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Abstract—Cross-domain image translation attempt to translate
images from one domain to another domain, with the content
of images preserved. Current approaches treat image’s content
as the underlying spatial structure, and translation only change
image’s style of color and texture. These methods can generate
realistic results, but may not be able to preserve image’s fine
grained semantic category information and suffer from the lack
of diversity in objects’ shapes and viewing angles. In this paper,
we propose the problem of fine grained category preserving image
translation that aims at preserving image’s fine grained category
information in cross-domain translation. A novel framework
called Cross-Domain Adversarial AutoEncoder (CDAAE) is pro-
posed to solve the problem. CDAAE assumes that cross-domain
images have shared content-latent-code space and separate style-
latent-code spaces. The content latent code encodes image’s basic
category information, while the style latent code represents other
domain-specific properties, including color, texture, shape, etc.
Our experiments evaluate models from aspects of image’s quality,
diversity as well as category preserving ability, showing CDAAE’s
advantages over current methods. We also design an algorithm to
apply CDAAE to domain adaptation. Experiments on benchmark
datasets demonstrate that the proposed method achieves state-
of-the-art results.

Index Terms—Autoencoder, Cross-domain image translation,
Domain adaptation, Semi-supervised learning

I. INTRODUCTION

Cross-domain image translation is a significant and chal-

lenging task in both multimedia and computer vision. There

are many cross-domain image translation applications, such as

translation from sketch to photo [1], image to audio [2] and so

on. Moreover, cross-domain image translation [3]–[5] can also

be applied to domain adaptation. In this paper, we propose

to address the problem of fine grained category preserving

image translation problem. For this problem, the goal is to

generate images of different domains while preserving fine

grained category information, such as the identities of faces,

the classes of letters, etc. It’s much challenging compared with

the previous content preserving image translation problem.

There has been many works on cross-domain image transfer.

Though they have achieved appealing results, there are several

shortcomings. Firstly, they [1], [3], [5]–[8] are unable to

extract purely the fine grained category information from

images. The work of Huang et al. [8] assumes that images

can be decomposed into content (domain invariant) and style

(domain variant). However, their method can only capture

image styles of color and texture, being not able to capture

shape or pose related styles. In this way, although they can

preserve the content of an image, the content is usually coupled

with category, shape and pose information. The work of Liu

et al. [3] and Zhu et al. [7] has the same shortcoming. Unlike

their work, we designed a method that is able to extract fine-

grained category information from images for cross-domain

transfer. As shape and pose are also encoded as style, this

leads to more diversity in shape and pose of the generated

fine grained images. Besides, most of the current methods lack

diversity in generated images. They model image translation

as a one-to-one mapping [3]–[5], while image translation is

a many-to-many relation in real world. In this paper, we

disentangle image’s fine grained category information and

style into different latent code spaces, so that various images

with the same category as input image can be generated by

applying different style codes.

In summary, we focus on fine grained category preserv-

ing image translation and propose Cross-Domain Adversarial

AutoEncoder (CDAAE) to address this problem. The basic

assumption of CDAAE is that images from different domains

have a shared latent code space for content and separate latent

code spaces for styles, where content code decides image’s fine

grained category and style code influences its color, texture,

shape, etc. In order to disentangle category from style, we

impose a categorical distribution on content latent code, that

can be trained with both labeled and unlabeled data. Since

different style codes lead to various appearances of the same

category, CDAAE can generate images with more diversity,

including color, texture and shape. Besides, the style latent

code can also be extracted from sample images, so CDAAE

can also be used for sample-guided style transfer. To evaluate
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image translation methods more comprehensively, we imple-

ment experiments measuring image’s quality, diversity and

whether the category is preserved. Moreover, as our method

is able to preserve fine grained category information, we also

design a domain adaptation algorithm based on CDAAE, and

achieve state-of-the-art accuracy on benchmark datasets. In

brief, our contributions are three folds:

• We proposed to use categorical distribution to model

the distribution of content code. This leads to a better

representation for fine grained category preserving image

translation.

• By disentangle the category information from style, the

style code of CDAAE can capture not only color and

texture, but also shape and pose related style, leading to

better diversity in generated images.

• As the proposed method is able to extract category

information of images, CDAAE is extended for do-

main adaptation and achieves state-of-the-art accuracy on

benchmark datasets.

II. RELATED WORKS

A. Image Generation

Variational AutoEncoders (VAEs) [9] and Generative Ad-

versarial Networks (GANs) [10] are the most impressive

works on image generation recently. VAEs optimize a lower

bound on the log-likelihood of data, and is able to infer

the approximate value of the latent code. Instead of KL

divergence, Adversarial AutoEncoder (AAE) [11] uses an

adversarial training procedure to impose prior distribution on

the latent code. Though VAE is comparatively stable to train,

the generated image tend to be blurry. GAN is trained through

a two-player minimax game, where a generator tries to fool

a discriminator while the discriminator tries to distinguish

real samples from generated samples. GAN is impressive in

generating realistic images, but is unstable and can’t do image

inference. Effort is made to improve GAN’s performance,

including stabilizing its training [12], adding reverse network

to do image inference [13], [14]. In this paper, we extend

autoencoder to deal with cross-domain data, and employ GAN

to improve image quality.

B. Cross-Domain Image Translation

Early works use conditional GANs [1] to translate image

into target domain, which needs paired data to train. Triangle

GAN [6] combine conditional GAN and Bidirectional GAN

by a triangle framework, and achieved semi-supervised image

translation. Other works further propose totally unsupervised

methods, by making use of semantic features [4], shared

weights and latent space [3], [5], as well as cycle consisten-

cy [7]. We also focus on image translation without paired data

and try to break through some limitations of current methods.

One limitation is that most existing methods treat image

translation as a deterministic or unimodal mapping. Conse-

quently, these models can only generate one certain result

when input is fixed, while cross-domain images are mostly

in a many-to-many relationship. BicycleGAN [15] is able to

model continuous and multi-modal distributions, but needs

paired data as supervision. In this paper, we attempt to

solve the many-to-many problem without paired data. Some

concurrent works also try to tackle this problem. Augmented

cycleGAN [16] extend CycleGAN [7] with a style code to

model diverse styles. While the most similar work to ours

is MUNIT [8] that uses affine transformation parameters in

normalization layers to represent styles. However, these works

can only catch some style of coloring and tend to preserve

the exact shape of input image. Our work aims at preserving

high-order semantic information and modeling style of shape

as well as coloring.

In image translation, it’s necessary to keep image’s content

unchanged. Currently, this is achieved through weights shar-

ing [5], autoencoding with shared latent space [3] or cycle

consistency [7], [16]. However, these works tend to preserve

all the spatial structure as image’s content, which is low-

order and hard to evaluate. Their experiments mostly focus on

image’s quality and lacks evaluation on whether the content is

preserved. Our work take image’s identity as content so as to

preserve high-order semantic information, and our experiments

evaluate generated images from three aspect: quality, variety

and whether the identity is preserved.

C. Style Transfer

Style transfer is closely related to cross-domain image

translation. Difference is that most style transfer works [17]–

[19] transfer style extracted from a style image to the input

image, while image translation works transfer style between

two sets of images from different domains. As the style code

can be extracted from prior distribution as well as a sample

image, our model is able to complete both sample-guided style

transfer and cross-domain image translation.

III. CROSS-DOMAIN ADVERSARIAL AUTOENCODER

A. Assumptions

Let A and B be two image domains. xA, xB are sam-

ples from the two domains respectively. Goal of cross-

domain image translation is to estimate the two condition-

als PA→B(xB |xA) and PB→A(xA|xB) with learned models.

When there is no paired data, we can only access samples ex-

tracted from the marginal distributions PA(xA) and PB(xB).
As there can be an infinite set of joint distributions yielding

the given marginal distributions, we need to make additional

assumptions.

Based on the fact that cross-domain images have similar

content with different styles, we assume that they have a shared

content latent code space Zc and separate style latent code

spaces Zs
A and Zs

B respectively. In other words, we postulate

there exist functions Êc
A, Êc

B , Ês
A, Ês

B and ĜA, ĜB , so

that, a pair of corresponding images (xA, xB) from the joint

distribution P (xA, xB) can be encoded as zc = Êc
A(xA) =

Êc
B(xB), z

s
A = Ês

A(xA), z
s
B = Ês

B(xB). In turn, they can be

generated by xA = ĜA(z
c, zsA) and xB = ĜB(z

c, zsB). This

autoencoding procedure is shown in Fig. 1 by solid arrows.

We can further impose some prior distributions on zsA, zsB



Fig. 1. The proposed CDAAE framework. EA, EB and GA, GB are implemented with neural networks. EA consists of three parts: El
A is the lower layers

to extract feature map and is shared by Es
A and Ec

A; While Es
A and Ec

A encode the feature map into style latent code and content latent code respectively.
GA is implemented symmetrically. Gs

A and Gc
A decode the style latent code and content latent code into corresponding feature maps. Then the feature maps

are concatenated and fed into Gl
A to produce final images. EB and GB are implemented similarly. The shared content latent code space is implemented by

sharing weights of Ec
A and Ec

B , Gc
A and Gc

B (illustrated by gray dashed lines). Ds
A, Ds

B and Dc are adversarial discriminators to tell whether the latent
codes are extracted from corresponding prior distributions or not.

and zc, such that cross-domain image translation is done by

xA→B = ĜB(Ê
c(xA), z

s
B) and xB→A = ĜA(Ê

c(xB), z
s
A),

where zsA and zsB are extracted from the prior distributions.

This is shown in Fig. 1 by dashed arrows. To encode fine

grained category information into the content latent code,

we assume the content latent code is a one-hot vector with

same dimension as category number, and the content part of

encoders can be supervisedly trained with categorical labels

or unsupervisedly regularized with categorical distribution

prior [11]. As for the style latent code, we impose a continuous

and simpler Gaussian distribution as prior, since it encodes the

comparatively low-dimensional information.

B. Framework and Training

The proposed framework, as shown in Fig. 1, can be inter-

preted as a cross-domain version of adversarial autoencoder

(AAE). It consists of two domain encoders EA and EB ,

two domain generators GA and GB , and three adversarial

discriminators. In particular, EA is in charge of modeling both

Ês
A and Êc

A, while GA is used to model ĜA (similar for EB

and GB).

Weight-sharing. In order to perform the shared content-

latent-code space assumption discussed in Section III-A, we

enforce a weight-sharing constraint between the content part of

two domains. For encoders, weights of Ec
A and Ec

B are shared;

for generators, weights of Gc
A and Gc

B are shared, as illustrated

in Fig. 1 by gray dashed lines. These shared weights help to

tighten the relation of content code from different domains.

AAE. CDAAE’s main part is a cross-domain version of

AAE [11]. For the reconstruction stream of domain A (shown

in Fig. 1 with green solid arrows), encoder EA firstly maps

xA to codes zc and zsA in latent space Zc and Zs
A respec-

tively. Then generator GA decodes [zc, zsA] to reconstruct

the input image. The two discriminators Dc and Ds
A are

used to match posterior represented by EA to the prior

distributions through adversarial learning. Therefore, {EA,

GA, Dc, Ds
A} forms an AAE for domain A. Since EA is

deterministic, the posterior can be formulated as qcA(z
c|xA)

and qsA(z
s
A|xA) and the reconstructed image is x′

A = GA(z
c ∼

qcA(z
c|xA), z

s
A ∼ qsA(z

s
A|xA)). Similarly for domain B, the

posterior is qcB(z
c|xB) and qsB(z

s
B |xB) and the reconstructed

image is x′
B = GA(z

c ∼ qcB(z
c|xB), z

s
B ∼ qsB(z

s
B |xB)).

Based on the shared content latent code space assumption,

qcA(z
c|xA) and qcB(z

c|xB) are matched to a prior pc(zc),
while qsA(z

s
A|xA) and qsB(z

s
B |xB) are respectively matched

to priors psA(z
s
A) and psB(z

s
B). Specifically, we define pc(zc)

as a categorical distribution [11], psA(z
s
A) and psB(z

s
B) as

independent Gaussian distributions. Totally, the cross-domain

version of AAE is trained with two losses which are as follows:

Lrec =ExA∼PA(xA)[|GA(EA(xA))− xA|]
+ExB∼PB(xB)[|GB(EB(xB))− xB |],

(1)



Lprior =ExA∼PA(xA)[log(1−Dc(Ec
A(xA)))

+ log(1−Ds
A(E

s
A(xA)))]

+ExB∼PB(xB)[log(1−Dc(Ec
B(xB)))

+ log(1−Ds
B(E

s
B(xB)))]

+Ezc∼pc(zc)[log(D
c(zc))]

+Ezs
B∼ps

B(zs
B)[log(D

s
B(z

s
B))]

+Ezs
A∼ps

A(zs
A)[log(D

s
A(z

s
A))].

(2)

Eq. (1) is the reconstruction loss. Eq. (2) is the GAN loss to

match the posteriors to prior distributions. Here, Ec
A and Es

A

include the part of El
A in Fig. 1 (similar for Ec

B and Es
B).

Content cycle-consistency. As same content latent code

may have different semantic meanings in different domain-

s, we extend the cycle-consistency [7] to content cycle-

consistency. In a cycle stream, xA→B and xB→A is fed into

EB and EA to extract their content latent codes. As the content

latent code is one-hot vector, we define the content cycle-

consistency loss as the cross entropy between the content

latent codes of input image and translated image:

Lcc =ExA∼PA(xA),zs
B∼ps

B(zs
B)[fCE(E

c
A(xA), E

c
B(xA→B))]

+ExB∼PB(xB),zs
A∼ps

A(zs
A)[fCE(E

c
B(xB), E

c
A(xB→A))].

(3)

fCE denotes the function to calculate cross entropy.

Categorical supervision. To better disentangle image’s

fine grained category information from style, we further use

categorical supervision loss for data that has a categorical

label:

Lsup =ExA∼PA(xA)[fCE(yxA
, Ec

A(xA))]

+ExB∼PB(xB)[fCE(yxB , E
c
B(xB))].

(4)

Here, yxA
and yxB

are the categorical labels of xA and

xB . To be clear, this loss is used only for data that has a

categorical label. Therefore, CDAAE can be trained with both

categorically labeled and unlabeled data. We claim that even a

few of labeled samples can greatly increase model’s category-

preserving ability.

In summary, CDAAE is trained by the following optimiza-

tion:

min
EA,EB ,GA,GB

max
Dc,Ds

A,Ds
B ,DA,DB

γ1Lrec + γ2Lcc

+γ3Lprior + γ4Lsup,
(5)

where γ1, γ2, γ3, γ4 are hyper-parameters to control the

weights of these losses.

C. Domain Adaptation Algorithm

The target of domain adaptation is to generalize the learned

model of source domain to a target domain, and label is only

available for source domain. Since CDAAE can be trained with

both labeled and unlabeled data, it has an innate advantage on

domain adaptation. Here, we design an algorithm based on

CDAAE to perform domain adaptation.

Algorithm 1 Domain Adaptation

S is labeled data of source domain, T is unlabeled data of

target domain

t ∈ [0, 1] is the threshold of prediction probability

for i = 1 · · · pretrain steps do
minLsup for [xA, yxA ] ∈ S

end for
for i = 1 · · · train epoches do
T ′={ [x, y]|x ∈ T and probability of x’s label being y
> t }
min(Lprior + Lrec + Lcc) for [xA, lA] ∈ S,xB ∈ T
minLsup for [xA, lA] ∈ S, [xB , lB ] ∈ T ′

end for

Thanks to the categorical distribution prior imposed on

content latent code (see Section III-B), the content part of

encoders in CDAAE can be directly used as a classifier.

Though the classifier supervisedly trained for source domain

may not have a high accuracy for target domain, its prediction

is still meaningful. We can use its prediction as an inexact label

for data from target domain. To make best use of supervision

from source domain, we further share the weights of El
A and

El
B . That is, the content encoder is trained as a classifier for

both domain A and B. The algorithm details are shown in

Algorithm 1.

IV. EXPERIMENTS

A. Implementation Details and Datasets

As shown in Fig. 1, CDAAE is implemented with neural

networks. Encoders and discriminators are mainly comprised

of convolution layers and fully connected layers, while gen-

erators consist of transposed convolution layers and residual

blocks. Dimensions of latent codes are 10 and 8 for content

and style respectively. We also use instance normalization to

remove style diversity [19]. For more details, we will make

our code publicly available in the future.

Our experiments are conducted on digit datasets: the

Street View House Number (SVHN) dataset [20], MNIST

dataset [21] and USPS dataset [22]. They have 531,131,

60,000, 7291 images for training and 26,032, 10,000, 2007

images for testing respectively. Every image is resized to

32× 32 and grayscale image is replicated three times.

B. Evaluation Metrics

When evaluate cross-domain translation model, we focus on

three aspects of its performance: quality, diversity and whether

image’s category is preserved. In this paper, we use three

metrics to evaluate these abilities respectively.

Fréchet Inception Distance (FID) [23]. We choose FID to

measure image’s quality, as it has been shown to be consistent

with human evaluation in assessing the realism and variation

of the generated images [23]. FID calculates the Wasserstein-

2 distance between the generated images and real ones in

the feature space of a pretrained Inception-v3 network, so the

smaller FID, the better quality.



MNIST to SVHN

Input CDAAE CDAAE-
semi

CDAAE UNIT MUNIT

SVHN to MNIST

Input CDAAE CDAAE-
semi

CDAAE UNIT MUNIT

Fig. 2. Cross-domain image translation.

TABLE I
EVALUATION OF CROSS-DOMAIN IMAGE TRANSLATION

Method
SVHN to MNIST MNIST to SVHN

FID LPIPS ACC FID LPIPS ACC

CycleGAN 28.65 – 16.53% 220.7 – 6.32%
UNIT 159.4 0.0008 19.57% 85.87 0.0088 31.90%

MUNIT 10.78 0.0235 18.11% 46.16 0.1974 26.29%
CDAAE-semi 28.67 0.0778 50.92% 77.96 0.1992 81.88%

CDAAE w/o Lcc 15.66 0.0875 69.31% 63.91 0.1769 96.31%
CDAAE 16.31 0.0799 88.69% 44.63 0.1780 97.94%

TABLE II
EFFECTS OF γ3

γ3 FID LPIPS ACC

0.5
18.35 0.0799 89.10%
43.01 0.1868 97.94%

1.0
16.31 0.0799 88.69%
44.63 0.1780 97.59%

1.5
16.24 0.0773 88.33%
43.37 0.1764 97.60%

Learned Perceptual Image Patch Similarity (LPIPS)
distance [24]. LPIPS is a weighted L2 distance between deep

features of images, and is demonstrated to correlate well with

human perceptual similarity [24]. Following Zhu et al. [15],

we use the average LPIPS distance of image pairs (100 input

images and 19 pairs per input) to evaluate diversity. The bigger

LPIPS distance, the better diversity.

Classification Accuracy (ACC). To evaluate whether im-

age’s category is preserved after translation, pretrained classi-

fiers are used to classify the translated images, and accuracy

between prediction and ground truth of corresponding input

is calculated. Higher accuracy means the category is better

preserved. In our experiments, test accuracy of pretrained

classifiers for SVHN and MNIST are 93.89% and 99.17%

respectively, which is convincing enough to be used as metrics.

C. Ablation Study

Since there are four components in CDAAE’s loss, we firstly

conduct experiments to evaluate their effects respectively.

The default hyper-parameters are set as γ1 = 20, γ2 =
γ3 = γ4 = 1. As Lrec is a basic component of the total loss,

ablation experiments are conducted to evaluate the other three

losses. Firstly, to evaluate the effect of labeled data(trained

with Lsup), we only use 1000 categorically labeled images

for each class to train in setting of CDAAE-semi. Results

are given in Table I It’s shown that even with a few of

labeled samples, CDAAE can exceed other methods by a

large margin in preserving image’s category. Secondly, we

ablate Lcc (denoted as CDAAE w/o Lcc) to evaluate content

cycle consistency. From Table I, it’s shown that Lcc helps to

increase model’s ability to preserve image’s category. Thirdly,

the prior distribution regularization is evaluated by setting γ3
to different values. Results are illustrated in Table II. For each

row, the upper values are results of SVHN to MNIST, while

the lower is for MNIST to SVHN. It is shown that bigger

γ3 may help to increase image’s quality as model is better

regularized by prior distributions, but can decrease its diversity

and category preserving accuracy.

D. Results

1) Cross Domain Image Translation: Image translation

is conducted on SVHN and MNIST. We compare CDAAE

with both previous works CycleGAN [7], UNIT [3] and the

concurrent work MUNIT [8]. Qualitative results are shown

in Fig. 2, and quantitative results are shown in Table 1. As

CycleGAN is a deterministic mapping, we only report its FID

and ACC.

From both Table 1 and Fig.2, CDAAE is shown to have

advantages in category preserving and image diversity. In

aspect of category preserving, CDAAE can better extract

the semantic category information, and make better use of

categorical labels, as we impose categorical distribution on the

content latent code. Thus CDAAE is the best for ACC. When

it comes to image’s diversity (results of LPIPS), CDAAE

is better than others in two aspects. Firstly, the many-to-many

design has better diversity than one-to-one mapping. Secondly,

CDAAE’s style code can encode image’s variety both in

shape and color, while others can only generate different color



content content

style style

CDAAE MUNIT Gatys et al. CDAAE MUNIT Gatys et al.

Fig. 3. Sample-guided style transfer.

TABLE III
EVALUATION OF DOMAIN ADAPTATION: ACCURACY ON TEST SPLIT OF TARGET DOMAIN

Method SVHN2MNIST USPS2MNIST MNIST2USPS

CORAL [25] – – 81.7% [26]
MMD [27], [28] – – 81.1% [26]
DANN [29] 73.85% – 85.1% [26]
DSN [30] 82.7% – 91.3% [26]
PixelDA [26] – – 95.9%
SA [31] 59.32% – –
CoGAN [5] – 89.1% 91.2%
DTN [4] 84.44% – –
UNIT [3] 90.53% 93.58% 95.97%
CDAAE(ours) 96.67% 96.37% 95.91%

styles. This shown clearly in Fig. 2, especially for SVHN to

MNIST, the generated images are more diverse in shapes and

writing styles. As for image quality (results of FID), CDAAE

generates quite good images compared with other methods,

and even achieves best quality in translation from SVHN to

MNIST.

2) Sample-Guided Style Transfer: When style code is ex-

tracted from a style image, CDAAE can be used for sample-

guided style transfer. This is compared with MUNIT and

traditional style transfer method of Gatys et al. [17], and

results are shown in Fig. 3. As illustrated, CDAAE is better

than the other two methods in two aspects. Firstly, CDAAE

can preserve the semantic category of content image correctly,

since the categorical distribution prior on content code and

supervision from categorically labeled data, while MUNIT

can’t keep the right category. Method of Gatys et al. even

generates images almost the same as style images, with the

content totally wrong. Secondly, CDAAE can catch style

including both colors (SVHN style) and shapes (MNIST style),

while MUNIT and method of Gatys et al. can only catch

some color style. This is because CDAAE takes both shape

information, color and texture as style, while others refer style

only as the rendering on shapes.

3) Domain Adaptation: We evaluate the proposed domain

adaptation methods (See Section III-C) with the following

scenarios: SVHN to MNIST, USPS to MNIST and MNIST

to USPS. The threshold of prediction probability is set to

t = 0.85 (See Algorithm 1). Results are reported in Table III.

It’s shown that our method achieves comparative accuracy

compared with the state-of-the-art work in M2U. In more

difficult scenarios: S2M and U2M, we make a considerable

progress over the previous state-of-the-art work. As datasets

SVHN and MNIST have much more images than USPS, this

result illustrates that CDAAE has better ability in making use

of unlabeled data. Besides, SVHN and MNIST are much more

different than MNIST and USPS, the great progress made by

CDAAE in S2M infers that CDAAE generalize better over

domain difference.

V. CONCLUSIONS

We propose the problem of fine grained category preserving

image translation and design a novel framework to address

it. Experiments show that our method can better preserve

image’s semantic category and gain much more diversity than

existing methods. Besides, domain adaptation algorithm de-

signed based on our framework achieves state-of-the-art result

on benchmark datasets. Currently, there is still a limitation

on number of image categories in CDAAE, and we plan to

address this in the future work.
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