part of recurrent
unit input.

• We design a variant recurrent unit with a time gate and a
distance gate based on LSTM to capture spatio-temporal
dependencies effectively. In addition, an attention layer is
used to incorporate historical information into recurrent
model training to enhance the role of historical informa-
tion.

• Experimental evaluation on two real-life semantic tra-
jectory datasets shows that SASRM model outperforms
several state-of-the-art models in accuracy.

The rest of this paper is organized as follows. We first
discuss the related work in location prediction in section II.
After that, we formulate the problem and briefly introduce the
principle of the LSTM modelIII. Following the preliminaries,
we introduce details of the architecture of SASRM in section
IV and apply our model on two real-world semantic trajectory
datasets and conduct extensive analysis on the performance in
section V. Finally, we conclude our paper in section VI.

II. RELATED WORK

A. Traditional Prediction Models

Most of the existing works consider human mobility pat-
terns. The two-stage algorithm Periodica was proposed by
Li et al. [15] to generalizes the user’s periodic behavior
and predicts the user’s location movement. Zhang et al. [16]
proposed a user pattern mining method (Splitter) based on
semantic trajectory. This method considers that the traditional
algorithms cannot effectively mine the patterns in the semantic
trajectory then decomposes the spatial coarse-grained patterns
into fine-grained patterns by top-down method and group
users to predict. Mayhew et al. [17] proposed a prediction
method based on Hidden Markov Model (HMM). This method
clustered user locations according to the historical information,
and then trained an HMM model for each cluster, which

greatly improved the accuracy of location prediction. Duong-
Trung et al. [18] describe a content-based generative regression
model, which used matrix factorization technology to solve
the prediction problem. Feng et al. [3] proposed a person-
alized ranking metric embedding method (PRME) to model
personalized check-in sequences for next POI recommendation
Unfortunately, these traditional methods cannot deal with the
long-term dependence of trajectories, and some of them do not
consider the semantic information in trajectories or consider
it weakly.

B. Neural Network Models

Recently, recurrent neural networks are widely adopted for
location prediction. Liu et al. [2] proposed ST-RNN (Spatial
Temporal RNN) model using time-specific transition matrix
and distance specific transition matrix based on RNN unit
to enhance the ability of model to receive spatio-temporal
information. In Zhu et al. [19], a model called Time-LSTM
was generated for time interval to learn the temporal depen-
dencies. Based on Time-LSTM, Zhao et al. [20] put forward
STGN model. They designed a gate recurrent network based
on LSTM unit by adding time and distance gates, which im-
proved the ability of LSTM model to capture spatio-temporal
dependencies. Regrettably, these models hardly ever consider
the rich semantic information in the trajectory data. The SERM
[21] model uses a bag of keywords method to encode semantic
information and set pre-trained word vector Glove [22] as the
weight of semantic vectors, which improves the next location
prediction accuracy. However, if the number of words in the
trainset is too large, the dimension of the word vector will
become very large (assuming the number of candidate words
is 100000, and then the generated semantic vector will reach
100000. The size of trainset will also become huge). It is
difficult for SERM model to train and adjust. Finally, these
models hardly ever consider how to incorporate historical
information in recurrent model training, for enhancing the role
of historical information.

III. PRELIMINARIES

In this section, we first formally formulate the next location
prediction problem. and then briefly introduce the principle of
the LSTM model.

A. Problem Definition

Consider a set of users U = {u1, u1, · · · , uM} and a set
of locations L = {l1, l2, · · · , lN}. The candidate locations N
may be points-of-interests (POI) or equally-sized grids. In this
paper, we use grids to represent the locations. Then, we use
the following formula to define semantic trajectories.

Definition 1: (Semantic Location) A location record of a
user at one time can be represented as a four-tuple rui

k =
(ui, lk, tk, ck), where ui indicates user ID, lk indicates the
current location of user ui at time tk. ck indicates text message
either recorded by LBS provider or user, which contains
semantic information.

Concate Embedding Vector

Recurrent Layer

softmax

Location

Predicton

Vector

Generator

Recurrent

Unit

Prediction

Attention Layer

Historical

 Attention

Linear

Fig. 2. Overall framework of the SASRM.

Definition 2: (Semantic Trajectory) A user’s semantic
trajectory is expressed as T ui = {rui

1 , r
ui
2 , · · · , r

ui

K }, s.t.
∀1 ≤ k < K, 0 < tk+1 − tk < ∆tg . ∆tg is a time gap
to truncate trajectory because some locations are separated by
very long time, they need to be truncated into two different
trajectories.

Now we formally describe our issue to predict the user’s
next location on semantic trajectories. Given a historical
semantic trajectory T ui =

{
rui
1 , r

ui
2 , · · · , r

ui

k−1
}

, the next
location lk is predicted from the set of locations L.

B. LSTM

LSTM [8] is a classical variant of RNN, which is called
long-term and short-term memory network. In order to solve
the problem of gradient dispersion of RNN model, LSTM
is proposed. Compared with RNN, it can capture long-term
dependence in sequence information and has good scalability.
We can modify LSTM to improve the performance of the
model for different prediction tasks. The formula of original
LSTM is shown on (1)-(6).

in = σ (xnWi + hn−1Vi + bi) (1)

fn = σ (xnWf + hn−1Vf + bf) (2)

c̃n = tanh (xnWc̃ + hn−1Vc̃ + bc̃) (3)

cn = fn � cn−1 + in � c̃n (4)

on = σ (xnWo + hn−1Vo + bo) (5)

hn = on � tanh (cn) (6)

Here in represents the input gate, storing some information of
the current time, fn represents the forgetting gate, choosing
to forget some information of the past, on represents the
output gate. xn and hn represent input vector and hidden
output vector in n−th, respectively. σ indicates the activation
function sigmod, which is the threshold function of the neural
network. It maps values between 0 and 1. tanh is a hyperbolic
tangent function that maps values between -1 and 1. Wi,
Wf , Wc and Wo are the weight vector of the input vector
xn. Vi, Vf , Vc and Vo are the weight vector of the hidden
input vector hn−1. bi, bf , bc and bo are the bias of the gate
vector. � represents the dot product (Hadamard product) of
two matrices. cn represents the state of cell and is used to
update the hidden state hn. The updating of cn consists of
two parts, one is the dot product of fn and cn−1, the other is
the dot product of in and c̃n.

IV. PROPOSED APPROACH

Fig. 2 presents the architecture of the proposed SASRM
model. It consists of four major components: 1) feature
embedding and vector generator; 2) recurrent unit; 3) historical
attention; and 4) prediction.

Features extracted from semantic trajectory is encoded with
a vector generator in phase IV-A. The second part introduces
the recurrent unit we designed. Then in third part, tells the
implementation method of the attention layer. Finally, we
describe how to adapt user information and training method
in Prediction.

A. Feature Embedding and Vector Generator

Semantic trajectory is comprised of a sequence of semantic
locations as show in section.III-A. We use adopt embedding
technology [23] to generate vectors, which is similar like
nature language processing. The part of a semantic location lk,
tk and ui can be directly encoded to the embedding vectors
blk , btk and bui

by the embedding weight matrices Bl, Bt

and Bu, here three matrices are initialized randomly, shown
in (7)-(9).

blk = lk ·Bl (7)

btk = tk ·Bt (8)

bui
= ui ·Bu (9)

Inspired by Arora et al. [24], we adopt a semantic infor-
mation vector embedding method called sen2vec to encode
semantic vectors. For one text information ck contain se-
mantics, we use the pre-trained word vector vgk (here we
use Glove [22]) to represent each word w. Firstly, all word
vectors vgk are weighted by a and p (w), Here a is pre-
define parameter and default setting is 0.0001. p (w) is the
frequency of the word appear in the corpus. Then average
sum to vector vsk in (10). If p (w) is larger (the word appears
a lot of times), the proportion of the corresponding vgk in
vector vsk would be smaller. This highlights the impact of
personalized vocabulary on the resulting vector. Then we use
PCA (principal component analysis) [25] to find the principal
component ũ of the S̃ in (11) and compute vck in (12). S̃
is the set of intermediate vectors vsk . Next, we obtain the
embedding vector bck by linear transformation of vck . It is
worth noting that we finally get that vector bck will maintain
the same dimension as blk , btk and bck . The custom dimension
is good for training and contain rich semantic information.

vsk=
1

|ck|
∑

w∈ck

a

a+ p (w)
vgk (10)

ũ=PCA
(
S̃
)

(11)

vck=vsk − ũũT vsk (12)

bck = vck ·Bc (13)

Finally, blk , btk and bck are concatenated as the input vector
of the recurrent layer in (14).

xSk = concat (blk , btk , bck) (14)

B. Recurrent Unit

As a variant of RNN, LSTM is capable of learning short-
term and long-term dependencies. It has become an effective
and scalable model for sequential prediction problems in the
trajectory mining area and many improvements have been
made to the original LSTM architecture. In this section,
inspired by STGN [20], we re-designed the basic LSTM unit

S

nx
S

nx

tanh σ

S

n

SS

nn

σ σ

tanh

σ σ

Fig. 3. The re-designed recurrent unit.

which utilizes time and distance intervals to receive time inter-
val and distance interval information simultaneously. Unlike
STGN, which has multiple gates to capture spatio-temporal
dependencies, we only set a time gate and a distance gate to
obtain the main spatio-temporal dependencies. In experiments,
we explored using multiple gates (such as STGN) or not
using gates, but the performance was poor. So we only use
separate gates to capture dependencies. The time interval ∆t
is equal to tn+1 − tn. The distance interval ∆d is equal to
d (ln+1, ln), d (·, ·) denotes the geographic distance between
the grid centers of two locations. Therefore, the recurrent unit
used in the SASRM is shown in (15)-(23):

in=σ
(
xSnWi + hn−1Vi + bi

)
(15)

fn=σ
(
xSnWf + hn−1Vf + bf

)
(16)

c̃n= tanh
(
xSnWc̃ + hn−1Vc̃ + bc̃

)
(17)

Tn=σ
(
xSnWxt + σ(∆tnWt) + bt

)
(18)

Dn=σ
(
xSnWxd + σ(∆dnWd) + bd

)
(19)

cn = fn � cn−1 + in � Tn �Dn � c̃n (20)

ĉn = fn � cn−1 + in � Tn �Dn � c̃n (21)

on=σ
(
xSnWo + hn−1Vo + ∆tnWto + ∆dnWdo + bo

)
(22)

hn = on � tanh (ĉn) (23)

Here in is the input gate, fn is the forgotting gate, on is the
input gate same as basic LSTM unit. Wi, Wf , Wc̃, Wo, Wxt

and Wxd are the weight vectors of the input vector xSn . Vi, Vf ,
Vc̃ and Vo are the weight vectors of the hidden input vector
hn−1. Wt, Wto, Wd and Wdo are the weight vectors of time
interval and distance interval, respectively. bi, bf , bc̃, bo, bt
and bd are the bias of the gate vectors. c̃n is the intermediate
memory state which are computed memory state cn and ĉn.

Softmaxtanh

Fig. 4. Calculate the alignment weight vector.

Equation (18) use xSn and ∆t compute the time gate Tn.
Equation (19) use xSn and ∆d compute the distance gate Dn.
The memory state cn contained ∆tn and ∆dn dependencies
can be passed to cn+1, cn+2, ... in (20). The ĉn is used to
compute the hidden state hn in (21). At the same time, the ∆tn
and ∆dn participated in the calculation of on in (22). These
gates contain ∆tn and ∆dn information capture the spatio-
temporal dependencies in the user’s trajectories, which helps
to better predict the user’s next location. The improved unit
structure is shown in Fig.3, in which a red rectangle contains
the time gate and the distance gate.

C. Historical Attention

The recurrent unit aims to capture the complicated sequen-
tial information and spatio-temporal dependencies contained
in the current trajectory. An attention layer is designed to
capture mobility regularity from the historical records. It takes
the historical hidden state as the input and outputs the most
related context vector when queried by a query vector from
the recurrent.

In our attention layer, the hidden state vectors are weighted
by two additional attention weight matrix Ws1 ∈Re∗e , Ws2 ∈
Re∗1 and a attention depth dr (the dimension of the hidden
state hn is e). In (24), the Hi represents the part of hidden
vectors [hi−dr , · · · , hi−1] that needs to be weighted. As shown
in Fig. 4 and (25), the Hi is used to calculate the alignment
weight vector αi.

Hi = [hi−dr , · · · , hi−1] , n > i ≥ dr (24)

αi = softmax
(
tanh

(
HiWs1

)
Ws2

)
(25)

hi =

{
hi, i < dr
αi

T ·Hi, n ≥ i ≥ dr
(26)

According to alignment weight vector αi, we score the Hi to
find a new context vector hi. In (26), if i is greater than the

attention depth dr, then hi is equal to αi
T ·Hi, otherwise hi

equal to the original hidden vector hi. The newly calculated
hi is related to the historical vector [hi−dr , · · · , hi−1], thereby
incorporating historical information into recurrent model train-
ing and enhancing the role of historical information.

D. Prediction

To reflect the user’s personalized information, we add the
user ID vector bui . Because the information does not change
with time during the training of the whole model, it is not
inputted into the recurrent structure for training but is added
to the output of the linear layer. Equation (27) is a linear
transformation to transform hi to N dimensional vector ok
(N is total locations of prediction). Finally, we add ok and
bui as the input of softmax to obtain vector yk in (28).

ok = hi ·BN+bN (27)

yk = softmax (ok + bui
) (28)

We use cross entropy as the loss function to calculate the
loss value of each last location lk+1 with vector yk in (29), J
is the loss value.

J = −
K∑

k=1

lk+1 log (yk) (29)

In training, we use RMSprop [26] (a variant of the
stochastic gradient descent algorithm) and a time-backward
propagation algorithm (BPTT) to update the parameters of
the SASRM. The parameters that need to be updated include
{Bl, Bt, Bu, Bc, BN ,Wi,Wf ,Wc̃,Wo,Wxt,Wxd,Wt,Wd,Wto

,Wdo, Vi, Vf , Vc̃, Vo,Ws1,Ws2, bi, bf , bc̃, bo, bt, bd, bN}.

TABLE I
STATISTICS OF TWO DATASETS

Dataset NY LA
City New York Los Angeles
Duration 1 year 4 months
Records (raw) 293558 1186852
Locations (raw) 7583 96237
Users (processed) 235 466
Trajectories (processed) 3107 8691
Tarj max len (processed) 84 78
Tarj./User 13 18

V. EXPERIMENTS

A. DataSets

We conduct experiments on two real-life semantic trajectory
datasets: New York City(NY) and Los Angeles(LA). The
dataset NY [16] contains 0.3 million check-in data records at
New York from Jan. 2011 to Jan. 2012. The dataset LA [27]
included 1.2 million tweets sign-in data records between Aug.
2014 and Nov. 2014. These two data sets record the user’s
check-in information in the form of coordinate points, and
each record contains fields such as the user’s id, geographic
coordinates, time and text description. We indicate the city
into grids, respectively, each grid representing a location, such

TABLE II
PERFORMANCE EVALUATION FOR DIFFERENT METHODS

Dataset Method Acc@1 Acc@5 Acc@10 Acc@15 Acc@20 δd/m
MF 0.1450 0.3078 0.3762 0.4004 0.4124 2237

LSTM 0.1710 0.4225 0.5433 0.6016 0.6539 1582
NY SERM 0.2012 0.4004 0.4869 0.6197 0.6539 1519

STGN 0.1972 0.4064 0.5231 0.5855 0.6338 1626
SASRM* 0.1972 0.4346 0.5513 0.6056 0.6499 1533
SASRM 0.2052 0.4487 0.5533 0.6036 0.6318 1419

MF 0.2774 0.4161 0.4603 0.4707 0.4783 3959
LSTM 0.2478 0.4865 0.5700 0.6163 0.6494 2425

LA SERM 0.2698 0.4976 0.5721 0.6142 0.6446 2497
STGN 0.2664 0.4893 0.5728 0.6135 0.6473 2508

SASRM* 0.2816 0.5148 0.5942 0.6370 0.6618 2352
SASRM 0.2905 0.5204 0.5949 0.6398 0.6625 2341

as dividing the NY into 100 × 100 grids. In terms of data
pre-processing, we removed users with less than 50 check-
in records, truncate trajectories with a limit of 10 hours and
each user needs to include at least 3 complete trajectories.
Finally, on the NA dataset, we retained 3,107 trajectories for
235 users. On the LA dataset, we retained 8,691 trajectories
for 466 users. More datasets details show in Table I.

B. Baseline Methods

Three state-of-the-art recent approaches are employed for
comparisons in this paper. And we also evaluate with a
semantic free model SASRM*, which is a variant of SASRM.

1) MF: The most frequent method, predicting the next
location based on the user’s historical frequency.

2) LSTM [8]: The basic LSTM model, the basic LSTM
unit are used, location and user vector as input.

3) SERM [21]: The rich semantic neural network model
based on LSTM, using a bag of keywords method to
encode semantic vectors.

4) STGN [20]: A Spatio-temporal Gate Network for pre-
dicting the user’s next location by adding time and
distance gates based on LSTM unit.

5) SASRM*: A variant of the SASRM model that removes
the semantic module (Input vector reserved location and
time) and all others are retained.

C. Parameter Settings and Metrics

All of the recurrent model use the uniform initialization,
the initialization range

(
− 1

e ,
1
e

)
, and e is the dimension of the

hidden vector hn. Compared with other methods in Table II,
we set the dimensions of the vectors blk , btk , bck and e to be
50, attention depth dr= 3, and grid size is 100 × 100 in two
datasets.

For each dataset, we take 80% of the data as trainset and
20% as testset. At the beginning of the training, the learning
rate was set to 0.05, and then decreased to 0.0001 for fine-
tuning. The number of max iterations is 500 and all methods
get the excellent training results.

We adopt two metrics to evaluate our model. The first
metric is the accuracy Acc@K. The Acc@K rate for the entire
experiment is the proportion of all test data that successfully
appeared in the predicted top-K set. The second metric is the

predicted distance δd/m, which represent the distance (the unit
of measurement is meters) between the ground-truth location
and the top-5 prediction.

D. Performance Evaluation

As it is shown in Table I, SASRM* and SASRM achieved
the better accuracy on Acc@1, Acc@5, Acc@10 and δd/m
in NY. Although the SERM get good results in Acc@15 and
Acc@20, we are more concerned about top 1-10 in practice. In
LA, SASRM* and SASRM achieved significant improvement
in all metrics.

The MF method belongs to the traditional prediction
method, which predicts next location only depending on the
user’s historical location frequency. It has poor performance
compared with neural network methods. The LSTM method
uses the basic LSTM unit and it is a benchmark method in
recurrent neural network model. Obviously, it does not contain
user semantic information, and has a weak spatio-temporal
dependencies. It performs generally. For SERM model, it con-
tains rich semantic information but ignores spatio-temporal de-
pendencies and its effect is slightly better than LSTM method.
Although STGN captures the spatio-temporal relationship very
strongly, ignores the rich semantic information contained in
trajectory. It has the same effect on two datasets as SERM
model and does not have the best ranking. SASRM*, thanks
to the attention layer and recurrent units with distance gate
and time gate, compared to SERM and STGN, its accuracy
has increased.

SASRM, our proposed complete model, considers spatio-
temporal dependencies and semantic information, and uses
an attention layer to capture the influence of the historical
location. It achieved the best results on both datasets.

E. Impact of Parameters

In general, different sizes of hidden vector hn will have
different effects on results. The accuracy of different hidden
size e of SASRM with experiments on the benchmark datasets
of NY and LA is illustrated on Table III. The parameter e
for the size of the recurrent unit hidden state is searched in
[50, 100, 150, 200, 250]. As it is shown in Table III,with
the increases of hidden size, Acc@1 increases slightly, and
the increase in Acc@5 and Acc@10 is relatively obvious. In

TABLE III
THE INFLUENCE OF DIFFERENT HIDDEN SIZE ON ACCURACY

Dataset HiddenSize e Acc@1 Acc@5 Acc@10
50 0.2052 0.4487 0.5532

100 0.2032 0.4447 0.5633
NY 150 0.2032 0.4507 0.5674

200 0.2052 0.4527 0.5694
250 0.2072 0.4547 0.5815

Dataset HiddenSize e Acc@1 Acc@5 Acc@10
50 0.2905 0.5204 0.5949

100 0.2899 0.5176 0.5963
LA 150 0.2905 0.5210 0.6052

200 0.2940 0.5218 0.6004
250 0.2960 0.5200 0.6011

[NY]

[LA]

Fig. 5. Accuracy changes with grid size on two datasets.

general, the accuracy of SASRM increases on the both datasets
with increases of hidden size e. For the larger hidden size
provides more model parameters when the training data is
adequate, which results in higher performance. Moreover, we
also investigate effects of different grid sizes on the model per-
formance. The size of grid is searched in [80×80, 100×100,
120 × 120]. When the grid size is 100×100, the grid length
and width of the NY dataset is about 500×500 meters, and the
length and width of the LA dataset is about 600×600 meters.
As it is shown in Fig.5, the accuracy of SASRM declines
on the two datasets with increase of grid size. For the larger
size of grid indicates the more candidates prediction location
chosen, which leads to the poor prediction of next location.
The experimental results of these two parameters show that
the grid size and the dimension of hidden layer vector should
be adjusted according to the needs of the actual prediction
task, so as to bring appropriate prediction performance.

VI. CONCLUSIONS

In this paper, we propose a Semantic and Attention Spatio-
temporal Recurrent Model (SASRM) for next location predic-
tion. In vector generator part, we adopt a sen2vec method for
encoding semantic vectors and concatenate location, time and
semantic vectors as the model input. About the recurrent unit
part, we designed a variant recurrent unit based on LSTM to
facilitate the capture of spatio-temporal dependencies. Then,
we added an attention layer to incorporate historical infor-
mation into recurrent model training. Experimental results on
two real-life semantic trajectory datasets show that SASRM
outperforms several state-of-the-art models in accuracy. In the
future work, we hope to consider how to integrate the attention
mechanism with user habits to further improve the prediction
accuracy of the user’s next location.

ACKNOWLEDGMENT

This research is supported in part by National Key Research
and Development Project (Grant No. 2017YFC0820502), the
Director Foundation Project of National Engineering Lab-
oratory for Public Safety Risk Perception and Control by
Big Data (PSRPC), National Natural Science Foundation of
China (41571401) and Chongqing Natural Science Foundation
(cstc2014kjrcqnrc40002).

REFERENCES

[1] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 29, 2015.

[2] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A
recurrent model with spatial and temporal contexts,” in Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[3] S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan, “Person-
alized ranking metric embedding for next new poi recommendation,” in
Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[4] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recom-
mendation using big trajectory data,” in 2015 IEEE 31st International
Conference on Data Engineering. IEEE, 2015, pp. 543–554.

[5] L. Deng, J. Gao, and C. Vuppalapati, “Building a big data analytics
service framework for mobile advertising and marketing,” in 2015 IEEE
First International Conference on Big Data Computing Service and
Applications. IEEE, 2015, pp. 256–266.

[6] P. S. Castro, D. Zhang, and S. Li, “Urban traffic modelling and prediction
using large scale taxi gps traces,” in International Conference on
Pervasive Computing. Springer, 2012, pp. 57–72.

[7] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s
an influencer: quantifying influence on twitter,” in Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011, pp. 65–74.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2011, pp. 5528–5531.

[10] K. Cho, A. Courville, and Y. Bengio, “Describing multimedia content
using attention-based encoder-decoder networks,” IEEE Transactions on
Multimedia, vol. 17, no. 11, pp. 1875–1886, 2015.

[11] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[12] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation
with visual attention,” in International conference on machine learning,
2015, pp. 2048–2057.

[13] C. Hori, T. Hori, T.-Y. Lee, Z. Zhang, B. Harsham, J. R. Hershey,
T. K. Marks, and K. Sumi, “Attention-based multimodal fusion for video
description,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 4193–4202.

[14] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016, pp. 4945–4949.

[15] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic behaviors
for moving objects,” in Proceedings of the 16th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining. ACM,
2010, pp. 1099–1108.

[16] C. Zhang, J. Han, L. Shou, J. Lu, and T. La Porta, “Splitter: Mining
fine-grained sequential patterns in semantic trajectories,” Proceedings of
the VLDB Endowment, vol. 7, no. 9, pp. 769–780, 2014.

[17] W. Mathew, R. Raposo, and B. Martins, “Predicting future locations with
hidden markov models,” in Proceedings of the 2012 ACM conference
on ubiquitous computing. ACM, 2012, pp. 911–918.

[18] N. Duong-Trung, N. Schilling, and L. Schmidt-Thieme, “Near real-time
geolocation prediction in twitter streams via matrix factorization based
regression,” in Proceedings of the 25th ACM international on conference
on information and knowledge management. ACM, 2016, pp. 1973–
1976.

[19] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai, “What
to do next: Modeling user behaviors by time-lstm.” in IJCAI, 2017, pp.
3602–3608.

[20] P. Zhao, H. Zhu, Y. Liu, J. Xu, Z. Li, F. Zhuang, V. S. Sheng, and
X. Zhou, “Where to go next: A spatio-temporal gated network for
next poi recommendation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 5877–5884.

[21] D. Yao, C. Zhang, J. Huang, and J. Bi, “Serm: A recurrent model for
next location prediction in semantic trajectories,” in Proceedings of the
2017 ACM on Conference on Information and Knowledge Management.
ACM, 2017, pp. 2411–2414.

[22] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[24] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for
sentence embeddings,” in Proceedings of the International Conference
on Learning Representations, 2017.

[25] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[26] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with
logarithmic regret bounds,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2545–2553.

[27] C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han,
“Gmove: Group-level mobility modeling using geo-tagged social me-
dia,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM, 2016, pp.
1305–1314.

