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Abstract—Anomalies are intuitively easy for human experts
to understand, but they are hard to define mathematically.
Therefore, in order to have performance guarantees in unsu-
pervised anomaly detection, priors need to be assumed on what
the anomalies are. By contrast, active learning provides the
necessary priors through appropriate expert feedback. Thus, in
this work we present an active learning method that can be built
upon existing deep learning solutions for unsupervised anomaly
detection, so that outliers can be separated from normal data
effectively. We introduce a new layer that can be easily attached
to any deep learning model designed for unsupervised anomaly
detection to transform it into an active method. We report
results on both synthetic and real anomaly detection datasets,
using multi-layer perceptrons and autoencoder architectures
empowered with the proposed active layer, and we discuss their
performance on finding clustered and low density anomalies.

Index Terms—Anomaly Detection, Active Learning, Deep
Learning

I. INTRODUCTION

Anomaly detection (a.k.a. outlier detection) [1]–[3] aims to
discover instances that do not conform to the patterns of major-
ity. The key challenge in anomaly detection applications is that
sufficient anomalies and correct labels are often prohibitively
expensive to acquire. This problem has been amply studied
[4]–[6], with solutions inspired by extreme value theory [7],
robust statistics [8] and graph theory [9].

Given that label acquisition is expensive and time consum-
ing, anomaly detection is often applied on unlabeled data
which is known as unsupervised anomaly detection. It is a
specially hard task, since there is no information on what
anomalous instances are. Still, there is a rising trend of
adopting unsupervised anomaly detection, with most works
using models with implicit priors or heuristics to discover
anomalies and providing an anomaly score s(x) for each
instance in a dataset. Active anomaly detection is a powerful
alternative approach to this problem, which has presented good
results in recent works [10]–[14]. The basic idea is that experts
can give feedback, thus indicating a few anomaly examples.
The subset of anomalies provides valuable input in order to
learn better representations of what is normal and anomalous.

Since unsupervised anomaly detection requires priors to
be assumed on the anomaly distribution, we approach the
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anomaly detection problem with an active learning method
which we call UAI − Unsupervised to Active Inference. UAI
is a layer that can be applied on top of any unsupervised
anomaly detection deep learning model to transform it into
an active model. The UAI layer is a classifier trained on
usually few already labeled instances using the strongest assets
of deep unsupervised anomaly detection models: the learned
latent representations coupled with an anomaly score.

Experimental results show that the UAI layer applied on top
of simple deep unsupervised anomaly detection architectures
outperforms state-of-the-art anomaly detection methods on
several synthetic and real datasets. We compare the anomaly
detection performance of our models against unsupervised,
semi-supervised and active competitors under similar budgets.
This is done without needing hyper-parameter tuning, as
in practical applications, we would not have (initially) any
labeled data on which we could tune hyper-parameters, or have
too few labeled instances to do it reliably. We also visualize
our models’ learned latent representations and compare them
to the ones from unsupervised models.

II. PROBLEM DEFINITION

In [15], the authors define an outlier as one that appears
to deviate markedly from other members of the sample in
which it occurs. In [16], the authors state that an outlier is
an observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different
mechanism. Another definition appears in [2]: “normal” data
points occur in high probability regions of a stochastic model,
while anomalies occur in the low probability ones.

Following these definitions, we assume there is a probability
density function from which “normal” data points are gener-
ated as pnormal (x) = p (x|y = 0), where x is a data point
and y is a label saying if the point is anomalous or not. There
is also a different probability density function from which
anomalous points are sampled as panom (x) = p (x|y = 1). A
full dataset is composed of points sampled from the probability
distribution that follows:

pfull (x, y) = p (y) p (x|y)
pfull (x) = (1− λ)pnormal (x) + λpanom (x)

where λ is an usually small constant representing the probabil-
ity of a random data point being anomalous. In [2], the authors
divide anomaly detection learning systems in three different
types:
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Fig. 1: Illustrative example of undecidable anomaly distribution. (Left) Anomalies are clustered. (Right) Low density anomalies.

• Supervised: A training and a test set are available with
curated labels for normal and anomalous points. This case
is similar to an unbalanced supervised setting:

Dtrain/test = (X,Y )train/test ∼ pfull(x, y)

• Semi-Supervised: A training set is available containing
only normal points and the task is to identify anomalous
points in a test set. This is also called novelty detection:

Dtrain = Xtrain ∼ pnormal(x)

Dtest = Xtest ∼ pfull(x)

• Unsupervised: A dataset containing both normal and
anomalous points is available and the task is to identify
the anomalous ones:

D = X ∼ pfull(x)

In this work, we focus on unsupervised anomaly detection.
More specifically, given the full set of points X ∼ pfull(x), we
want to find a subset Xanom ⊂ X containing only anomalous
points. The full distribution pfull is a mixture of distributions
and it is a well-known result that general mixture models are
unidentifiable [17], [18]. Thus, we should not expect to gain
information on panom from knowing pfull for any small λ
without a prior on the anomaly probability distribution, leading
us to conclude that unsupervised anomaly detection requires
a prior on panom .

Figure 1 shows a simple example where we illustrate a
data distribution composed of three classes of points clustered
in four visibly separable clusters. Anomaly detection is an
undecidable problem under this setting without further infor-
mation, since it is impossible to know if the dense cluster is
composed of anomalies or the anomalies are the unclustered
low density points (or even a combination of both). If we
use a low capacity model, the cluster (Figure 1 on the Left)
would probably present a higher anomaly score. If we use a
high capacity model, the low density points (Figure 1 on the
Right) would be detected as anomalous. Our choice of capacity
implicitly imposes a prior on the detected anomalies.

III. ACTIVE LEARNING MODELS

The usual strategy to unsupervised anomaly detection is
training a parameterized model pθ(x) to capture the full data
distribution pfull(x). Also, since λ is by definition a small con-
stant, it is typically assumed that pfull(x) ≈ pnormal(x). Fi-
nally, assuming points with low pfull(x) values are anomalous
[8], an anomaly score is usually defined to be s(x) ∝ 1

pθ(x)
·

There are three main issues with this strategy:
• if anomalies are more common than expected, pfull might

be a poor approximation of pnormal;
• if anomalies are tightly clustered in some way, high

capacity models may learn to identify that cluster as a
high probability region;

• if anomalies are as rare as expected, and since we only
have access to pfull , we have no information about panom
without further assumptions on its probability distribu-
tion.

Arguments for Active Learning: The aforementioned issues
together argue in favor of an active learning strategy for
anomaly detection, including auditor experts in the system’s
training loop. Thus, anticipating feedback and benefiting from
it to find anomalies. Further, having an extremely unbalanced
dataset (λ ≈ 0) is another justification for adopting the active
learning setting [19], [20], which has the potential of requiring
exponentially less labeled data than in supervised settings
[21]–[23].

A. The UAI Layer
Unsupervised anomaly detection, by itself, usually presents

small accuracy in most practical scenarios, hence it is com-
monly used to rank instances which are later evaluated by
human experts.

We consider here, then, the task in which we are given
a dataset D = {x|x ∼ pfull(x)}, from which possibly
anomalous data points are ranked and then sent to be audited
by human experts, until a budget b is consumed.1 If instead

1In these settings, it is not uncommon for large companies to be willing
to label considerable sets of data (b > 1000 instances) in internal auditing
processes.



of ranking and selecting all instances once, we iterate with
experts in small batches (of k instances each), we can increase
the number of anomalies found in these b labeled instances.

In our active learning setting, then, we iterate with experts.
At each step, the k � b data points most probably anomalous
are sent to be audited and a new training regime takes place
once the expert feedback returns.2 This strategy of selecting
the top k elements at each step is called most-likely positive.
It is a common approach for selecting informative instances
in highly imbalanced datasets [10], [24], and follows recent
work in active anomaly detection [12]–[14].

With this in mind, we develop the UAI − Unsupervised to
Active Inference layer. This layer can be incorporated on top
of any unsupervised deep learning anomaly detection model
which provides an anomaly score for ranking anomalies (e.g.,
a denoising auto-encoder). It takes as input both a latent
representation layer (l(x)), created by the model, and its output
anomaly score (s(x)), and passes it through a classifier to find
an item’s anomaly score, which is formally defined as:

p̂(y|x) ∝ suai(x) = classifier([l(x); s(x)])

where p̂(y|x) is our empirical estimate of the probability
of point x being anomalous. This is motivated by recent
work stating learned representations have a simpler statistical
structure [25], which makes the task of modeling this manifold
and detecting unnatural points much simpler [26]. In this work,
we model the UAI layer using a simple logistic regression as
our classifier, but any other classifier could be used as well.
The classifier is thus given as:

p̂(y|x) ∝ suai(x) = σ(Wact[l(x); s(x)] + bact) (1)

where Wact ∈ R1,d+1 is a linear transformation, bact ∈ R is a
bias term and σ(·) is the sigmoid function. We learn the values
of W and b using back-propagation with a cross entropy loss
function, where the targets are the few already actively labeled
instances. We allow the gradients to flow through l, but not
through s, since s might be non-differentiable. Hereafter we
refer to networks that have an UAI layer as UAInets.

B. Architectures

Our models were obtained by incorporating the proposed
UAI layer into two different anomaly detection architectures.

Denoising Autoencoder: The first model consists of a Denois-
ing Auto-Encoder (DAE). Specifically, an encoder transforms
the input into a latent space, and a decoder reconstructs
the input using this latent representation. The loss function
minimizes the reconstruction error L2 norm. A denoising auto-
encoder may be formally defined as follows:

l = fenc(x+ ε), ε ∼ N (0, ϕ)

x̂ = fdec(l)

LDAE = ||x− x̂||22
2We should make it explicit here that this labeling process takes us out of

the unsupervised anomaly detection setting. This is also not semi-supervised,
though, since we start with no labels. This task is usually denoted as active
anomaly detection [13], [14].

Xuai

Suai(x) = σ(Wact[Xuai]+bact)

UAI Layer

S(x) = ||x−x’||2

L
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Fig. 2: A denoising auto-encoder with an UAI layer.

where both fenc and fdec are usually feed forward networks
with the same number of layers, l ∈ Rd is a d-dimensional
latent representation and ε is a zero mean noise, sampled from
a Gaussian distribution with a ϕ standard deviation. When
used in anomaly detection, the reconstruction error is used as
an approximation for the anomaly score, as follows:

sDAE (x) = ||x− x̂||22

Figure 2 presents a DAEuai network which assembles the
UAI layer on top of the autoencoder. This is formally defined
as follows:

lDAE = l = fenc(x+ ε)

sDAEuai(x) = uai([lDAE ; sDAE ])

where uai(·) is simply the logistic classifier in Equation 1.

Multi-Layer Perceptron: Another unsupervised anomaly de-
tection approach is training a multi-layer perceptron (Class)
to predict an instance’s class label (xy) from its other features
(xx).3 The cross-entropy of a data point serves as an estimate
of its anomaly score, as follows:

x̂y = fClass(xx)

LClass = H(xy, x̂y) = cross entropy (xy, x̂y)

sClass(x) = H(xy, x̂y)

where fClass(·) is a p−layer neural network.
Figure 3 presents Classuai , which uses this classifier’s last

hidden layer (hp−1) as a latent representation:

lClass = hp−1

sClassuai(x) = uai([lClass ; sClass ])

The full loss function used to train UAInets is:

Luai = 1 H(y, suai(x))

Lfull = Luai + Lbase

where 1 has value 1 for already actively labeled instances, and
0 for unlabeled ones. Lbase refers to the base network’s loss
function, which will be either LDAE or LClass here.
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Fig. 3: A multi-layer perceptron with an UAI layer.

IV. EXPERIMENTS

In this section, we evaluated our active learning models for
anomaly detection. We assess the performance of the models
by analyzing them on synthetic data created with different
properties (Section IV-B) and on real anomaly data (Section
IV-C).

A. Setup

For all experiments in this work the DAE’s encoder and
decoder have independent weights and we used both the DAE
and Class models with 3 hidden layers with sizes [256, 64, 8].
This means the latent representations provided to the UAI
layers are l ∈ R8.

Algorithm 1 presents our Active Anomaly Detection pro-
cess. We implemented all architectures using TensorFlow [27].
We set the learning rate to 0.01, batch size to 256 and we used
the RMSprop optimizer with the default hyper-parameters.4

We pre-trained the DAE and Class models (by themselves,
fully unsupervised and with no active sampling) for 5,000
optimization steps. After that, for the active detection models,
we select k = 10 data points to be labeled (i.e. normal or
anomalous) at a time, and further train the full model for 100
iterations after each labeling call.

Algorithm 1 Active Anomaly Detection

1: procedure ACTIVEANOMALYDETECTION(D, expert, b,
k = 10, stepspre = 5000, stepsactive = 100)

2: model.pretrain(stepspre,D)
3: i← 0
4: labels← ∅
5: while i < b do
6: model.train(stepsactive,D, labels)
7: top k← model.select top(k,D, labels)
8: labels← labels ∪ expert.audit(top k)
9: i← i+ k

3Note that even though class labels are available (xy), we initially still have
no anomaly label (y).

4Hyper-parameters were hand picked based on a few initial synthetic
experiments on MNIST and not tuned in any further way.

B. Synthetic Data

When designing our experiments, we had the objective of
showing that our model can work with different definitions
of what is anomalous, while completely unsupervised models
will need, by definition, to trade-off accuracy in one setting
for accuracy in others.

MNIST Datasets: We used the MNIST dataset5 and defined
three sets of experiments:

1) MNIST0: For the first set of experiments, we reduced
the presence of the digits with the 0 label to only
10% of its original number of samples, making it only
1/91 ≈ 1.1% of the data points. The 0s still present
in the dataset had their label randomly changed to
y ∼ Uniform([1; 9]) and were defined as anomalies.

2) MNIST0-2: Follows the same dataset construction, but
we reduce the number of instances of digits with labels
0, 1 and 2, changing their labels to y ∼ Uniform([3; 9]),
and again defining them as anomalous. Anomalies com-
posed 3/73 ≈ 4.1% of the dataset.

3) MNISThard: This set of experiments aims to test a
different type of anomaly. In order to create the cor-
responding dataset, we first trained a weak one hidden-
layer classifier on MNIST and selected all misclassified
data points as anomalous. Anomalies composed ≈ 3.3%
of the dataset.

Figure 4 presents results for these experiments and our
main conclusion is that our models are robust to different
types of anomalies, which is not the case for the unsupervised
models. While Class achieves good results in MNIST0 and
MNIST0-2 datasets, it does not achieve the same performance
in MNISThard, which might indicate it is better at finding clus-
tered anomalies than low density ones. At the same time, DAE
achieves good results for MNISThard, but performed poorly on
MNIST0 and MNIST0-2, which indicates it is better at finding
low density anomalies than clustered ones. Nevertheless, both
UAInets are robust in all three experiments.

Fashion-MNIST Datasets: Table I presents statistics of
datasets used to perform experiments on synthetic anomaly
detection datasets based on Fashion-MNIST [29]. To cre-
ate these datasets we follow the same procedures as with
MNIST datasets, thus generating Fashion-MNIST0, Fashion-
MNIST0-2, and Fashion-MNISThard.

TABLE I: Fashion-MNIST Anomaly Datasets.

Dimension # classes # points % anomalies

Fashion-MNIST0 784 9 54,610 1.1%
Fashion-MNIST0-2 784 7 43,765 4.0%
Fashion-MNISThard 784 10 60,000 16.1%

Figure 5 shows results of experiments performed on these
datasets following the same procedures as with MNIST
datasets. This figure shows similar trends to the ones for

5Using MNIST for the generation of synthetic anomaly detection datasets
follows the same strategy as recent works [8], [28].
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Fig. 4: (Color online) Results for different MNIST experiments. Curves represent the average of five runs with different seeds.
Confidence intervals represent max and min results for each budget b. y-axis represents number of anomalies detected with a
specific budget. For MNIST0, with a budget b = 800 we find almost all 600 anomalies with both UAInets, but less than 500
with Class and only 30 with DAE .
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Fig. 5: (Color online) Results for Fashion-MNIST experiments, with different zooms on x-axis. Curves represent the average
of five runs with different seeds. Confidence intervals represent max and min results for each budget b.

MNIST, although the anomalies in these datasets seem harder
to identify. In one run of Fashion-MNIST0, DAEuai needed
several active feedback iterations to start learning,6 while
for Fashion-MNISThard, Classuai takes a long time to start
producing better results than Class . Nevertheless, UAInets
are still much more robust than the underlying networks to
different types of anomalies, producing good results in all
datasets, even when the underlying network produces weak
results on the dataset.

Learned Representations and Anomaly Scores: We further
analyze UAInets by studying the evolution of hidden represen-

6Figures 4 and 5 confidence curves represent min and max results over
five experiments with each model on each dataset. In Figure 5(d), in one of
the experiments the autoencoders took a long time to find its first anomalous
instance. It only found normal instances on its first 5000 picks, so the UAI
layer had no signal from which to improve until then.

tations and anomaly scores through the training process. More
specifically, we show visualizations of the learned representa-
tions and anomaly scores, presenting their evolution as more
labels are fed into the network through the active feedback.
With this purpose, we retrain our models on both MNIST0-2
and MNISThard, with a hidden size of [256, 64, 1], so that their
latent representations are one dimensional (l(x) ∈ R1), and
plot these representations versus the anomaly scores of the
base network (either DAE or Class) for different budgets (b).

Figure 6 shows the evolution of DAEuai in terms of
lDAE (x) and sDAE (x). We can see from Figures 6(a) and
6(d) that initially anomalies and normal data instances are not
separable in this space. Nevertheless, with only a few labeled
instances (b = 250) the anomaly space becomes much easier
to separate, while for b = 2000 the anomaly space is almost
perfectly linearly separable.



(a) MNIST0-2 (b = 0) (b) MNIST0-2 (b = 250) (c) MNIST0-2 (b = 2000)

(d) MNISThard (b = 0) (e) MNISThard (b = 250) (f) MNISThard (b = 2000)

Fig. 6: (Color online) Underlying latent representations (lDAE) vs anomaly score (sDAE) for DAEuai network as training
progresses.

Figure 7 shows the same evolution for Classuai. We can
also see the same patterns, as initially anomalies and normal
data points are not separable, but with a few labeled instances
anomalies become much more identifiable. The main conclu-
sion taken from these visualizations is how the gradient flow
through l is important, since it helps the network to better
separate data in these anomaly spaces, allowing good anomaly
detection performance even when the underlying networks are
not good at identifying a specific type of anomaly.

C. Real Data

We also evaluated the performance of our models on
publicly available anomaly detection benchmarks with real
anomalies. These datasets were previously considered in [30].
We compare our model with DAE [31], DAGMM [6], LODA-
AAD [13], and Tree-AAD [14].

Table II presents results for these datasets. In these exper-
iments, DAGMM (clean) was trained on a semi-supervised
anomaly detection setting. DAGMM (dirty) and DAE were
trained in an unsupervised setting. LODA-AAD, Tree-AAD
and DAEuai were trained in an active anomaly detection
setting. DAE performs poorly in all the datasets. Nevertheless,
even using a simple architecture as its underlying model,
DAEuai produces the best performance (or close to the best)
on all datasets, even when the baselines were trained in
completely clean training sets. DAEuai also usually presents
better results than LODA-AAD and Tree-AAD, which were
also trained in an active setting.

One possible criticism would be that our results become
more relevant the fewer the proportion of anomalous instances,
which seems self-defeating. But we see that the largest differ-
ence from the active models to the other considered competi-
tors was in Covtype, which has less than 1% anomalies out of

286,048 instances. When working with large datasets (>1M
instances), even if only 0.1% of the dataset is contaminated
there is still the chance to benefit from this feedback to
improve performance. The active models are also more robust
than the others, DAGMM used different hyperparameters for
each experiment, while DAEuai and AAD use the same for all
(except for k which was reduced from 10 to 3 for the datasets
with less than 100 anomalies).

V. RELATED WORK

Anomaly Detection: Although many algorithms have been
recently proposed, classical methods for outlier detection like
LOF [32] and OC-SVM [33], are still used in many application
scenarios. Recent works have focused on statistical properties
of “normal” data to identify anomalies, such as [34], which
uses Benford’s Law to identify anomalies in social networks,
and [7], which uses Extreme Value Theory to detect anomalies.
Recently, energy based models [28] and GANs [35] have been
successfully used to detect anomalies, but autoencoders are
still more popular in this field. The DAGMM algorithm was
proposed in [6], where they train a deep autoencoder and use
its latent representations, together with its reconstruction error,
as input to a second network, which they use to predict the
membership of each data instance to a mixture of gaussian
models, training the whole model end-to-end in an semi-
supervised manner for novelty detection.

Active Anomaly Detection: Over the years interesting works
have been developed in this topic. In [36], the authors
solve the rare-category detection problem by proposing an
active learning strategy to datasets with extremely skewed
distributions. In [37], the authors reduce outlier detection to
classification using artificially generated examples that play
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Fig. 7: (Color online) Underlying latent representations (lclass) vs anomaly score (sclass) for Classuai network as training
progresses.

TABLE II: Results on Real Datasets showing average F1 scores of five independent runs.

Train Set KDDCUP Arrhythmia Thyroid KDDCUP-Rev Yeast Abalone CTG Credit Covtype MMG Shuttle

# Instances 494,021 3,772 452 121,597 1,191 1, 920 1, 700 284, 807 286, 048 11, 183 12, 345
# Features 120 6 274 120 8 9 22 30 54 6 9
% anomalies 20% 2.5% 15% 20% 4.6% 1.5% 2.6% 0.17% 0.9% 2.3% 7.0%

DAGMM (clean) 0.94 0.50 0.44 0.94 0.11 0.16 0.27 0.34 0.18 0.07 0.48
DAGMM (dirty) 0.43 0.46 0.46 0.31 0.02 0.05 0.18 0.31 0.01 0.00 0.48
LODA-AAD 0.88 0.45 0.51 0.83 0.31 0.54 0.52 0.57 0.97 0.42 0.97
Tree-AAD 0.89 0.29 0.86 0.50 0.32 0.53 0.69 0.76 0.94 0.59 0.92
DAE 0.39 0.35 0.09 0.16 0.23 0.08 0.13 0.36 0.15 0.27 0.17
DAEuai 0.94 0.47 0.57 0.91 0.33 0.55 0.66 0.64 0.86 0.60 0.93

the role of potential outliers and then applies a selective
sampling mechanism based on active learning to the reduced
classification problem. In [38], the authors propose a Semi-
Supervised Anomaly Detection (SSAD) method based on Sup-
port Vector Data Description (SVDD) [39]. In [12], the authors
propose an active approach that combines unsupervised and
supervised learning to select instances to be labeled by experts.
In [10], they use an active learning approach to identify
significant anomalies in aviation. They require explanations
on expert annotators’ choices, which they use to iteratively
create new features with which they improve their model. The
most similar works to ours in this setting are (i) [13], which
proposes an algorithm that can be employed on top of any
ensemble methods based on random projections, and (ii) [14],
which expands Isolation Forests to work in an active setting.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed an Unsupervised to Active Infer-
ence layer (or simply UAI layer) that can be applied on top
of any deep learning architecture designed for unsupervised
anomaly detection. We showed that, even on top of very simple

architectures like autoencoders and multi-layer perceptrons,
our models achieve similar or better results than state-of-the-
art representatives. To the best of our knowledge, this is the
first work which applies deep learning to active anomaly detec-
tion. We used the strongest points of unsupervised deep learn-
ing solutions (learned representations and anomaly scores) to
transform them into active learning models, presenting an end-
to-end architecture which learns representations by leveraging
both the full dataset and the already labeled instances.

Important future directions for this work are: (i) using the
UAI layers confidence in its output to dynamically choose
between either directly using its scores, or using the under-
lying unsupervised model’s anomaly score to choose which
instances to audit next; (ii) testing new architectures for UAI
layers, in this work we restricted all our analysis to simple
logistic regression; (iii) analyzing the robustness of UAINets to
mistakes being made by the labeling experts; (iv) and making
this model more interpretable, so that auditors could focus on a
few “important” features when labeling anomalous instances,
which could increase labeling speed and make their work
easier.
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