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Abstract—Due to the high cost of data annotation in supervised
person re-identification (re-ID) methods, unsupervised person
re-ID methods have attracted more and more attention. The
unsupervised person re-ID methods based on deep clustering
have achieved good performance. However, the distance metrics
used in existing unsupervised clustering methods ignore intra-
cluster distance and are likely to cause some wrong merging
situations and uneven distribution within clusters. Besides, these
models based on deep clustering usually ignore the importance
of global features for person re-ID. In this paper, we address the
above problems by proposing an improved hierarchical clustering
approach with non-locally enhanced features. To improve the
clustering performance, we design a new metric which consists of
intermediate distance as inter-cluster distance and compactness
degree as intra-cluster distance. The former one can prevent
some wrong merging situations and the latter one can promote
the uniform distribution within clusters. In addition, we develop
a non-locally enhanced feature network to take advantage of
global features of images. Extensive experiments on Market-
1501, DukeMTMC-reID, MARS and DukeMTMC-VideoReID
demonstrate that our method obtains significant improvement
over the state-of-the-art unsupervised methods.

Index Terms—hierarchical clustering, intermediate distance,
compactness degree, non-local features, person re-identification

I. INTRODUCTION

Person re-identification (re-ID) aims at matching the same
person from images taken by different cameras. It has drawn
lots of attention from science and industry due to its important
application in safety and surveillance. Most existing person
re-ID methods [1-5] are supervised methods that depend on
annotation data. They are labor-consuming and expensive. The
limited generalization ability of supervised methods in real
scenarios motivates the research of unsupervised methods [12-
19].

Traditional unsupervised methods are often based on manual
features [6-8], saliency indicators [9,10] and sparsity con-
straints [11]. However, the performance of these traditional
methods is much inferior to that of supervised methods.
Recently, unsupervised methods based on deep learning have
been applied to person re-ID. These methods are usually
divided into two categories. One is transfer learning and the
other is clustering. Cross-domain person re-ID [12-18] focuses
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on transferring the knowledge learned from a labeled source
domain to an unlabeled target domain. It cannot be viewed
as pure unsupervised learning due to its need for additional
source data.

Clustering is a classical method for unsupervised learning.
Fan et al. [18] present a progressive unsupervised learning
(PUL) method that utilizes k-means algorithm to cluster dif-
ferent features in each iteration. However, the correct number
of clusters is unknown and PUL [18] method depends on
an annotated source domain. To overcome these shortcom-
ings, Lin et al. [19] present a bottom-up clustering (BUC)
approach to unsupervised person re-ID. The framework of
BUC [19] applies network training and hierarchical clustering
iteratively without any dependence on auxiliary data samples.
Nonetheless, the existing unsupervised clustering methods
still have a few problems. Firstly, inappropriate inter-cluster
distance metrics are adopted, which will lead to poor clus-
tering performance. For example, BUC [19] method adopts
the minimum distance between images in two clusters as
the merging criterion. The minimum distance criterion can
result in some wrong merging situations and is prone to
forming elongated clusters. Secondly, the intra-cluster distance
is ignored, while a good clustering should have large inter-
cluster distance and small intra-cluster distance. So we should
consider both inter-cluster distance and intra-cluster distance
when calculating the distance between clusters. Thirdly, the
importance of global features is ignored. As we known,
convolutional neural network and recurrent neural network
are operations that only work on one local neighborhood at
a time. After multi-level convolutional operations, some non-
local information will lose. However, the person image takes
up most of the image itself. Images of the same person may not
be similar in local parts, but similar on the whole. Therefore,
it is necessary to take global features into account.

To address the above problems, we present an improved
hierarchical clustering approach with non-locally enhanced
features for pure unsupervised person re-ID. Firstly, we present
an intermediate distance (IMD) as inter-cluster distance by
considering both the minimum distance and the maximum
distance between clusters. IMD can avoid some wrong merg-



ing situations to a certain extent. Secondly, we propose a
compactness degree (CPD) as intra-cluster distance to relieve
uneven distribution within clusters. IMD combined with CPD
can promote the merging of clusters with a single sample
and prevent the formation of clusters with large looseness.
Thirdly, we take global features into account by designing a
non-locally enhanced feature network. Specifically, the non-
local operations [29] and a mixed pooling strategy are applied
to unsupervised person re-ID for enhancing global features.

The experimental results demonstrate that our method is
superior to the state-of-the-art pure unsupervised methods
on both image-based and video-based re-ID datasets, and
even better than some transfer learning and one-shot learning
methods.

II. RALATED WORK
A. Traditional Unsupervised Person re-ID

In recent years, a few unsupervised methods based on
manual features [6-8], saliency indicators [9,10] and sparsity
constraints [11] have been proposed. Farenzena et al. [§]
present a feature extraction method based on human body sym-
metry to reduce the view variances. Wang et al. [9] introduce
a novel unsupervised model for localized human appearance
saliency selection by exploring generative probabilistic topic
modelling. However, the performance of these methods is
much inferior to that of supervised methods due to lack of
identity labels.

B. Cross-domain Unsupervised Person re-ID

Cross-domain unsupervised person re-ID aims at handling
an unlabeled target domain with the help of a labeled source
domain. The cameras that collect data from two domains are
usually different, so the data distribution of the two domains
will be different eventually. To address the domain gap, many
researchers have tried diverse methods, such as learning an
invariant mapping from the source domain to the target domain
[13] or generating new images belonging to the target do-
main for getting better generalization performance by utilizing
GANSs [15, 16, 21, 22]. In [13], Peng et al. present a multi-task
dictionary learning method that can learn a dataset-shared but
target-data-biased representation. To handle the discrepancy in
camera styles, viewpoints and environments, Zheng et al. [22]
provide an end-to-end joint learning framework that depends
on data generation. These methods all depend on an auxiliary
labeled dataset and the assumption that two domains share the
same identity space. Different from them, our method does not
use any auxiliary datasets or annotation data.

C. Deep Clustering Unsupervised person re-ID

Recently, deep clustering has been adopted in unsupervised
person re-ID [18, 19]. In [18], Fan et al. use an annotated
dataset to train the model and transfer it to an unlabeled
target dataset. Then, they use k-means algorithm to select
reliable samples from the unlabeled dataset to update the
model. However, this method requires a labeled source domain
and depends on an assumption about the number of identities.

Lin et al. [19] apply the hierarchical clustering on the CNN
features to merge images from bottom to up. In the beginning,
each image is regarded as a cluster, and some clusters are
merged by measuring the similarity between clusters. Then
the newly formed cluster result is used to update the model.
In [19], the minimum distance between images in two clusters
and a diversity regularization term are adopted as the merging
criterion. Different from BUC [19], we introduce a new dis-
tance metric that includes both inter-cluster distance and intra-
cluster distance, which can inhibit wrong merging situations
and promote uniform distribution within clusters to a certain
extent.

D. Non-local Neural Network

Non-local technology [20] is a classical image denoising
algorithm that calculates a weighted average of all pixels in an
image. Wang et al. [29] introduce a non-local architecture that
links self-attention in machine translation to the more general
non-local filtering operations. In each 2D non-local operation,
the response at a position is computed as a weighted sum of the
features at all positions, which can enlarge the receptive field
from neighbor positions to the entire image. The non-local
operations can establish the connection between two pixels
with a certain distance on the image. Inspired by these work,
we embed non-local blocks into the CNN model to enhance
global features. As far as we know, our proposed non-locally
enhanced feature network is the first piece of work that applies
non-local operations in unsupervised person re-ID.

III. PROPOSED METHOD

A. Preliminary

Given an unlabeled dataset of N images X =
{x1,22,...,2n}, we need to learn a feature embedding
function ¢ (z;;0) from X without any available annotation,
where 6 is the weight of the network. The feature extractor

can be applied to the query set X? = {x‘{,x%,...,x?\,q

and the gallery set X¢ = xf,x&...,x?vg}. The distance
between each pair of images is defined as the Euclidean
distance between the feature embeddings of the two images,
ie.. d(0,a?) = || (250) — & (22:6)],.

In supervised learning methods, we have handcraft an-
notations about n identities, i.e., Label = {y1,¥2,...,yn}-
A classifier f (¢ (z;;0);w) parameterized by w is used to
predict the identity of the image x;. Thus, the feature extractor

¢ (z;;0) can be learned by optimizing the following formula:

minv C(f (o (2i;0)5w),9:) (1)

where [ is the cross-entropy loss for classification. However,
there are no handcraft annotations like y; in unsupervised
learning methods. To solve the problem, repelled loss [19] has
been proposed to act as a classifier f that can jointly consider
intra-cluster and inter-cluster distance.
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Fig. 1.

(a) The whole framework of the unsupervised clustering model. The framework iteratively trains the network and merges clusters. The clustering

results are fed back to the network for further updating. (b) The hierarchical clustering process. Each step will merge some clusters according to the distance
between clusters. By the hierarchical clustering, samples of the same person are merged into a cluster to represent an identity.

The probability that image x belongs to the i-#h cluster is
defined as:
T
(il V) = nexp (Vz véT)

D j—1 €XP (Vj v/7)
where v is the Lo normalized image feature obtained from
¢ (x;0), V is a lookup table that stores the centroid feature of
each cluster, V; contains the information of all images in the
i-th cluster, n is the number of clusters in current iteration and
T is a temperature parameter [27] that controls the softness
of probability distribution over classes. According to [19], we
set 7 = 0.1. The lookup table V can avoid calculations that
extract features from all data at each training step, and V is
updated by the exponential moving average [28]. Lastly, we
optimize the repelled loss by the following formula:

L = —log (p(ilz,V))

B. The Distance Metric Between Clusters

2

3)

The whole framework of unsupervised clustering model is
illustrated in Fig. 1. The aim is to bring images of the same
person into a cluster. At first, we set each image as a cluster to
train the network. Then we use the network to extract features
of images, measure the distance between clusters, merge some
clusters and retrain the network with newly formed cluster
iteratively. One of the critical factors of using the framework
is how to measure the distance between clusters. As shown
in Fig. 2, d; is smaller dy. Cluster A and cluster B will be
merged according to the minimum distance criterion of BUC
[19], while the right merging should be cluster A and cluster
C. To avoid similar wrong merging situations, we propose an
intermediate distance (IMD) to evaluate inter-cluster distance.
IMD between cluster A and cluster B is formulated as:

IMD(A, B) = 1 d(@a, Zb)) @

2

ax

min = d(xq,xp) + M
o €Az, €EB €Az, €EB

where d (z,,x3) is the Euclidean distance between the fea-

Fig. 2. Different inter-cluster distance. d; and al’1 are minimum distance and
maximum distance between cluster A and cluster B. do and d’2 are minimum
distance and maximum distance between cluster A and cluster C.

ture embeddings of two images. Figuratively, d(z,,z) =
lve — vsll,. IMD considers a broader context of sample-level
pairwise relationships than BUC [19], so it can avoid some
wrong merging situations. In Fig. 2, IMD can inhibit the
wrong merging of cluster A and cluster B and boost the correct

merging of cluster A and cluster C.
Besides, the compactness degree (CPD) is proposed to
evaluate intra-cluster distance. CPD is defined as follows:
CPD(A) = 1 > d(@i,x)) 5)

i,jEA

where n is the number of samples in cluster A, d (x;,z;) is
the Euclidean distance between the feature embeddings of two
images in cluster A. To consider both intra-cluster and inter-
cluster distance simultaneously, we define the final distance
between cluster A and B as:

D(A,B) = IMD(A, B) + A(CPD(A) + CPD(B)) (6)



where A is a parameter that balances the effect of IMD and
CPD. Clusters with small distance should be merged because
the features of different images of the same person are close
in feature space. As shown in Fig. 3(a), the value of CPD for
the square clusters are 0. The final distance between the two
square clusters only calculates the IMD value, leading to a
relatively small distance between the two clusters. Thus, IMD
combined with CPD can promote the merging of clusters with
a single sample. In Fig. 3(b), the value of CPD for the circular
cluster is relatively large. The final distance between the
circular cluster and other clusters increases correspondingly,
which will inhibit the merging of the circular cluster and other
clusters to a certain extent. Therefore, IMD combined with
CPD can prevent the formation of slender and loose clusters.
In summary, IMD combined with CPD can promote uniform

distribution within clusters.

lMD 5

Fig. 3. (a) and (b) show respective clustering process. The solid arrows show
the clustering results with IMD and the dotted arrows show the clustering
results with IMD and CPD. (a) illustrates that IMD combined with CPD can
promote the merging of clusters with a singe sample. (b) shows that IMD
combined with CPD can prevent the formation of slender and loose clusters.
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C. Non-locally Enhanced Feature Network

To make better use of global features in pictures, we design
a non-locally enhanced feature network that is illustrated in
Fig. 4. We adopt ResNet-50 as the CNN backbone. The last
classification layer of ResNet-50 is removed and the non-
local blocks [29] are inserted behind layer 2 and layer 3
of ResNet-50. Besides, we use both global average pooling
operation and global max pooling operation to maintain the
global relationship with the identification and preserve the
discriminative part. During the training, a fully connected (FC)
layer is added behind pooling layers for feature embedding.
The embedding dimension is set to 2048.

The detailed architecture of the non-local blocks is shown
in Fig. 4. Specifically, the input feature map is denoted as F,
which has the spatial dimension of h, X w, X c,. The pair-
wise function that calculates the pair-wise relationship is set
to dot product:

f(Fa:,ian,j) ZG(Fx,i)TQS(Fx,j) (7

where F ;, I ; denote the feature activation F}, at position
i, j respectively. 6(-) and ¢(-) are two feature embedding

Algorithm 1 Clusering framework

Input: Training data X = {z;}YY_;
Hyperparameter A
Initial CNN model ¢(+;6p)
Merge percent p € (0,1)
QOutput:
Optimal model ¢(-; 0)
1: Initialize: labels Y = {y; = i}?;l, the number of clusters
C = N, the number of merging clusters m = C * p
2: while C' > m do
3:  Train CNN model with X and Y
4:  Extract features, calculate the distance between clusters
by Eq. (6) and update lookup table V

5:  Merge m clusters: C = C - m

6:  Update labels in Y with the newly formed cluster
7. Evaluate performance P,,.,, on validation dataset
8:  if P,y >Prest then

9: Ppest = Prews

10: Update parameters 6 of the model

11:  end if

12: end while

operations with different learned parameters. The non-local
blocks in the non-locally enhanced feature network are defined
as:

1
=5 2 F (Frin Faj) g (Frj) (®)
Vi

where the unary function g computes a representation of the
input signal at the position j. N is the number of positions in
F,.. We wrap the non-local blocks into the ResNet-50 by:

Zxi = Wzy.'c,i + Fx,i &)

where y, ; is given in Eq. (8) and “+F} ;” denotes a residual
connection. W, is initialized as zero.

The whole method is described in Algorithm 1. Firstly, the
number of clusters is set to the number of training images.
After each merging, the labels of training images are updated.
We train the network continuously and test its performance on
the validation set until it reaches the highest performance.

IV. EXPERIMENTS AND ANALYSIS
A. Datasets

Market-1501 [30] includes 1,501 identities and 32,688
labeled images captured by 6 cameras, among which 12,936
images of 751 identities are used for training and 19,732
images of 750 identities are used for testing.

DukeMTMC-reID [31] is the subset of DukeMTMC [34]
dataset. It includes 16,522 images of 702 identities for training
and 17,661 images of 702 identities for testing.

MARS [32] is the largest video-based dataset that is extend-
ed from Market-1501. It contains 20,478 automatically gener-
ated tracklets (including 3,248 distractors) of 1,261 identities.
Specifically, it is divided into 625 identities for training and
636 identities for testing.
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Tllustration of the non-locally enhanced feature network. The input image firstly goes through the backbone network and gets its feature map. Then,

we use both global average pooling and global max pooling and add a fully connected (FC) layer behind pooling layers for feature embedding.

DukeMTMC-VideoReID [33] is a video-based dataset
derived from DukeMTMC [34] dataset. It has 2,196 tracklets
of 702 training identities and 2,636 tracklets of 702 testing
identities.

B. Experiment Settings

Training. For imaged-based datasets, i.e., Market-1501
and DukeMTMC-relD, we use images removed labels to
train our model. For video-based datasets, i.e., MARS and
DukeMTMC-VideoRelID, we use tracklets to train our model
and each tracklet is regarded as an individual. In video-based
datasets, we use the average feature of all frames in a tracklet
as the feature of the tracklet. It is worth noting that we do not
use any labeled data or auxiliary datasets in our experiments.

Evaluation Metric. Evaluation Metrics Cumulative Match-
ing Characteristic (CMC) is adopted in quantitative evaluation
for person re-ID. The rank-k records the correct matching
within the top k ranks to represent the CMC curve. The mean
average precision (mAP) evaluates the overall performance of
methods. In our study, we use mAP and rank-k to evaluate our
model.

Experimental Details. Our proposed network framework
is shown in Fig. 4. The ResNet-50 parts of the non-locally
enhanced network are initialized by the ImageNet pre-trained
model, and the parameters of non-local blocks are initialized
as 0. For the training process, the training epoch in the first
stage is set to be 20, the batch size to be 16, merge percent
p to be 0.05, the dropout rate to be 0.5 and A in Eq. (6) to
be 0.3. The stochastic gradient descent with a momentum of
0.9 is utilized to optimize the model. The learning rate of
parameters is initialized as 0.1 and decreases to 0.01 after 15
epochs.

C. Comparision with the State-of-the-art Methods

Image-based Person Re-identification. The comparison
with the state-of-the-art unsupervised methods on two large
image-based datasets is reported in Table I. On Market-1501,
our method achieves the best performance of which rank-1
is 77.5% and mAP is 50.3% among all pure unsupervised
methods. Compared with the best pure unsupervised method
BUC [19], our method achieves 11.3% improvement in rank-1
and 12% improvement in mAP. Similarly, our method achieves
63.2% in rank-1 and 38.6% in mAP on DukeMTMC-reID and
exceeds other pure unsupervised methods to a large extent.
We also compare our method with transfer learning methods
and one-shot learning methods. Although these methods use
additional datasets or manual annotations, our method is better
than most of them, which demonstrates the superiority of our
method.

Video-based Person Re-identification. Table II shows the
comparison with the state-of-the-art unsupervised methods
on two large video-based datasets. On MARS, our method
achieves 67.5% in rank-1 and 44.1% in mAP, exceeding the
most competitive BUC [20] by 6.4% in rank-1 and 6.1% in
mAP. On DukeMTMC-VideoRelD, our method obtains 80.2%
in rank-1 and 73.6% in mAP. It exceeds BUC [19] by 11%
in rank-1 and 11.7% in mAP. As can be seen from Table II,
our method is also superior to other transfer learning methods
and one-shot learning methods.

D. Ablation Study

The Effectiveness of IMD and CPD. We evaluate the
effectiveness of our proposed metric method by comparing
to the closest work BUC [19]. To verify the effectiveness of
IMD, we compare BUC [19] without diversity regularization
term with IMD without CPD. As shown in row 1 and row 3



TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON TWO IMAGE-BASED DATASETS. THE COLUMN “LABELS” DENOTES THE TYPE OF SUPERVISION
USED BY THE CORRESPONDING METHOD.“NONE” REPRESENTS NO EXTRA INFORMATION IS USED.“TRANSFER” REPRESENTS AN ADDITIONAL DATASET
IS USED.“ONEEX” REPRESENTS ONE LABELED IMAGE IN PER IDENTITY IS USED. * DENOTES THAT THE RESULTS ARE REPRODUCED BY LIN [19].

Market-1501 DukeMTMC-relD
Methods Venue Labels rank-1 rank-5 rank-10 | mAP | rank-1 rank-5 rank-10 | mAP
UMDL[13] CVPR’16 Transfer 34.5 52.6 59.6 12.4 18.5 314 37.6 7.3
PUL[18] TOMM’18 | Transfer 44.7 59.1 65.6 20.1 30.4 46.4 50.7 16.4
EUG[33] TIP’ 19 OneEx 55.8 72.3 83.5 26.2 48.8 63.4 68.4 28.5
SPGAN[16] CVPR’18 Transfer 58.1 76.0 82.7 26.7 46.9 62.6 68.5 26.4
TJ-AIDL[14] CVPR’18 Transfer 58.2 74.8 - 26.5 443 59.6 - 23.0
ATNet[36] ICCV’19 Transfer 55.7 73.2 79.4 25.6 45.1 59.5 64.2 24.9
MAR[12] CVPR’19 Transfer 67.7 81.9 87.3 40.0 67.1 79.8 84.2 48.0
BOW[30] ICCV’15 None 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3
OIM*[35] CVPR’17 None 38.0 58.0 66.3 14.0 24.5 38.8 46.0 11.3
BUC[19] AAAT’ 19 None 66.2 79.6 84.5 38.3 47.4 62.6 68.4 27.5
Ours - None 71.5 88.5 92.2 50.3 63.2 75.1 79.2 38.6
TABLE 11

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON TWO VIDEO-BASED DATASETS. THE COLUMN “LABELS” DENOTES THE TYPE OF SUPERVISION
USED BY THE CORRESPONDING METHOD. “NONE” REPRESENTS NO EXTRA INFORMATION IS USED. “TRANSFER” REPRESENTS AN ADDITIONAL DATASET
IS USED. “ONEEX” REPRESENTS ONE LABELED IMAGE IN PER IDENTITY IS USED. * DENOTES THAT THE RESULTS ARE REPRODUCED BY LIN [19].

MARS DukeMTMC-VideoReID

Methods Venue Labels rank-1 rank-5 rank-10 | mAP | rank-1 rank-5 rank-10 | mAP
DGM+IDE[37] TIP’ 19 OneEx 36.8 54.0 - 16.8 423 57.9 69.3 33.6
Stepwise([38] ICCV’17 OneEx 41.2 55.5 - 19.6 56.2 70.3 79.2 46.7

RACE[39] ECCV’18 OneEx 43.2 57.1 62.1 24.5 - - - -

DAL[40] BMVC’18 | OneEx 49.3 65.9 72.2 23.0 - - - -
EUGI33] TIP 19 OneEx 62.8 75.2 80.4 42.6 72.9 84.3 88.3 63.3
OIM*[35] CVPR’17 None 33.7 48.1 54.8 13.5 51.1 70.5 76.2 43.8
BUC[19] AAAT’ 19 None 61.1 75.1 80.0 38.0 69.2 81.1 85.8 61.9
Ours - None 67.5 79.2 82.6 44.1 80.2 92.2 95.1 73.6

TABLE III

THE EFFECTIVENESS OF OUR PROPOSED COMPONENTS. REGULARIZATION TERM OF BUC [19] IS CLUSTER SIZE. IN IMD BASED EXPERIMENTS, IF MP
IS NOT USED, WE USE GLOBAL AVERAGE POOLING BY DEFAULT.

Market-1501 DukeMTMC-relD MARS DukeMTMC-VideoReID
Methods CPD | NL | MP rank-1 mAP | rank-1 mAP rank-1 mAP | rank-1 mAP
BUC w/o regularization[19] 62.9 33.8 41.3 22.5 55.5 31.9 60.7 50.8
BUC with regularization[19] 66.2 38.3 47.4 27.5 61.1 38.0 69.2 61.9
Ours (based IMD) 66.9 39.4 53.5 30.4 63.9 41.5 75.1 68.7
Ours (based IMD) v 70.1 41.9 56.3 323 64.6 41.9 76.5 70.9
Ours (based IMD) v v 74.7 47.4 60.0 35.0 65.3 42.6 78.9 72.1
Ours (based IMD) v v v 77.5 50.3 63.2 38.6 67.5 44.1 80.2 73.6

of Table III , the experimental performance of our proposed
IMD is superior to that of the minimum distance in BUC [19]
on both image-based and video-based datasets. This benefits
from the improvement of distance metric between clusters. It
is worth noting that IMD without CPD performs better than
BUC [19] with diversity regularization, as shown in row 2 and
row 3 of Table 3. This demonstrates the superiority of IMD as
a metric of inter-cluster distance. Moreover, the data in row 3
and row 4 of Table III show that CPD can bring performance
improvement on all four datasets. This proves the importance
of intra-cluster distance in clustering metric and the validity
of CPD as intra-cluster distance. IMD and CPD balance the
similarity and dissimilarity in clustering.

The Effectiveness of Non-locally Enhanced Feature
Network. From row 4, row 5 and row 6 in Table III, we
can see that both non-local blocks and the mixed pooling

strategy can improve the experimental performance to a certain
extent. This demonstrates that both the non-local blocks and
the mixed pooling strategy can enhance global features. Our
proposed non-locally enhanced network is more suitable for
the unsupervised clustering person re-ID.

The Impact of Pooling Strategies. Table IV shows the
performance of our proposed method under different pool-
ing strategies on Market-1501. It can be observed that the
performance of global max pooling is better than that of
global average pooling. This is mainly because global average
pooling considers all positions of a particular part and all
positions contribute to the final feature embedding equally.
Therefore, the discrimination ability of the feature embedding
generated by global average pooling can be easily affected
by the irrelevant background patterns. On the contrary, global
max pooling preserves the largest response value of a local



TABLE IV
THE IMPACT OF DIFFERENT POOLING STRATEGIES ON MARKET-1501.

Model Market-1501

rank-1 | rank-5 | rank-10 | mAP
IMD + CPD + NL + Avg pool 73.9 87.1 90.7 46.2
IMD + CPD + NL + Max pool 76.4 87.7 91.6 48.9
IMD + CPD + NL + Mixed pool 71.5 88.5 92.2 50.3

part. Namely, it retains the most discriminative information.
Global average pooling operations and global max pooling
operations are complementary, which can obtain the feature of
global part and the most discriminative part of features. Thus,
we integrate the two pooling strategies into an unified model
to make full use of their advantages. Experimental results in
Table IV indicate that mixing the two pooling strategies gets
a better result than using either of them.
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datasets.

The mAP performance in different clustering stages on four large

Performance comparison of different clustering stages.
Unsupervised hierarchical clustering framework trains the
model with generated pseudo labels and repeats the merg-
ing and fine-tuning until getting the best performance. The
mAP performance of BUC [19] and our proposed method in
different clustering stages on four datasets is shown in Fig. 5.
Before achieving their respective best performance, the growth
rate of mAP in our method is higher than that in BUC [19]
on the whole. This is mainly because the wrong merging in
early stages of BUC [19] generates false labels, which will
affect the optimization direction of the model. These negative
false labels have an additive effect in later stages, so they will
result in poor experimental performance. Different from BUC
[19], our method can effectively reduce the wrong merging of
early stages.

V. CONCLUSION

In this paper, we have presented an improved hierarchical
clustering approach with non-locally enhanced features for

unsupervised person re-ID. Specifically, we have proposed
a new metric composing of intermediate distance (IMD)
as inter-cluster distance and compactness degree (CPD) as
intra-cluster distance. IMD and CPD ensure the similarity
and dissimilarity of clustering, which promotes the quality
of clustering and avoids negative false labels effectively.
Besides, the designed non-locally enhanced feature network
that aims at enhancing global features can bring performance
improvement. Experimental results on four large datasets
(Market-1501, DukeMTMC-reID, MARS and DukeMTMC-
VideoRelD) demonstrate the superiority of the proposed
method, which outperforms the existing state-of-the-art un-
supervised methods in terms of mAP and rank-k.
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