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Abstract—It is necessary to implement real-time grasp detec-
tion in robotic grasping tasks. To this end, in this paper we
propose a method for effective graspable feature selection and
precise classification. In a robotic grasping scene, our method can
effectively select graspable rectangles and further extract useful
features from them to generate a feature set. A convolutional
neural network (CNN) is then developed to score and classify
the elements in the feature set. Finally, we compute the desired
robotic grasp pose based on the graspable feature that gets
the highest score. In the test phase the proposed CNN network
achieves an accuracy of 96.5% on the Cornell Grasping Dataset.
In real-world grasping experiments 105 frames per second (fps)
for the object’s grasp detection and a grasp success rate of 89.9%
have been achieved with our method.

Index Terms—Grasp detection, effective graspable feature
selection and precise classification

I. INTRODUCTION

Robotic grasping can be applied in many aspects like social
services and industries. However, it is difficult for robots to
implement precise grasp like humans. An intuitive way for
humans to grab an object is to see it, estimate it and grasp
it. According to the way that humans grasp an object, robotic
grasping can be divided into three parts, which is:
• See: The best way for robots to “see” objects is to use

sensors like RGB-D cameras. With the fast development
of vision sensors, robots can get a lot of information to
estimate objects’ feature.

• Estimate: When involving how to estimate the graspable
feature of an object, deep learning methods like convo-
lutional neural network (CNN) show great power on it.

• Grasp: When robots finish identifying graspable features,
there are some parameters that represent the robotic
grasp. Robots need to convert the grasp representation
to its end-effector poses, and then plan its trajectory.

Our proposed solution is based on three parts. Firstly, we use
the same grasp representation in [1], which has five individual
parameters. Secondly, RGB-D sensor is used to capture images
in real-world, then, an image processing method is employed
to generate effective grasp rectangles, finally, we extract a
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feature set from the grasp rectangles and classify every item
in the feature set with our CNN model. The CNN classifier
is trained on the Cornell Grasp Dataset, which has numerous
RGB-D data and labeled representation of grasps.

When regarding the grasps as a classification problem, the
widely shared method is a sliding window selection approach.
This approach searched the small patches globally, and used
a classifier to score every patch.

Compared to previous works, our methods can avoid glob-
ally searching and has more accurate classification. In this pa-
per, we improved the morphological image processing (MIP)
algorithm in [2] to do effective graspable feature selection and
train an accurate classifier to find the best grasp. The biggest
advantage of our methods are:
• Compared to the sliding window searching and our previ-

ous MIP method in [2], our improved MIP algorithm can
select graspable features more effectively, and for some
real-world scenes, it can decide the final grasp configura-
tion directly. The select graspable features are constituted
into a set, which is used for our CNN classifier.

• We train a CNN classifier on Cornell Grasp Dataset with
an accuracy of 96.5%. This classifier is very helpful for us
to choose the best grasp configuration from the graspable
feature set, which is generated by our improved MIP
algorithm.

The architecture of our method is illustrated in Figure (1).
We focus on searching graspable feature with a effective way
and use the searched feature set to decide the best grasp
configuration in real time.

Our paper is organized as follows: Section II introduces
the related works on robotic grasps. And Section III describes
how our algorithm perform grasp detection. To evaluate our
algorithm, we implement real-world grasp experiments with
Microsoft Kinect and Baxter robot. Finally, we draw the
conclusion in Section V.

II. RELATED WORK

There has been a lot of researches on robotic grasp over
the last few years. These researches are aimed to solve the
grasping problem from the three parts we mentioned in Section
I. RGB-D sensors have been widely used to get real-world
data, but it is hard to get the full information by a single shot.
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Fig. 1. The architecture of our proposed system

Some researches in [3] [4] try to get complete information of
objects by three dimensional simulation. They can have good
performance in simulation, but it is not easy to achieve the
performance of simulation in real world. To better understand
of objects’ geometry, [5] uses two cameras to synthesize the
point cloud of data. In terms of the generality robotic grasp,
complex models of objects are not helpful to grasp unknown
objects.

For estimating problems, a lot of machine learning and deep
learning methods are used in analyzing graspable features. For
classification problems, a number of previous researches show
that support-vector machine (SVM) in [6] has great power on
it. There are a lot of grasp solutions were based on SVM. [7]
[8] [9] use SVM to score the grasp configuration, and then
choose the one got the highest score to execute robotic grasp.
SVM is also employed in classifying antipodal grasps in [5].
Deep learning method is also applied in grasp classification,
like sparse auto encoder (SAE) in [1]. Lenz et al. [1] trained
a SAE model on multimodal data and get a high classification
accuracy of 93.7%. But their sliding window approach for
feature selection limits the speed of detection. Deep learning
methods has been widely developed on object detection such
as YOLO [10], Faster R-CNN [11], Mask R-CNN [12], and
semantic segmentation such as FCN [13], UNet [14].

Lots of interesting work based on these methods have
been used on grasp detection. Chu et al. [15] propose a
grasp proposal network and their idea is to transfer the grasp
rectangle detection to object detection. And their results show
high classification performance. [16] achieves pixel-wise grasp
rectangle detection. Their work uses the fully convolutional
network like U-net to predict rectangle for every pixel. Their
network is significantly smaller than other network because of
no fully connected layers. [17] uses Gaussian Mixture Model
to detect robotic grasp.

After deciding the final grasp configuration, it is of sig-
nificance to plan the grasp. [18] [1] used a seven or five
dimensional rectangle to represent the grasps, then converted

it to the grasp pose of objects, moved the robot’s end-effector
to the pose and finally closed the grippers.

III. THE SYSTEM OF GRASP DETECTION

This section is divided into four subsections. The first part
describes what the problem of robotic grasp is. The next three
parts introduce how we solve the problems.

A. Problem Description

The input of our method is a RGB image and the aligned
depth image captured from a tabletop scene, and the output
is the five-dimensional grasp rectangle that can be convert
into the grasp pose by eye-to-hand or eye-in-hand calibration.
The five-dimensional rectangle is shown in [1], which can be
represented by equation (1).

g = {x, y,θ,h,w} (1)

where g is the grasp rectangle representation, (x, y), θ are
the center location and orientation respectively, and the three
parameters can be converted into the object’s grasp pose.
h,w are the thickness and open width of the gripper in our
experiments.

Because the thickness of our Baxter robot’s gripper is
fixed, we can ignore the parameter h. To use the rectangle
representation, we set the relationship between h and w as
h = 0.25 ∗ w.

We use an improved MIP algorithm to choose grasp rectan-
gle g. For every selected g, we extract features such as RGB
data, depth and surface normal information as fi and get a
feature set F . Equation (2) indicates the relationship of fi
and F . After generating the feature set, our CNN classifier
score and classify the whole set and determine the best grasp
configuration.

F= {f1,f2, . . . . . . ,fn} (2)



B. Background Removing

In order to reduce the time for detection, we need to remove
the useless data. For the tabletop scene, it is practical to
use the random sample consensus method (RANSAC) [19]
or voxel cloud connectivity segmentation algorithm (VCCS)
[20] to remove the information except for objects. But the
two methods are relatively time-consuming.

depthbg = getCached()

depthmask = (depthfg − depthbg) > threshold
(3)

For quick background removing, our methods are shown in
equation (3). First, we cache a depth image before placing the
objects on the table, and then use the foreground depth image
which contains objects subtract the cached image. Finally, we
set a threshold 8 to binarize the result of subtracting and we
obtain the binary mask for the input of our improved MIP
algorithm. The threshold can be adjusted according to different
real-world situation. And we visualize the binarized mask in
Figure (1).

C. Graspable Feature Selection

After removing the background, we acquire a binary mask.
Our idea is to generate a grasp feature set effectively. We
propose an improved MIP method, it can quickly generate
grasp rectangle hypothesis by identify possible patches that a
robot gripper can fall. This improved MIP algorithm is based
on our previous work in [2] [21].

Algorithm 1 Improved Morphological Image Processing
Input:

a binary image, depthmask

Output:
a graspable feature set, F

1: Gain the properties of all regions in depthmask

2: for reg in regions do
3: grasp rectangle (g) = None
4: if Pixel(reg) / Pixel(ConvexArea(reg)) > 0.95 and

Pixel(reg) / Area of reg′s boundingBox > 0.95 then
5: Adjust height and width of the bounding box of reg
6: Regard the modified bounding box as g
7: else
8: Identify all possible patches where a robot gripper

could fall
9: Calculate the centroid coordinate of every patch

10: Set Np as the number of all possible patches.
11: if Np = 2 then
12: Transform the two different centroids into g.
13: else
14: Transform every two different centroids into g.
15: For each g, extract its features and append to F .
16: end if
17: end if
18: end for

Fig. 2. A special case for our algorithm. From left to the right shows the
original object, the convex hull of the object and the result of our algorithm.
The red rectangle in the far right image is the bounding box for the red round
rod and another rectangle is the generated grasp rectangle.

Our whole processing pipeline is illustrated in Algorithm 1.
Step 1 use depthmask as input, and implement blob detection
to gain every single region from it. Each region corresponds
to an object. Step 2 is an iterative procedure, which is used
to process every region (object) parallelly. Step 4 to 6 is a
special case. The Pixel() in Step 4 is a function to calculate
the number of pixels. When the condition in Step 4 is satisfied,
we think this is a rectangular object such as cuboid and it is put
with vertical or horizontal direction on the table. And we set
the width of our grasp rectangle as 1.3∗shortEdgeLen, where
shortEdgeLen indicates short edge length of the region’s
bounding box.

An example of our special case is illustrated in Figure (2).
And Figure (3) shows the detection result of some rectangular
objects in our work. The generated rectangles from Step 4 to
6 can be used to do robotic grasp directly.

Fig. 3. The detection results for rectangular objects.

Step 8 to 14 is the general case of our grasp rectangle
selection. From Step 1, we can get the convex hull of reg,
and the pixel in the convex hull is our region of interest. The
region of interest is shown in the upper right of Figure (3).
In Step 8, for every region, we filter the convex hull with a
two-dimensional convolutional kernel that is a 5 × 5 all-one
matrix. This filter operation can help our algorithm get the
patches near the object-wise region. We get the all possible
patches by using the convex hull region to subtract the original
mask region, which is visualized in the bottom left of Figure
(3). Step 11 and Step 14 is to generate all grasp rectangles by
the patches and every two different patches can generate one
grasp rectangle.

In Step 11, we only generate one rectangle and we use it
as the final grasp rectangle directly. Compared to Step 11,



Fig. 4. The detection results of a banana. The top-right image is the convex
hull of the banana, the bottom-left image is the output of our MIP algorithm
and the bottom-right image is the results of our CNN classifier (The yellow
and green grasp rectangle is the best grasp of all).

Step 14 generates a lot of grasp rectangles, which is shown in
Figure (4) and in Step 15, we extract all features for the grasp
rectangles and use the features with the image pre-processing
method in Section III-D1 as input for our CNN classifier.

In addition, our improved MIP algorithm can extract gras-
pable features whith a rate of 164 fps. This is indispensable for
our CNN classifier to achieve real time robotic grasp detection.

Our improved MIP algorithm has the powerful ability to
implement robotic grasp without any additional classifier.
We replace Step 14 and 15 in Algorithm 1 with randomly
choosing two centroids and transform the centroids to the
final grasp rectangle. Then the improved MIP can generate
grasp rectangle for every single object. And in Table (II),
our experiments show it gets a unexpected grasp success rate
about 78.0 %. The reason that we can get this success rate
is that the choosing centroids from two different patches is
the approximate location where the gripper falls, and the final
grasp has a high probability to be an antipodal grasp.

D. CNN Classification

1) Image Pre-processing: We train and evaluate the classifi-
cation model on the Cornell Grasping Dataset. Our processing
method is learned from the approach in [1]. [1] extract the
image information which has totally seven channels included
the RGB space (3 channel) , depth (1 channel) and surface
normal data (3 channels) from a 24×24 rectangle. We use the
24×24×7 data with a rescale operation as our CNN classifier
input. Because the depth and surface normal information are
unlike the RGB information, to the get better performance on
CNN network, before feeding into our network, we normalize
every channel by subtracting its mean value and deviding its
standard deviation.

2) Grasp Classification: In Section II, recent works have
shown CNN has great power on grasp rectangle regression. We
try to regard the robotic grasp as CNN classification problem.

Our network starts with four convolutional layes and ends
with three fully connected layers. There are also max pooling
and batch normalization layers followed with convolutional
layers at some stage. The whole architecture of our CNN
network is shown in Figure (5).
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Fig. 5. The structure of our CNN classifier

The output of our model is a two-dimensional tensor. The
first dimension and the second dimension are represented
for negative and positive grasp respectively. Equation (4)
illustrates how we represent grasps.

gt =

{
{1, 0} , for negative grasp

{0, 1} , for positive grasp
(4)

Training: We use binary cross entropy as our loss function
and rescale the features(24*24*7) to 28*28*7. The number of
training epoch is 25 and the learning rate is set as 0.001 with
the Adam optimizer. Figure (6) shows the accuracy on training
phase.

We train our network end-to-end on a single Nvidia
RTX2080 with 8G GPU memory. Our framework is based
on Pytorch with cuda-10.0 and cudnn-7.4.2.

Fig. 6. The training accuracy of our CNN classifier



TABLE I
COMPARISON ON RESULTS OF DIFFERENT ALGORITHMS

Algorithms Accuracy (%)

Sparse Auto Encoder [1] 93.7
Support Vector Machine [2] 94.7

Random Forest [21] 94.2
Our proposed CNN 96.5

Results: Using the combined features that are RGB, depth
and surface normal data helps us get an accuracy of 96.5 %.
Our comparison results are shown on Table (I). Our network
lead 2% ahead than the accuracy of the current classification
approaches.

IV. ROBOTIC GRASP EXPERIMENTS

To show the abilities of our proposed method, we perform
two-stage experiments in real-world scene, which is single
object grasp and multiple object grasp.

In order to evaluate our method in real-world, we imple-
ment robotic grasping on a Baxter robot and use Microsoft
Kinect to get RGB-D data. The Baxter robot is a two-arm
manipulator with all elastic joint and it has seven degrees of
freedom (DOF), which makes it kinematically redundant. For
convenience, We just use one arm of the Baxter for grasping.
Also, the Baxter robot has a parallel one degree of freedom
gripper.

Fig. 7. Typical objects we used in our experiments

Experimental Setup: In order to verify the grasping detec-
tion performance of our algorithm effectively, we selected a lot
of objects that are common in life to execute robotic grasps.
Figure (7) shows some typical objects that we used, and they
differ in color, shape, size, and weight. The total number of
objects is about 25 and they are unknown for our proposed
method. We use a computer which has a memory of 8GB,
an Intel (R) Core (TM) i7-6700 CPU and a GTX 1060 6GB
graphic card to compute the grasp rectangle. Before starting to
perform robotic grasp, we collect a depth image of the tabletop

scene as the background information. This will be used for our
background removing part in our proposed method.

Our objects grasp experiments are executed by the following
steps: first, we place objects on the table with random position
and orientation; then, we use our improved MIP algorithm and
the CNN classifier to calculate the grasp rectangle; finally, the
Baxter robot tries to grasp objects by converting the grasp
rectangle to grasp pose.

Experimental Results: We use the single object scene to
show how our proposed method detects the grasp rectangle.
Figure (8) shows the detection results and the larger the
number of all possible patches (Np), the greater the number
of generated rectangles.

We also use multiple objects scene to validate our proposed
methods. We test our method on three totally different scenes,
which is fruit model scene (Scene 1), building blocks scene
(Scene 2) and office tool scene (Scene 3). All the experimental
results are shown in Table (II). For every object and scene,
we implement 12 attemps to do robotic grasp. And our final
results show that without the CNN classifier, our improved
MIP algorithm can detect the grasp rectangle with a speed of
164 fps and keep the grasp success rate as 78.0 %. After using
the CNN classifier as the decision maker, we can get the grasp
success rate as 89.9 % with a speed of 105 fps.

V. CONCLUSIONS

We propose a novel and precise graspable feature detection
method to do robotic grasp. Our methods are based on the
image processing algorithm and convolutional neural network.

We implement table-cleaning experiments in an RGB-D
view to validate the effectiveness of our methods. We use the
improved MIP algorithm to search the patches that can be used
to generate grasping, this method creatively avoid global grasp
searching and save a lot of time to generate grasp rectangles
for every object.

Compared to current state-of-the-art approaches, our exper-
iments show that our improved morphological image process-
ing (MIP) algorithm can select graspable features effectively
and quickly, and the proposed CNN classifier can help the
improved MIP algorithm select the graspable features more
precisely.
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