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Abstract—Despite much success has been achieved, neural
machine translation (NMT) suffers from exposure bias and eval-
uation discrepancy. To be specific, the generation inconsistency
between the training and inference process further causes error
accumulation and distribution disparity. Furthermore, NMT
models are generally optimized on word-level cross-entropy loss
function but evaluated by sentence-level metrics. This evaluation-
level mismatch may mislead the promotion of translation per-
formance. To address these two drawbacks, we propose to
challenge training to gradually simulate inference. Namely, the
decoder is fed with inferred words rather than ground truth
words during training with a dynamic probability. To ensure
accuracy and integrity, we adopt alignment and tailoring on
the inferred words. Therefore, these words can leverage inferred
information to help improve the training process. As for the
dynamic simulation, we define a novel loss-sensitive probability
that can sense the converge of training and finetune itself in turn.
Experimental results on IWSLT 2016 German-English and WMT
2019 English-Chinese datasets demonstrate that our methodology
can significantly improve translation quality. The approach of
alignment and tailoring outperforms previous works. Meanwhile,
the proposed loss-sensitive sampling is also useful for other
state-of-the-art scheduled sampling methods to achieve further
promotion.

Index Terms—neural machine translation, exposure bias, eval-
uation discrepancy, schedule sampling

I. INTRODUCTION

Neural machine translation (NMT) is an important direction
in natural language processing. It can be formulated as a
sequence to sequence task with a general encoder-decoder-
attention architecture [1] [2]. NMT models are able to achieve
promising results based on sufficient and diverse corpora.

However, NMT models suffer from two major drawbacks.
First, there exists bias between training and inference situation
which is called exposure bias [3]. To be specific, at training
time, target-side ground truth words are fed as input to the
decoder. Then outputs are collected for model to optimize.
But at inference time, ground truth words no more exist.
The models have to first generate a word and then feed
previous generated word back as input until predicting the end-
of-sentence token. This discrepancy brings about problems
of error accumulation and distribution disparity between the
training and inference process. Second, most NMT models are
trained on maximum likelihood estimation (MLE) objective.
More specifically, models calculate and accumulate cross-
entropy loss between outputs and ground truth sentences word

by word. A lower cross-entropy value means the predictions
are closer to ground truth at word level. Model parame-
ters are updated through backpropagation to minimize the
value of loss function. However, translation performance is
generally measured by sentence-level metrics such as BLEU
[4], ROUGE [5], etc. This way of word-level optimization
mismatches sentence-level evaluation metrics, which will limit
the promotion of translation quality.

Inspired by curriculum learning [6], previous works [3] [7]
have proposed to transform the training process to relieve
exposure bias. Their starting point is to give training situation a
challenge—simulating inference situation,i.e.,feeding some
words other than ground truth words to decoder, just like
inference process. We refer to these words as challenge words.
Namely, either ground truth words or challenge words are
fed to decoder with a sample probability p. The probability
decreases with training process so that the model can gradually
adapt to this challenging situation. One noteworthy downside
is that although p decays as designed during training, currently
its calculation is only related to a hyper-parameter and current
index of training batch or epoch. Whether the model converges
fast or slow, sample probability decays in a fixed curve
only adjusted by a hyper-parameter. Another problem lies
in the selection of challenge words. Reference [3] samples
from ground truth and previous predicted words at word
level, but lack of n-gram information cannot help to solve
the second problem mentioned above. Reference [7] selects
challenge words at sentence level through force decoding to
improve word-level optimization. However, force decoding
interferes with optimal generation process, which may destroy
its integrity and accuracy.

In this paper, we present a novel approach to promote
training quality with the assist of inference process. Unlike
previous works, we propose a loss-sensitive sample probability
to sample from ground truth and challenge words, which
can be automatically fine-tuned by cross-entropy loss. This
dynamic probability is more flexible during training since it
can sense converge speed and make adjustment. Moreover, to
ensure the integrity and accuracy of the generated challenge
words, we select them at sentence level by two steps. First,
we adopt beam search to infer candidate sentences and choose
the sentence with highest n-gram translation quality. Then, an
alignment module tailors the sentence to a desirable array for
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sampling without decreasing the quality of generation. Finally,
at training process, either ground truth words or challenge
words are fed at every decoding step with loss-sensitive sam-
pling. The model is trained on MLE objective for simplicity
while relieving the problem of evaluation discrepancy by
transmitting n-gram evaluation information to training.

The major contributions of this paper are summarized as
follows:

• We present a method to challenge training to simulate
inference, aiming at alleviating exposure bias and evalu-
ation discrepancy. At training process, either ground truth
or challenge words are fed to decoder with Bernoulli dis-
tribution. The challenge words are generated at sentence
level by inference, alignment and tailoring, which can
capture n-gram inferred information while maintaining
the accuracy of generation.

• We propose a novel loss-sensitive sample probability for
sampling from ground truth and challenge words. To
make the sample probability more flexible and suitable
for different training situations, its calculation considers
cross-entropy loss as well as the number of trained
epochs. It can sense the current learning state of model
and reflect in the level of challenge.

• We demonstrate the effectiveness of our approach on
IWSLT 2016 German-English and WMT 2019 English-
Chinese datasets, and achieve significant improvements.
Moreover, adding our approach of loss-sensitive sampling
to other state-of-the-art scheduled sampling methods can
help achieve further promotion.

II. RELATED WORK

A. Exposure bias.

In recent years, the problem of exposure bias has received
great attention. The direct way to alleviate exposure bias is to
utilize its own predictions in training. Reference [3] first posed
this problem and proposed a scheduled sampling strategy
based on an algorithm called Data As Demonstrator (DAD)
[8]. At every decoding step, a probability p is used to decide
whether to sample from ground truth or the previous word
predicted by the model itself. They also compared effects
of three different decay curves of p, including linear decay,
exponential decay and inverse sigmoid decay. Inspired by their
method, reference [7] came up with sampling from ground
truth and inference sentences word by word with inverse
sigmoid decay curve so that its n-gram matching nature can
alleviate evaluation discrepancy. To ensure these sentence pairs
have same number of words, they adopted force decoding to
‘cut down’ or ‘force’ the generation of inference sentences. We
refer to their methods and further propose a novel sentence-
level challenge words generation approach through alignment
and tailoring instead of force decoding. Furthermore, we
modify the decay curve of p to get a loss-sensitive sample
probability.

B. Evaluation discrepancy.

As for the discrepancy between word-level MLE objective
and sentence-level evaluation metrics, some researches utilize
techniques like generative adversarial network (GAN) [9] or
reinforcement learning (RL) [10]. Borrowed idea from DAD
[8] and beam search [11] [12], reference [13] proposed Mixed
Incremental Cross-Entropy Reinforce (MIXER) to directly
optimized model parameters with respect to the metric used
at inference time. Further, reference [14] presented minimum
risk training (MRT) to minimize the expected loss (i.e., risk)
on the training data. Reference [15] introduced beam-search
optimization schedule for model to learn global sequence
scores. Moreover, reference [16] proposed RankGAN which
can analyze and rank sentences by giving a reference group,
and thus achieve high-quality language descriptions. Reference
[17] presented CoT which can work without the necessity of
pre-training via MLE.

III. METHODOLOGY

The main schematic of our proposed methodology is shown
in Fig. 1. The right part in the figure indicates the process of
generating and selecting candidate sentences, and the left part
shows a rough process of sentence alignment, tailoring and
sampling.

Specifically, for each sentence pair (X,Y ) to be trained,
we first perform the process of inference and use beam search
to predict the translation of X with beam size k. Then we
choose the sentence Y ∗ in k candidates which scores highest
BLEU value with ground truth Y to ensure its translation
quality. After that, we conduct alignment and tailoring on
Y ∗ according to the ground truth sentence Y , generating the
desirable challenge sentence (composed of challenge words)
Y
′
. The ground truth and challenge sentence are sampled with

Bernoulli distribution at probability p. Finally, the model trains
with sentence X and the sampled words as new parallel data.
After training an epoch, the training loss is fed back to sample
module and it recalculates the sample probability p. Thus,
training and inference can interact with each other and get
promotion.

In the following, we will first describe the NMT model in
Section III-A, and then introduce the generation of challenge
sentence in Section III-B. The method of sentence alignment
and tailoring is presented in details in Section III-C. Finally,
Section III-D explains how to define loss-sensitive sample
probability.

A. Model Overview

We utilize a common RNN attention model [2] as baseline
to demonstrate our approach. Given the source sentence X =
(x1, x2, ..., xTx

) and the target sentence Y = (y1, y1, ..., yTy
),

the model can deal with many sequence to sequence problems.
For the input sentence X , the encoder first converts each word
into its own word vector wt ⊆ RK , t = 1, 2, ..., Tx. After
obtaining word embeddings, RNN encodes the source sentence
as follows:



Fig. 1. A schematic of our approach. The sentences written in red indicate the ground truth source and target sentence. The dashed arrows show the overall
iteration process between the training and inference process. Benefit from their interaction, training and inference can achieve mutual promotion.

ht = φ(ht−1, wt) (1)

where h0 is an initial vector, φ is a nonlinear function of
hidden layers. Then context vector ci, i = 1, 2, ..., Ty is
calculated by:

ci =

Tx∑
j=1

αij · hj (2)

αij =
exp(eij)∑Tx

k=1 exp(eik)
(3)

where eij is an alignment model used to evaluate the match
level between the j-th input word and the i-th output word.

When the decoder receives the context ct, it calculates the
hidden layer vector st by:

st = f(st−1, yt−1, ct) (4)

where s0 is an initial vector, f is a nonlinear function of hidden
layers, yt−1 is the historical output at time t− 1 in inference
and ground truth word in training, and y0 is the end flag of
source sentence X .

According to the hidden layer state st, the probability of
inferring the word yt can be computed by:

P (yt) = softmax(Wo · p(yt | y1, ..., yt−1, x)) (5)

p(yt | y1, ..., yt−1, x) = g(yt−1, st, ct) (6)

where g is a nonlinear function and Wo is a mapping matrix.
Finally, supposing that there are sequence pairs (Xi, Yi), i =

1, 2, ..., N in the parallel corpus, the objective of training a
NMT model is to maximize the likelihood as follows:

L(θ) =

N∑
i=1

log p(Yi | Xi, θ) (7)

B. Challenge Sentence Generation

To infer the best translation of a given source sentence, the
most common used algorithm is beam search. The algorithm
has a parameter called beam size k which means reserving k
candidate translations. Supposing that the vocabulary size is
V , at each decoding step t, model stitches words in vocabulary
to k existing partial translation so that k×V combinations are
generated. Model calculates their probability and choose top
k translations as new candidates.

Specifically, to punish very short translations, beam search
is maximizing the probability defined as followings:

prob = argmax
y

1

Ty

Ty∑
t=1

logP (yt | x, y1, ..., yt−1) (8)

where Ty is the length of output sentence.
It is interesting to note that if k is set to 1, this essentially

becomes the greedy search algorithm which is generally
used in training process. The model directly calculates cross-
entropy loss between the only one candidate sentence and
ground truth sentence. Conversely, a larger k can theoretically
help achieve better translation results while consuming more
memory and resources for reserving candidate translations.
Therefore, we utilize a proper k to balance pros and cons. After
beam search, we choose the sentence which scores highest on
BLEU with ground truth sentence from k candidates. Similar
to reference [7], we adopt the Gumbel-Max technique [18]
[19] for generating more robust outputs. To be specific, the
Gumbel noise is defined as follows:

G = −log(−logU) (9)

where U ∼ Unif [0, 1].



(a) An ideal case. (b) A special case.

Fig. 2. Two circumstances of sentence alignment, where (y∗i , ..., y
∗
j , ..., y

∗
k)

are part of Y ∗ and (yu, ..., yv , ..., yw) are part of Y . Both of them are in
proper order.

(a) An ideal case. (b) A special case.

Fig. 3. Two circumstances of sentence tailoring, where (y∗i , y
∗
i+1, ..., y

∗
i+m)

are part of Y ∗ and (yu, yu+1, ..., yu+n) are part of Y . Both of them are in
proper order. In 3(a) m = n, while in 3(b) m 6= n.

Then equation (5) is modified to:

P (yt) = softmax(
Wo · p(yt | y1, ..., yt−1, x) +G

τ
) (10)

where τ is a temperature parameter controlling the generated
distribution.

We consider that choosing beam search translation for
selecting challenge sentences have two benefits. First, beam
search can generate translations better than greedy search since
it can avoid local optimum and calculate probabilities globally.
Second, BLEU measures n-gram matching precision of the
inference and reference sentence. Therefore, selecting the best
translation from beam search results can ensure its quality
and n-gram accuracy. Indirectly, sentence-level information
are transmitted to training process to alleviate evaluation
discrepancy.

C. Sentence Alignment and Tailoring

Beam search translation provides the best sentence Y ∗ =
(y∗1 , y

∗
2 , . . . , y

∗
TY ∗

) which scores highest on BLEU with corre-
sponding ground truth sentence. However, how many tokens
it will generate is uncertain. This is against the requirement
of sampling from ground truth and challenge sentences word
by word. Therefore, we align and tailor Y ∗ to generate a
desired array according to the ground truth sentence Y =
(y1, y2, ..., yTY

) as described below.
1) Sentence Alignment: First of all, we import a mask

vector m = (m1,m2, ...,mTY
) to indicate which words of

Y can be aligned. m is initialized as (0, 0, ..., 0) which means
every word in Y is free for alignment. Then we iterate over
Y ∗ to find words that align to masked Y . Once a word
Y ∗
i (1 ≤ i ≤ TY ∗) is found to be aligned to Yj(1 ≤ j ≤ TY ),

we revise m1, ...,mj to 1, so words before position j do not
participate in the alignment process any more.

In other words, Fig. 2 shows two circumstances of sentence
alignment. Fig. 2(a) is an ideal case where every alignment
word pairs are in order. However, special cases may happen
as shown in Fig. 2(b). We will break the alignment between
y∗k and yu, and find if there are words aligned to y∗k starting
from yv .

After then, we create a new array Y
′
= (y

′

1, y
′

2, ..., y
′

T
Y
′ ) to

fill in these aligned words at their specific position. If y∗j is
aligned to yv , then position v is filled in with y∗j .

2) Sentence Tailoring: After filling in aligned words in
Y ∗, we pay attention to these unaligned fragments between
two aligned words. Whether they are ordinary fragments or
fragments at head and tail, they are facing two circumstance
as demonstrated in Fig. 3. We assume that y∗i is aligned to
yu and y∗i+m is aligned to yu+n. For an ideal circumstance
in Fig. 3(a), fragment (y∗i+1, ..., y

∗
i+m−1) has same number of

words as fragment (yu+1, ..., yu+n−1). It seems two fragments
can be aligned word by word although actually these words are
different. We directly fill in the fragment of Y ∗ to Y

′
at right

position. Another circumstance is showed in Fig. 3(b) where
two fragments have different length. In consider of preserving
accuracy, we do not refer to fragment Y ∗, but fill in fragment
of Y to Y

′
.

As the model converges, Y ∗ will be similar to Y in overall
grammatical structure and the number of aligned words will
greatly increase. Moreover, the occurrence of special cases
in Fig. 3(b) will also decrease. Those unaligned fragments
in Fig. 3(a) can help transmit n-gram inference information
to the training process. After alignment and tailoring, whether
the inferred sentence Y ∗ is longer or shorter than ground truth
sentence Y , we can obtain challenge sentence Y

′
which has

same words as Y .

D. Loss-sensitive Sampling

To challenge the training process to simulate inference when
predicting token yt, we propose to sample from ground truth
word yt−1 and challenge word y

′

t−1. Inspired by reference [3],
we use Bernoulli distribution for sampling with probability
p. Assuming wt is the input at each decoding step t, then
Pr(wt = yt−1) = p and Pr(wt = y

′

t−1) = 1 − p. We hope
the probability p to decay from 1 to 0, so that the training
process can gradually learned to deal with simulated inference
situation.

Borrowing idea from the decay schedule in learning rate,
sample probability can be defined as an inverse sigmoid curve
with variable training epochs. Furthermore, a loss function
intuitively reflects how well the model is trained. If predictions
are pretty good, the loss function will output a lower value.
Conversely, if model fails to predict correct words, it will
output a higher value. This feature can give a good feedback
on fine-tuning probability p. If p decreases faster than loss,
it means that model may be exposed to inference scenario
too early and hard to correct these mistakes. Conversely, if p
decreases more slowly than loss, we can conclude that model



TABLE I
RESULTS OF THE PROPOSED METHOD IN COMPARISON TO BASELINE SYSTEMS (BLEU).

DE-EN EN-ZH
Systems testset10 testset11 testset12 testset14 average newstest17 newstest18 newstest19 average

Transformer 25.17 30.03 26.20 24.24 26.41 26.37 25.09 25.76 25.74
Evolved Transformer 26.33 31.45 27.28 25.36 27.61 27.84 25.98 27.25 27.02
DTMT 26.51 31.66 27.64 26.02 27.96 28.07 26.10 27.34 27.17

RNNsearch 24.46 28.06 24.92 22.94 25.10 24.92 24.17 24.20 24.63
+ SS-NMT 25.73 29.48 26.34 23.66 26.30 25.53 24.75 24.93 25.07
+ OR-NMT 26.89 29.91 26.77 24.66 27.06 27.61 25.74 26.42 26.59

+ AT-NMT 27.20 31.78 27.98 25.78 28.19 28.10 25.93 27.23 27.09
+ AT-NMT + lss 27.68 32.07 28.18 26.16 28.52 28.42 26.21 27.45 27.36
Note that + lss refers to the abbreviation of combining loss-sensitive sampling. Overall best results are in bold. All systems in comparison
are trained on two public corpora using their source codes, thus the BLEU results are different from those reported in their papers.

is temporarily strong enough to handle difficulties given by
inference and needs further challenge.

Therefore, we define sample probability as follows:

p =
k

k + exp( ek )
· σ(L) (11)

where k is a hyper-parameter, e is the current index of epoch,
L is the average loss function value of epoch e, and σ is a non-
linear function. Considering that feeding tailored challenge
words will to some extent reduce the difficulty of inference, we
hope the sample probability be lower so as to increase the level
of challenge. We choose tanh function so that 0 < σ(L) < 1.

IV. EXPERIMENTS

A. Experimental Setup

We conduct our experiments comparable with previous work
by using the following two datasets:

a) German-English: the German-English dataset is cho-
sen from IWSLT 2016 [20]. We use official testset2013 as
validation set. The training and validation data consists of
196,884 and 992 sentences respectively. As for evaluation, we
use the testset dataset from 2010 to 2014 and tokenized BLEU
scores as computed by the multi-bleu.perl script1.

b) English-Chinese: the English-Chinese dataset is cho-
sen from the casia2015 parallel corpus in WMT 2019 shared
task. It consists of approximately 1.05M sentences. We use
official newsdev2017 as validation set and evaluate on the
newstest dataset from 2017 to 2019.

For all training data, we perform tokenization and truecasing
using standard Moses tools. For Chinese corpora, we use jieba2

for segmentation. Then, we employ byte pair encoding (BPE)
[21] with 50,000 operations to alleviate Out-of-Vocabulary
problem. To accelerate training and save cost, we discard
sentences with more than 50 tokens. The dimension of word
embeddings is set to 512.

The training of the proposed system is similar to general
RNN models with the cross-entropy loss function and a batch

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

2https://github.com/fxsjy/jieba

size of 60. We use Adam [22] optimizer to tune the parameters.
Besides, we use dropout regularization with a drop probability
0.5. During decoding, the beam size is set to 3. The hyper-
parameter of sample probability k and temperature τ are set
to 12 and 0.5 respectively.

B. Baseline Systems

We compare our method with existing common NMT
systems including Transformer [23], Evolved Transformer [24]
and DTMT [25]. Moreover, there are some previous state-of-
the-art schedule sampling works. These baseline systems are
included as follows:

a) RNNsearch: a vanilla attention-based recurrent neural
network which consists of 2-layer bidirectional GRU units
[26]. The dimension of hidden layer is 512.

b) SS-NMT: a word-level scheduled sampling method [3]
which utilizes inverse sigmoid decay schedule to sample from
challenge word and ground truth word. Challenge word is
chosen from previous predicted word.

c) OR-NMT: a sentence-level sampling method [7]
which utilizes inverse sigmoid decay schedule to sample
from challenge sentence and ground truth sentence. Challenge
sentence is generated by beam search and force decoding.

d) AT-NMT: our proposed sentence-level method which
introduces loss-sensitive sampling schedule to sample from
challenge sentence and ground truth sentence. Challenge sen-
tence is achieved by alignment and tailoring.

C. Main Results

TABLE I reports the results of the proposed system in
comparison to other NMT systems. As it can be seen, our
full system (AT-NMT + lss) obtains the best published results
on all testsets.

On German-English dataset, our full system can outperform
RNNsearch by +3.42 BLEU averagely. On English-Chinese
dataset, our full system can have an improvement of +2.73
BLEU on three testsets.

To validate the effectiveness of our sentence alignment and
tailoring method, we use the original reverse sigmoid sampling
schedule for comparison. As shown in the experimental results,



Fig. 4. The training loss curves of four baseline systems (RNNsearh,
SS-NMT, OR-NMT and AT-NMT) on the IWSLT 2016 German-English
translation task.

AT-NMT can outperfrom previous works SS-NMT and OR-
NMT by +1.13 ∼ +1.89 BLEU on German-English dataset
and +0.5 ∼ +2.02 BLEU on English-Chinese dataset. We
will display and analyse the effect of sentence alignment and
tailoring in detail in Section IV-D.

While previous methods can improve translation quality by
word or sentence level sampling, their sampling schedule lacks
of flexibility in decaying. To solve this drawback, we propose
a novel loss-sensitive sample probability which can sense the
speed of converge and make adjustment on sample probability.
As shown in TABLE I, AT-NMT combining loss-sensitive
sampling (+lss) can achieve best translation performance
compared to other NMT systems. We will discuss the effect
of loss-sensitive sampling from two aspects in Section IV-E.

On the one hand, the idea of loss-sensitive sampling can
be added to previous schedule sampling methods. Since our
approach of sentence alignment and tailoring is different from
previous generation method of challenge words, whether the
loss-sensitive sampling is beneficial to these works are under
verification. Therefore, we conduct experiments on combining
our loss-sensitive sampling schedule with previous methods.

On the other hand, we consider to validate the universal-
ity of loss-sensitive sampling since it is influenced by the
cross-entropy loss function value in finetuning probability p.
Generally, the scale and quality of parallel corpora can have
impact on the value of training loss. It is worth noting that
our German-English dataset is relatively smaller, while the
English-Chinese dataset is almost 5 times larger. Hence, we
experiment on these two datasets to validate the effectiveness
of our sampling schedule.

D. Effect of Alignment and Tailoring

To explore the effect of sentence alignment and tailoring, we
make comparisons to RNNsearch, SS-NMT and OR-NMT on
German-English dataset under the same conditions. We adopt
the original inverse sigmoid curve instead of loss-sensitive
sampling as sample probability. Fig. 4 gives the cross-entropy

Fig. 5. Trends of BLEU scores of four baseline systems (RNNsearh, SS-
NMT, OR-NMT and AT-NMT) on the validation set on the IWSLT 2016
German-English translation task.

loss curves of RNNsearch, SS-NMT, OR-NMT and AT-NMT
during training. As the training epoch increases, RNNsearch
continues to decrease at a lowest value, which indicates that
RNNsearch may fall in overfitting problem. Due to different
generation methods of challenge words, SS-NMT, OR-NMT
and AT-NMT gradually converge to a certain training loss
value. Among them, the training loss of our proposed AT-NMT
is much lower than other two systems. We can conclude that
our tailored sentences are more reasonable and accurate, thus
easier for model to correct mistakes imported by the inference
process.

It is interesting to find out that the training loss of AT-NMT
is lower than SS-NMT. SS-NMT selects challenge words from
the model’s previous predicted words which is at word level,
while OR-NMT integrates force decoding to beam search
which is at sentence level. Therefore, it is normal to see the
training loss of OR-NMT be higher than SS-NMT since OR-
NMT can import sentence-level information as compensation.
However, our proposed sentence-level AT-NMT can reduce the
growth of training loss. This manifests the effectiveness and
high accuracy of sentence alignment and tailoring.

Moveover, Fig. 5 gives the BLEU score curves of four
systems under same settings. It can be seen that RNNsearch
encounters the problem of overfitting as mentioned above. As
for AT-NMT, although the method of alignment and tailoring
reduces the difficulty of challenge compared to other systems,
it can achieve better BLEU scores on validation set. Compared
to OR-NMT which uses force decoding to generate challenge
sentences, our method of alignment and tailoring does preserve
integrity and accuracy.

E. Effect of Loss-sensitive Sampling

Aiming at designing a more flexible sample probability,
we propose the loss-sensitive sampling schedule which can
sense the converge state of training and reflect on the level
of challenge. We conduct experiment on German-English and



TABLE II
BLEU SCORES ON GERMAN-ENGLISH DATASET.

Systems tst10 tst11 tst12 tst14 avg

SS-NMT 25.73 29.48 26.34 23.66 26.30
SS-NMT + lss 26.46 30.14 26.60 24.31 26.88

OR-NMT 26.89 29.91 26.77 24.66 27.06
OR-NMT + lss 27.37 30.72 27.54 25.20 27.71

TABLE III
BLEU SCORES ON ENGLISH-CHINESE DATASET.

Systems test17 test18 test19 avg

SS-NMT 25.53 24.75 24.93 25.07
SS-NMT + lss 25.89 25.12 25.43 25.48

OR-NMT 27.61 25.74 26.42 26.59
OR-NMT + lss 28.03 26.10 26.66 26.93

English-Chinese datasets to validate the effectiveness of loss-
sensitive sampling and analyse in two aspects.

We apply loss-sensitive sampling to previous schedule
sampling methods SS-NMT and OR-NMT. The experimental
results are listed in TABLE II and TABLE III. From the overall
results, it can be seen that adding the idea of loss-sensitive
sampling to these two methods can help achieve higher BLEU
scores. To be specific, SS-NMT + lss can get a promotion of
+0.41 ∼ +0.58 BLEU averagely over SS-NMT on German-
English and English-Chinese datasets. OR-NMT + lss can
outperform OR-NMT by +0.34 ∼ +0.65 BLEU score on two
datasets averagely.

To deeply explore the promotion of loss-sensitive sampling
on other state-of-the-art works, we observe their decay curves
of sample probability during training. As shown in Fig. 6,
the actual sample probabilities of SS-NMT, OR-NMT and
AT-NMT on German-English dataset differ from the original
sample probability. Above all, they are all lower than the
original one which indicates the model tends to take challenge
words as context more frequently than before. From the
perspective of simulating, we make it harder for model to
handle inference sentences and correct mistakes, while the
experimental results show promotion on translation quality.

Another point of focus lies in the decay range of different
systems. The original sample probability is calculated by a
hyper-parameter and the index of current epoch. Therefore,
once the value of hyper-parameter is determined, sample
probability is decayed in a fixed curve. With the assist of
loss-sensitive sampling, three baseline systems have specific
probability decaying trends. The training loss of AT-NMT +
lss is lower than SS-NMT + lss and OR-NMT + lss, so its
calculated sample probability is also lower than others. On
the one hand, the difficulty of challenge is reflected on the
curve. Loss-sensitive sampling helps to adjust a proper sample
probability for different training scenes. On the other hand, a
lower sample probability means the model is mathematically
exposed to inference situation more frequently. In this sense,
AT-NMT + lss is more capable of simulating the inference

Fig. 6. Trends of sample probability on the training set on the IWSLT 2016
German-English translation task. The blue curve (original) represents previous
inverse sigmoid sampling schedule. The curves of SS-NMT, OR-NMT and
AT-NMT are combined with loss-sensitive sampling.

process and achieves higher translation performance.
The last question we want to explore is the influence of

different initial cross-entropy loss on loss-sensitive sample
probability. The different scale and quality of various parallel
corpus result in relatively higher or lower loss value. We
observe the performance on the smaller German-English and
the larger Chinese-English datasets. Generally, training loss on
a larger dataset is lower than on a smaller dataset. Experiments
on the two datasets also confirm this. As shown in TABLE I,
loss-sensitive sampling helps to promote translation quality
on both datasets. Experimental results in TABLE II and
TABLE III also comfirm the effectiveness and universality of
loss-sensitive sampling.

V. CONCLUSION

In this paper, we propose to challenge training to simulate
inference in NMT so as to alleviate the problem of exposure
bias and evaluation discrepancy. We feed challenge words
rather than ground truth words as context to decoder with a
sample probability in training process. The challenge words
are generated in sentence level aiming to capture n-gram infor-
mation. To ensure accuracy and integrity, we adopt alignment
and tailoring method for inferred sentences. Moreover, we
design a novel loss-sensitive sampling schedule to provide
more flexible and dynamic sample probability. Experimental
results show that our proposed method can achieve significant
improvement on BLEU scores compared to previous works.
Furthermore, our idea of loss-sensitive sampling is also helpful
in promoting previous works.
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