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Abstract—We present a novel approach for learning an ap-
proximation of the optimal state-action value function (Q) in
model-free Deep Reinforcement Learning (DRL). We propose
to learn this approximation while simultaneously learning an
approximation of the state-value function (V ). We introduce
two new DRL algorithms, called DQV-Learning and DQV-Max
Learning, which follow this specific learning dynamic. In short,
both algorithms use two neural networks for separately learning
the V function and the Q function. We validate the effectiveness
of this training scheme by thoroughly comparing our algorithms
to DRL methods which only learn an approximation of the Q
function, namely DQN and DDQN. Our results show that DQV
and DQV-Max present several important benefits: they converge
significantly faster, can achieve super-human performance on
DRL testbeds on which DQN and DDQN failed to do so, and
suffer less from the overestimation bias of the Q function.

Index Terms—model-free deep reinforcement learning,
temporal-difference learning, DQV, DQV-Max-Learning

I. INTRODUCTION

In value-based Reinforcement Learning (RL) the aim is
to construct algorithms which learn value functions that are
either able to estimate how good or bad it is for an agent
to be in a particular state, or how good it is for an agent to
perform a particular action in a given state. Such functions are
respectively denoted as the state-value function V (s), and the
state-action value function Q(s, a) [1]. In Deep Reinforcement
Learning (DRL) the aim is to approximate these value func-
tions with e.g. deep convolutional neural networks [2], which
can serve as universal function approximators and powerful
feature extractors. Classic model-free RL algorithms like Q-
Learning [3], Double Q-Learning [4] and SARSA [5] have all
led to the development of a “deep” version of themselves in
which the original RL update rules are expressed as objective
functions that can be minimized by gradient descent [6]–[8].
Despite their successful applications [9], the aforementioned
algorithms only aim at approximating the Q function, while
completely ignoring the V function. This approach, however,
is prone to issues that go back to standard RL literature. The
DQN algorithm [6] is known to overestimate the values of
the Q function [7] and requires an additional target network
to not diverge (which role is not yet fully understood [10]).
These overestimations can partially be corrected by the DDQN
[7] algorithm, which, despite yielding stability improvements,
does not always prevent its Q networks from diverging [11]

and sometimes even underestimating the Q function. Further-
more, DRL algorithms are also extremely slow to train. In this
work, we introduce a new family of DRL algorithms, which
simultaneously learn the V function and the Q function for
faster, more robust and better model-free Deep Reinforcement
Learning.

II. PRELIMINARIES

We formally define the RL setting as a Markov Decision
Process (MDP) where the main components are a finite set
of states S = {s1, s2, ..., sn}, a finite set of actions A and a
time-counter variable t. In each state st ∈ S, the RL agent can
perform an action at ∈ A(st) and transit to the next state as
defined by a transition probability distribution p(st+1|st, at).
When moving from st to a successor state st+1 the agent
receives a reward signal rt coming from the reward function
<(st, at, st+1). The actions of the agent are selected based
on its policy π : S → A that maps each state to a particular
action. For every state s ∈ S, under policy π its value function
V π is defined as:

V π(s) = E

[ ∞∑
k=0

γkrt+k

∣∣∣∣st = s, π

]
, (1)

which denotes the expected cumulative discounted reward that
the agent will get when starting in state s and by following
policy π thereafter. Similarly, we can also define the state-
action value function Q for denoting the value of taking action
a in state s based on policy π as:

Qπ(s, a) = E

[ ∞∑
k=0

γkrt+k

∣∣∣∣st = s, at = a, π

]
. (2)

Both functions are computed with respect to the discount fac-
tor γ ∈ [0, 1] which controls the trade-off between immediate
and long term rewards. The goal of an RL agent is to find a
policy π∗ that realizes the optimal expected return:

V ∗(s) = max
π

V π(s), for all s ∈ S (3)

and the optimal Q value function:

Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S and a ∈ A. (4)
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It is well-known that optimal value functions satisfy the
Bellman optimality equation as given by

V ∗(st) = max
a

∑
st+1

p(st+1|st, a)

[
<(st, a, st+1) + γV ∗(st+1)

]
(5)

for the state-value function, and by

Q∗(st, at) =
∑
st+1

p(st+1|st, at)
[
<(st, at, st+1)+

γ max
a

Q∗(st+1, a)

]
, (6)

for the state-action value function. Both functions can either be
learned via Monte Carlo methods or by Temporal-Difference
(TD) learning [12], with the latter approach being so far the
most popular choice among model-free RL algorithms [3]–[5].

III. RELATED WORK

The contribution which has established the potential of
DRL can certainly be identified with the Deep-Q-Network
(DQN), the first algorithm which uses a convolutional neural
network for successfully learning an approximation of the Q
function from high dimensional inputs [6]. This approximation
is learned by reshaping the popular Q-Learning algorithm [3]
to an objective function which can be minimized by gradient
descent. The original Q-Learning algorithm learns the state-
action value function as follows

Q(st, at) := Q(st, at) + α
[
rt + γmax

a∈A
Q(st+1, a)

−Q(st, at)
]

(7)

where α corresponds to the learning rate. The DQN algorithm
adapts this update rule to a differentiable loss function which
can be used for training a neural network that is parametrized
by θ. This objective function comes in the following form:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γ max

a∈A
Q(st+1, a; θ−)

−Q(st, at; θ)
)2]

. (8)

Within this loss there are two components which ensure
stable training. The first one is the Experience-Replay memory
buffer (D), a buffer coming in the form of a queue which
stores RL experiences 〈st, at, rt, st+1〉. When it comes to
the popular Atari Arcade Learning (ALE) [13] benchmark,
the DQN algorithm uniformly samples mini-batches of 32
experiences for minimizing Eq. 8, a procedure which starts as
soon as at least 50.000 experiences are stored within the queue.
Furthermore, there is a second component which ensures stable
training denoted as the target-network. DQN learns an ap-
proximation of the Q function via TD-Learning, meaning that
the approximated Q-function is regressed towards TD-targets
which are computed by the approximated Q function itself.
The TD-target, defined as yDQNt , is expressed as follows:

yDQNt = rt + γ max
a∈A

Q(st+1, a; θ−), (9)

and is computed by the target network θ− instead from
the online Q-network θ. The online network, and its target
counterpart, have the exact same structure, with the main
difference being that the parameters of the latter do not get
optimized each time a mini-batch of experiences is sampled
from the memory buffer. On the contrary its weights are
temporally frozen and are only periodically updated with the θ
weights (as defined by an appropriate hyperparameter). Given
a training iteration i, differentiating the objective function of
Eq. 8 with respect to θ gives the following gradient:

∇θiy
DQN
t (θi) = E〈st,at,rt,st+1〉∼U(D)

[(
rt+

γ max
a∈A

Q(st+1, a; θ−i−1)−Q(st, at; θi)
)
∇θiQ(st, at; θi)

]
.

(10)

Despite yielding super-human performance on most games
coming from the ALE, DQN has shown to be suffering from
the same issues which characterize the Q-Learning algorithm
[4]. Among these issues we mention the overestimation bias
of the Q-function [4]. In short, DQN is prone to learn
overestimated Q-values because the same values are used
both for selecting an action (max

a∈A
) and for evaluating it

(Q(st+1, a; θ−)). As originally presented in [7] this becomes
clearer when re-writing Eq. 9 as:

yDQNt = rt + γ Q(st+1, arg max
a∈A

Q(st+1, a; θ); θ−). (11)

As a result, DQN tends to approximate the expected maxi-
mum value of a state, instead of its maximum expected value.
To solve this problem the DDQN algorithm untangles the
selection of an action from its evaluation by taking advantage
of the target network θ−. DDQN’s target is the same as
DQN’s with the main difference being that the selection of an
action, given by the online Q-network θ, and the evaluation
of the resulting policy, given by θ−, can get unbiased by
symmetrically updating the two sets of weights (θ and θ−).
This can be achieved by regularly switching their roles during
training.

Several extensions of DQN and DDQN have been proposed
over the years, to make these algorithms learn faster and
more data-efficient. We refer the reader to [9] for a more in-
depth review of these contributions. Within this paper, we are
only interested in synchronous DRL algorithms which learn
an approximation of a value function. This is achieved by
following the same experimental setups that have been used
for DQN and DDQN, and that will be reviewed in Sec. V-A
of this paper. Therefore, in this contribution, we will aim at
comparing our novel DRL algorithms to DQN and DDQN
only, while leaving their potential integration within more
sophisticated DRL techniques as future work.

IV. DQV AND DQV-MAX LEARNING

Just as much as DQN and DDQN are based on two tabular
RL algorithms, so are the main contributions presented in this



work. More specifically we extend two RL algorithms which
were introduced in [14] and [15] to the use of deep neural
networks that serve as function approximators. Training these
algorithms robustly is done by taking advantage of some of the
techniques which have been reviewed in the previous section.

A. DQV-Learning

Our first contribution is the Deep Quality-Value (DQV)
Learning algorithm, a novel DRL algorithm which aims at
jointly approximating the V function alongside the Q function
in an on-policy learning setting. This algorithm is based on the
QV(λ) algorithm [14], a tabular RL algorithm which learns
the V function via the simplest form of TD-Learning [12],
and uses the estimates that are learned by this value function
to update the Q function in a Q-Learning resembling way.
We take inspiration from this specific learning dynamic and
aim at learning an approximation of both the V function, and
the Q function, with two neural networks that are respectively
parametrized by Φ and θ. The objective function which is used
by DQV for learning the state-value function is given by the
following equation:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ−)

− V (st; Φ)
)2]

, (12)

while the following loss is minimized for learning the Q
function:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ−)

−Q(st, at; θ)
)2]

, (13)

where D is again the Experience-Replay memory buffer,
used for uniformly sampling batches of RL trajectories
〈st, at, rt, st+1〉, and Φ− is the target-network used for the
construction of the TD-errors. Please note that the role of
this target network is different from its role within the DQN
algorithm. In DQV this network corresponds to a copy of the
network which approximates the state-value function and not
the state-action value function. It is also worth noting that both
networks learn from the same TD-target which comes in the
following form:

yDQVt = rt + γV (st+1; Φ−). (14)

The gradient with respect to both loss functions can be easily
expressed similarly as done in Eq. 10 for the DQN algorithm.

B. DQV-Max Learning

Our second contribution is the Deep Quality-Value-Max
algorithm, a novel DRL algorithm which reshapes some of
the ideas that characterize DQV. Similarly as done for DQV,
we still aim at jointly learning an approximation of the V
function and the Q function, but in this case, the goal is to
do this with an off-policy learning scheme. To construct this

algorithm we take inspiration from the QV-Max RL algorithm
introduced in [15]. The key component of QV-Max is the use
of the max

a∈A
Q(st+1, a) operator, which makes RL algorithms

learn off-policy. We use this operator when approximating the
V function and for computing TD-errors which correspond to
the ones that are also used by the DQN algorithm. However,
within DQV-Max, these TD-errors are used by the state-value
network and not by the state-action value network. This results
in the following loss which is used for learning the V function:

L(Φ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γ max

a∈A
Q(st+1, a; θ−)

− V (st; Φ)
)2]

. (15)

In this case the target network θ− corresponds to the same
target network that is used by DQN. The TD-error rt +
γ max
a∈A

Q(st+1, a; θ−) is however only used for learning the
V function. When it comes to the Q function we use the
same update rule that is presented in Eq. 13 with the only
difference being that in this case no Φ− target network is used.
Despite requiring the computation of two different targets for
learning, we noticed that DQV-Max did not benefit from using
two distinct target networks, therefore its loss function for
approximating the Q function is simply:

L(θ) = E〈st,at,rt,st+1〉∼U(D)

[(
rt + γV (st+1; Φ)

−Q(st, at; θ)
)2]

. (16)

The pseudocode of both DQV and DQV-Max is presented
at the end of this paper in Algorithm 1. The pseudocode is an
adaptation of a standard DRL training loop which corresponds
to what is usually presented within the literature [6]. We just
make explicit use of the hyperparameters total_a and c
which ensure that enough actions have been performed by the
agent before updating the weights of the target network. We
also ensure via the hyperparameter total_e, that enough
episodes are stored within the memory buffer (which has
capacity N ) before starting to optimize the neural networks.

V. EMPIRICAL RESULTS

We now present a set of empirical results that help us
characterize the performance of DQV and DQV-Max. We
start by evaluating the performance of our algorithms on the
common Atari-2600 benchmark [13] in Sec. V-A. We then
investigate the time that is required by both algorithms to
converge to a successful policy in Sec. V-B. We finally study
the quality of the learned value functions in Sec. V-C.

A. Global Evaluation

We evaluate the performance of DQV and DQV-Max on a
subset of 15 games coming from the popular Atari-2600
benchmark [13]. Our newly introduced algorithms are com-
pared against DQN and DDQN. To keep all the comparisons
as fair as possible we follow the same experimental setup



and evaluation protocol which was used in [6] and [7]. The
only difference between DQV and DQV-Max, and DQN and
DDQN is the exploration schedule which is used. Differently
from the latter two algorithms, which use an epsilon-greedy
strategy which has an ε starting value of 1.0, DQV and DQV-
Max’s exploration policy starts with an initial ε value of
0.5. All other hyperparameters, ranging from the size of the
Experience-Replay memory buffer to the architectures of the
neural networks, are kept the same among all algorithms. We
refer the reader to the original DQN paper [6] for an in-depth
overview of all these hyperparameters. The performance of the
algorithms is tested based on the popular no-op action
evaluation regime. At the end of the training, the learned
policies are tested over a series of episodes for a total amount
of 5 minutes of emulator time. All testing episodes start by
executing a set of partially random actions to test the level of
generalization of the learned policies. We present our results
in Table I where the best performing algorithm is reported
in a green cell while the second-best performing algorithm is
reported in a yellow cell. As is common within the DRL litera-
ture, the table also reports the scores which would be obtained
by an expert human player and by a random policy. When
the scores over games are equivalent, we report in the green
and yellow cells the fastest and second fastest algorithm with
respect to its convergence time. We can start by observing that
DQV and DQV-Max successfully master all the environments
on which they have been tested, with the only exception being
the Montezuma’s Revenge game. It is well-known that
this game requires more sophisticated exploration strategies
than the epsilon-greedy one [16], and was also not mastered by
DQN and DDQN when these algorithms were introduced. We
can also observe that there is no algorithm which performs best
on all the tested environments even though, as highlighted by
the green and yellow cells, the algorithms of the DQV-family
seem to generally perform better than DQN and DDQN, with
DQV-Max being the overall best performing algorithm in our
set of experiments. When either DQV or DQV-Max are not
the best performing algorithm (see for example the Boxing
and CrazyClimber environments), we can still observe that
our algorithms managed to converge to a policy which is not
significantly worst than the one learned by DQN and DDQN.
There is however one exception being the RoadRunner
environment. In fact, in this game, DDQN significantly outper-
forms DQV and DQV-Max. It is also worth noting the results
on the BankHeist and Enduro environments. Both DQN
and DDQN failed to achieve super-human performance on
these games, while DQV and DQV-Max successfully managed
to obtain a significantly higher score than the one obtained by
a professional human player.

B. Convergence Time

While DRL algorithms have certainly obtained impressive
results on the Atari-2600 benchmark, it is also true that the
amount of training time which is required by these algorithms
can be very long. Over the years, several techniques, ranging
from Prioritized Experience Replay (PER) [17] to the Rainbow

extensions [18], have been proposed to reduce the training
time of DRL algorithms. It is therefore natural to investigate
whether jointly approximating the V function alongside the Q
function can lead to significant benefits in this behalf. Unlike
the Q function, the state-value function is not dependent
on the set of possible actions that the agent may take, and
therefore requires fewer parameters to converge. Since DQV
and DQV-Max use the estimates of the V network to train the
Q function, it is possible that the Q function could directly
benefit from these estimates and as a result converge faster
than when regressed towards itself (as happens in DQN).

We use two self-implemented versions of DQN and DDQN
for comparing the convergence time that is required during
training by all the tested algorithms on three increasingly
complex Atari games: Boxing, Pong and Enduro. Our
results, reported in Fig. 1, show that DQV and DQV-Max
converge significantly faster than DQN and DDQN, and high-
light the benefits of jointly approximating two value functions
instead of one when it comes to the overall convergence
time that is required by the algorithms. Even though, as
presented in Table I, DQV and DQV-Max do not always
significantly outperform DQN and DDQN in terms of the final
cumulative reward which is obtained, it is worth noting that
these algorithms require significantly less training episodes to
converge on all tested games. This benefit makes our two novel
algorithms faster alternatives within model-free DRL.

C. Quality of the Learned Value Functions
It is well-known that the combination of RL algorithms

with function approximators can yield DRL algorithms that
diverge. The popular Q-Learning algorithm is known to result
in unstable learning both if linear [19] and non-linear functions
are used when approximating the Q function [11]. This
divergence is caused by the interplay of three elements that
are known as the ‘Deadly Triad’ of DRL [1]. The elements of
this triad are:
• a function approximator: which is used for learning an

approximation of a value function that could not be
learned in the tabular RL setting due to a too large state-
action space.

• bootstrapping: when the algorithms use a future estimated
value for learning the same kind of estimate.

• off-policy learning: when a future estimated value is
different from the one which would be computed by the
policy the agent is following.

Recent work [11] has shown that the ‘Deadly Triad’ is
responsible for enhancing one of the most popular biases
that characterize the Q-Learning algorithm: the overestimation
bias of the Q function [4]. It is therefore natural to study
how DQV and DQV-Max relate to the ‘Deadly Triad’ of
DRL, and to investigate up to what extent these algorithms
suffer from the overestimation bias of the Q function. To
do this we monitor the estimates that are given by the
network that is responsible for approximating the Q function.
More specifically, at training time, we compute the averaged
max
a∈A

Q(st+1, a) over a set (n) of full evaluation episodes



TABLE I: The results obtained by DQV and DQV-Max on a subset of 15 Atari games. We can see that our newly introduced
algorithms have a comparable, and often even better performance than DQN and DDQN. As highlighted by the green cells the
overall best performing algorithm in our set of experiments is DQV-Max while the second-best performing algorithm is DQV
(as reported by the yellow cells). Specific attention should be given to the games BankHeist and Enduro where DQV and
DQV-Max are the only algorithms which can master the game with a final super-human performance.

Environment Random Human DQN [6] DDQN [7] DQV DQV-Max
Asteroids 719.10 13156.70 1629.33 930.60 1445.40 1846.08
Bank Heist 14.20 734.40 429.67 728.30 1236.50 1118.28
Boxing 0.10 4.30 71.83 81.70 78.66 80.15
Crazy Climber 10780.50 35410.50 114103.33 101874.00 108600.00 1000131.00
Enduro 0.00 309.60 301.77 319.50 829.33 875.64
Fishing Derby -91.70 5.50 -0.80 20.30 1.12 20.42
Frostbite 65.20 4334.70 328.33 241.50 271.86 281.36
Gopher 257.60 2321.00 8520.00 8215.40 8230.30 7940.00
Ice Hockey -11.20 0.90 -1.60 -2.40 -1.88 -1.12
James Bond 29.00 406.70 576.67 438.00 372.41 440.80
Montezuma’s Revenge 0.00 4366.70 0.00 0.00 0.00 0.00
Ms.Pacman 307.30 15693.40 2311.00 3210.00 3590.00 3390.00
Pong -20.70 9.30 18.90 21.00 21.00 21.00
Road Runner 11.50 7845.00 18256.67 48377.00 39290.00 20700.00
Zaxxon 32.50 9173.30 4976.67 10182.00 10950.00 8487.00
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Fig. 1: Learning curves obtained during training on three different Atari games by DQV and DQV-Max, and DQN and
DDQN. We can observe that on these games both DQV and DQV-Max converge significantly faster than DQN and DDQN
and that they obtain higher cumulative rewards on the Enduro environment. The shaded areas correspond to ± 1 standard
deviation obtained over 5 different simulation rounds.

as defined by 1
n

∑n
t=1 max

a∈A
Q(st+1, a; θ). As suggested in

[7] these estimates can then be compared to the averaged
discounted return of all visited states that comes from an agent
that has already concluded training. By analyzing whether the
Q values which are estimated while training differ from the
ones which should be predicted by the end of it, it is possible
to quantitatively characterize the level of divergence of DRL
algorithms. We report our results in Fig. 2, where the full
lines correspond to the value estimates that come from each
algorithm at training time, while the dashed lines correspond
to the actual averaged discounted return that is given by an
already trained agent.

We can start by observing that the values denoting the
averaged discounted return obtained by each algorithm differ
among agents. This is especially the case when it comes to
the Enduro environment, and is a result which is in line with
what has been presented in Table I: DQV and DQV-Max lead
to better final policies than DQN and DDQN. Furthermore,
when we compare these baseline values to the value estimates
that are obtained during training, we can observe that the ones
obtained by the DQN algorithm significantly diverge from
the ones which should be predicted by the end of training.
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Fig. 2: The results showing that DQV and DQV-Max suffer
less from the overestimation bias of the Q function. We can
observe that at training time the max

a∈A
Q(st+1, a) estimates

(denoted by the full lines) do not diverge too much from the
return that is obtained by an already trained agent (dashed
line). Please note that on these two games DDQN is able
to correct for the overestimation bias of the Q function and
that DQV-Max seems to still suffer (even though less when
compared to DQN) from this issue.

This behavior is known to be caused by the overestimation
bias of the Q function which can be corrected by the DDQN
algorithm. By analyzing the value estimates of DQV and



DQV-Max we can observe that both algorithms produce value
estimates which are more similar to the ones computed by
DDQN than to the ones given by DQN. This is especially the
case for DQV, in fact its value estimates nicely correspond
to the averaged discounted return baseline, both on the Pong
environment and on the Enduro environment. The estimates
coming from DQV-Max, however, seem to diverge more when
compared to DQV and DDQN’s ones. This is clearer on the
Enduro environment, where the algorithm does show some
divergence. However, we can also observe that this divergence
is less strong when compared to DQN’s one. The value
estimates of the latter algorithm keep growing over time, while
DQV-Max’s ones get bounded while training progresses. This
results in smaller estimated Q values. We believe that there
are mainly two reasons why our algorithms suffer less from
the overestimation bias of the Q function. When it comes to
DQV, we believe that this algorithm suffers less from this bias
since it is an on-policy learning algorithm. Such algorithms are
trained on exploration actions with lower Q values. Because
of its on-policy learning scheme, DQV also does not present
one element of the ‘Deadly Triad’, which might help reducing
divergence. When it comes to DQV-Max, we believe that the
reason why this algorithm does not diverge as much as DQN
can be found in the way it approximates the Q function. One
key component of the ‘Deadly Triad’, is that divergence occurs
if the Q function is learned by regressing towards itself. As
given by Eq. 16 we can see that this does not hold for DQV-
Max, since the Q function bootstraps with respect to estimates
that come from the V network. We believe that this specific
learning dynamic, which also holds for the DQV algorithm,
makes our algorithms less prone to estimate large Q values.

VI. ADDITIONAL STUDIES

As introduced in Sec. IV DQV and DQV-Max use two
separate neural networks for approximating the Q function and
the V function. To verify whether two different architectures
are needed for making both algorithms perform well, we have
experimented with a series of variants of the DQV-Learning
algorithm. The aim of these experiments is to investigate
whether the performance of DQV gets harmed when reducing
its capacity. The studied DQV’s extensions are the following:

i Hard-DQV: a version of DQV which uses one single
common neural network for approximating both the Q
and the V functions. An additional output node, needed
for estimating the value of a state, is added next to the
output nodes which estimate the different Q values. The
parameters of this algorithm are therefore ‘hardly-shared’
among the agent, and provide the benefit of halving the
total amount of trainable parameters of DQV. The different
outputs of the network get then alternatively optimized
according to Eq. 12 and 13.

ii Dueling-DQV: a slightly more complicated version of
Hard-DQV which adds one specific hidden layer before
the output nodes that estimate the Q and V functions.
In this case, the outputs of the neural network which
learn one of the two value functions, partly benefit from

some specific weights that are not shared within the neural
network. This approach is similar to the one used by the
‘Dueling-Architecture’ [17], therefore the name Dueling-
DQV. While it is well established that three convolutional
layers are needed [6], [7] for learning the Q function, the
same might not be true when it comes to learning the V
function. We thus report experiments with three different
versions of Dueling-DQV: Dueling-1st, Dueling-2nd, and
Dueling-3rd. The difference between these methods is
simply the location of the hidden layer which precedes
the output that learns the V function. It can be positioned
after the first convolutional layer, the second or the third
one. Training this architecture is done as for Hard-DQV.

iii Tiny-DQV: the neural architectures used by DQV and
DQV-Max that approximate the V function and the Q
function follow the one which was initially introduced by
the DQN algorithm [6]. This corresponds to a three-hidden
layer convolutional neural network which is followed by
a fully connected layer of 512 hidden units. The first con-
volutional layer has 32 channels while the last two layers
have 64 channels. In Tiny-DQV we reduce the number of
trainable parameters of DQV by reducing the number of
channels at each convolution operation. Tiny-DQV only
uses 8 channels after the first convolutional layer and 16
at the second and third convolutional layers. Furthermore,
the size of the final fully connected layer is reduced to
only 128 hidden units. The choice of this architecture is
motivated by the work presented in [11] which studies the
role of the capacity of the DDQN algorithm. Unlike the
Hard-DQV and Dueling-DQV extensions, the parameters
of Tiny-DQV are not shared at all among the networks
that are responsible for approximating the V function and
the Q function.

The results obtained by these alternative versions of DQV
are presented in Fig. 3 where we report the learning curves ob-
tained by the tested algorithms on six different Atari games.
Each DQV extension is directly compared to the original DQV
algorithm. We can observe that all the extensions of DQV,
which aim at reducing the number of trainable parameters
of the algorithm, fail in performing as well as the original
DQV algorithm. We can observe that Hard-DQV does not
only yield significantly lower rewards (see the results obtained
on Boxing) but also presents extremely unstable training
(as highlighted by the results obtained on the Pong environ-
ment). Lower rewards and unstable training also characterize
the Tiny-DQV algorithm (see results on BankHeist and
CrazyClimber). Overall the most promising extensions of
DQV are its Dueling counterparts, we have observed in par-
ticular that the best performing architecture over most of our
experiments was the Dueling-DQV-3rd one. As can be seen by
the results obtained on the Pong environment we can observe
that Dueling-DQV-3rd has comparable performance to DQV,
even though it converges slower. Unfortunately, Dueling-DQV-
3rd still shows some limitations, in particular when tested
on more complicated environments such as Enduro, we can



observe that it under-performs DQV with ≈ 200 points. It is
also worth mentioning that the idea of approximating the V
function before the Q function explored by Dueling-DQV-1st
and Dueling-DQV-2nd yielded negative results.
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Fig. 3: Learning curves obtained by the alternative versions of
the DQV algorithm which explore whether one key component
of the DQV algorithm is that of using two separate neural
networks with independent parameters. We can observe that
this is indeed the case since all the tested extensions fail to
match the performance of the original DQV algorithm. These
results highlight that the best strategy for approximating two
different value functions is with two separately parameterized
neural networks.

VII. DISCUSSION AND CONCLUSION

We have presented two novel model-free DRL algorithms
which in addition to learning an approximation of the Q
function also aim at learning an approximation of the V
function. We have compared DQV and DQV-Max Learning
to DRL algorithms which only learn an approximation of
the Q function, and showed the benefits which come from
jointly approximating two value functions over one. Our newly
introduced algorithms learn significantly faster than DQN and
DDQN and show that approximating both the V function and
the Q function can yield significant benefits both in an on-
policy learning setting as in an off-policy learning one. This
specific training dynamic allows for a better learned Q func-
tion which makes DQV and DQV-Max less prone to estimate
unrealistically large Q values. All these benefits come however
at a price: to successfully learn two value functions, two
separate neural networks with enough capacity are required.
We identify several directions for further research that focus

on the following points: an integration of the algorithms of
the DQV-family with all the extensions which have improved
the DQN algorithm over the years; an integration of DQV and
DQV-Max within an Actor-Critic framework which will allow
us to tackle continuous-control problems, and lastly, a study
of how the algorithms of the DQV-family will perform in a
Batch-DRL setting.
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Algorithm 1 DQV and DQV-Max Learning

Require: Experience Replay Queue D of maximum size N
Require: Q network with parameters θ . Network required by DQV
Require: V networks with parameters Φ and Φ− . Networks required by DQV
Require: Q networks with parameters θ and θ− . Networks required by DQV-Max
Require: V network with parameters Φ . Network required by DQV-Max
Require: total a = 0
Require: total e = 0
Require: c = 10000
Require: N = 50000

1: while True do
2: set st as the initial state
3: while st is not terminal do
4: select at ∈ A for st with policy π (using the epsilon-greedy strategy)
5: get rt and st+1

6: store 〈st, at, rt, st+1〉 in D
7: st := st+1

8: total e += 1
9: if total e = N then

10: sample a minibatch B = {〈sit, ait, rit, sit+1〉|i = 1, . . . , 32} of size 32 from D
11: for i = 1 to 32 do
12: if sit+1 is terminal then
13: yit := rit . TD-Error for DQV
14: vit := rit . 1st TD-Error for DQV-Max
15: qit := rit . 2nd TD-Error for DQV-Max
16: else
17: yit := rit + γV (sit+1,Φ

−) . TD-Error for DQV
18: vit := rit + γ max

a∈A
Q(sit+1, a, θ

−) . 1st TD-Error for DQV-Max

19: qit := rit + γ V (sit+1,Φ) . 2nd TD-Error for DQV-Max
20: end if
21: end for
22: θ := arg min

θ

∑32
i=1(yit −Q(sit, a

i
t, θ))

2 . Train the Q network for DQV

23: Φ := arg min
Φ

∑32
i=1(yit − V (sit,Φ))2 . Train the V network for DQV

24: θ := arg min
θ

∑32
i=1(qit −Q(sit, a

i
t, θ))

2 . Train the Q network for DQV-Max

25: Φ := arg min
Φ

∑32
i=1(vit − V (sit,Φ))2 . Train the V network for DQV-Max

26: total a += 1
27: if total a = c then
28: Φ− := Φ . Update the target V network in DQV
29: θ− := θ . Update the target Q network in DQV-Max
30: total a := 0
31: end if
32: end if
33: end while
34: end while




