
DCT-Conv: Coding filters in convolutional networks
with Discrete Cosine Transform

Karol Chęciński, Paweł Wawrzyński
Institute of Computer Science

Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

karol.checinski.stud@pw.edu.pl, pawel.wawrzynski@pw.edu.pl

Abstract—Convolutional neural networks are based on a huge
number of trained weights. Consequently, they are often data-
greedy, sensitive to overtraining, and learn slowly. We follow
the line of research in which filters of convolutional neural
layers are determined on the basis of a smaller number of
trained parameters. In this paper, the trained parameters define
a frequency spectrum which is transformed into convolutional
filters with Inverse Discrete Cosine Transform (IDCT, the same is
applied in decompression from JPEG). We analyze how switching
off selected components of the spectra, thereby reducing the
number of trained weights of the network, affects its per-
formance. Our experiments show that coding the filters with
trained DCT parameters leads to improvement over traditional
convolution. Also, the performance of the networks modified this
way decreases very slowly with the increasing extent of switching
off these parameters. In some experiments, a good performance
is observed when even 99.9% of these parameters are switched
off.

Index Terms—neural networks, parameters reduction, convo-
lution, discrete cosine transform

I. INTRODUCTION

Convolutional neural networks are now the most efficient
tool for image analysis tasks such as face recognition [1],
medical diagnostic [2, 3] or objects detection [4]. Contempo-
rary models such as VGG [5], ResNet [6], GPipe [7] have up
to hundreds of millions of trained parameters. Training them
requires huge volumes of data or it is prone to overtraining
and poor behavior on unseen images.

A way to avoid the aforementioned unfortunate alternative is
as follows: For each filter (or each filter’s part) in the network
there exists a vector of trained parameters; its dimension is
smaller than the size of the filter (or its part); a filter (or
its part) is produced from the trained parameters with a cer-
tain fixed transformation. Fewer trained parameters represent
a similar diversity of filters. The above fixed transformation is
a key element that needs to be designed for this approach to
be successful.

In this study we analyze the aforementioned transformation
based on (Inverse) Discrete Cosine Transform, (I)DCT. DCT
can be applied to a matrix m× n of real numbers to produce
a matrix of the same size of real numbers — DCT coefficients.
The matrix of DCT coefficients can be transformed back, with
IDCT to the original matrix. For the original matrix which is
a part of a real image, often some DCT coefficients are close
to zero. Therefore, JPEG compression is based on the DCT

of parts of the image with skipping DCT coefficients that are
close to zero.

The contribution of this paper can be summarized in the
following points:
• We propose to train DCT coefficients of filters in convo-

lutional neural networks rather than the filters themselves.
• We demonstrate on four large learning problems that the

above modification causes a significant improvement in
the performance of the networks on the test data.

• We analyze how the performance of the above networks
is influenced by switching off the DCT coefficients of
the filters, i.e. setting them equal to zero and excluding
them from training. We demonstrate that the performance
decreases very slowly with increasing the extent of the
switching off.

The remainder of the paper is organized as follows. The
next section presents related work. For this paper to be self-
contained, Sec. III presents DCT, IDCT, and some of their
properties. Sec. IV presents the DCT-Conv layer, a layer in
which filters are defined by trained DCT coefficients. Sec. V
presents an empirical study. The last section concludes the
paper.

II. RELATED WORK

This paper is related to two issues elaborated in the
literature: The first one is how to reduce the number of
trained parameters in neural networks. The second one is the
application of the DCT in the processing of data by neural
networks.

A. Reduction of trained parameters

There are two main motives to reduce the number of trained
parameters in a neural network. The first one is a better
generalization, thus a lower demand for data. The second
one is a lower demand for memory to store those parameters
which enables broader applicability, e.g. in mobile devices and
embedded systems.

In [8] a method of pruning parameters of small absolute
value was introduced that enabled reducing the number of
trained parameters from AlexNet by 85% without accuracy
deterioration. In [9], 75% of the parameters were reduced
in a convolutional network due to the decomposition of
the filter matrix. In [10] hashing functions were applied to

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

divide parameters into bins in which they are trained together.
[11] shows that a significant number of parameters can be
reduced by the appropriate shaping of the input and a network
structure.

An approach to parameters’ reduction in convolutional
networks is the application of the same filters in different
scales [12] and rotated by different angles [13]. This way
a network does not need to learn multiple filters to represent
the same pattern at different scales and angles. Consequently,
different filters may cover better all the patterns present in the
data that the network needs to be able to identify.

B. Application of Discrete Cosine Transform in neural net-
works

DCT has been applied to process input images for convo-
lutional neural networks. In [14] this approach was combined
with the transformation of images to YCbCr color space and
applied to image classification and verified on MNIST and
CIFAR-10 dataset. Also, images transformed to the frequency
domain are analyzed in specific applications. E.g. in [15],
features of images are produced by convolutional networks
processing both original images and their frequency represen-
tations. That architecture was applied to the classification of
cells suspected of acute lymphoblastic leukemia (ALL). DCT
was applied to compress filters in convolutional networks in
[16].

III. DISCRETE COSINE TRANSFORM

Let x ∈ Rm×n be a matrix with entries
xi,j , i = 0, ...,m− 1, j = 0, ..., n − 1. DCT-II (Discrete
Cosine Transform type II)1 of x produces a matrix,
X ∈ Rm×n, whose entries, DCT coefficients,
Xk,l, k = 0, ...,m − 1, l = 0, ..., n − 1 are given by
the formula:

Xk,l =

n−1∑
i=0

m−1∑
j=0

xi,j cos

[
π

n

(
j +

1

2

)
l

]
×

× cos

[
π

m

(
i+

1

2

)
k

]
.

(1)

Given DCT coefficients X , the original image x can be re-
constructed with IDCT-II (Inverse Discrete Cosine Transform
type II) as follows

xi,j =

m−1∑
k=0

n−1∑
l=0

Xk,l cos

[
π

n

(
j +

1

2

)
l

]
×

× cos

[
π

m

(
i+

1

2

)
k

]
.

(2)

The formulae for DCT-II and IDCT-II are thus very similar.
They apply to matrices. Formulae for DCT-II and IDCT-
II for vectors are easily obtained by setting above n = 1.
Formulae for DCT-II and IDCT-II for tensors of higher order
are analogical to those above.

1There are several types of DCT; type II is the most popular one in
multimedia.

In words, the DCT coefficient Xk,l says how strong in x
the component is whose frequency over the first coordinate
is proportional to k, and whose frequency over the second
coordinate is proportional to l. In particular, X0,0 is the sum
of all elements in x.

DCT is applied in JPEG compression: An image is divided
into squares and their DCT is computed. Only DCT coef-
ficients with sufficiently large absolute values are put into
the compressed file. Usually, that means that high frequency
components that correspond to noise and small details in the
image, insignificant for the viewer anyway, are skipped.

IV. METHOD

The general idea analyzed in this paper is as follows. We
take a convolutional layer of a neural network. Whenever
the filters in the layer are in use, they result from IDCT on
trained weights, instead of being trained parameters them-
selves. Specifically, tensors with trained weights are trans-
formed into filters of the same shape through IDCT. However,
some of the weights are set to zero. Hence, there are fewer
trained parameters than in the original convolutional layer, but
the filters within the layer are still diverse enough to respond
to different patterns in data.

A. DCT-Conv layer

Trained parameters (weights) of a DCT-Conv layer create
a 4th-order tensor in RN×C×H×W , where N is a number of
filters, C is a number of channels, and H,W are the height
and width of a filter, respectively. A filter is a sequence of C
slices – H ×W matrices. IDCT is performed on the weights
tensor to create a tensor of filters of the same shape, such that
IDCT is performed independently for each slice. Once created,
the tensor of filters is used as usual in a convolutional layer.

In some architectures, like ResNet, there are filters with
W = H = 1. Effectively, a layer of such filters is defined by
a matrix in RN×C (tensor of order 2). While this matrix could
also be computed on the basis of its trained DCT coefficients,
this is problematic because of two reasons. Firstly, while one
may expect a certain regularity in relation between values in
filters and their spacial coordinates, existence of a relation
between values in filters and indices of channel and especially
filter is less obvious. Secondly, usually N,C � W,H which
makes IDCT of the aforementioned matrix expensive. Because
of these problems, in the experiments discussed below a matrix
of 1×1 filters is produced with IDCT separately for its subrows
of length 16.

In order to run any gradient-based learning algorithm with
a network that contains a DCT-Conv layer, derivatives of the
cost function need to be computed with respect to the trained
weights. Let us denote the cost function by J , and suppose that
its derivatives with respect to filter components, denoted by
xi,j (2), namely dJ/dxi,j , are known. Then, the derivatives of
the cost function with respect to the trained weights, denoted

Figure 1. DCT-Conv layer. Gray weights are switched off (set to zero).

by Xk,l, are determined through error backpropagation i.e., by
analyzing how Xk,l influences different xi,j in (2), namely

dJ
dXk,l

=

m−1∑
i=0

n−1∑
j=0

dJ
dxi,j

cos

[
π

n

(
j +

1

2

)
l

]
×

× cos

[
π

m

(
i+

1

2

)
k

]
.

(3)

Some of the weights are switched off i.e., set to zero and
excluded from training. They are randomly, independently
between one another selected before the training. The switch-
off probability is defined by a coefficient, p ∈ [0, 1].

While in the future we plan to research more efficient
schemes of switching the weights off, now we only analyze
the above simple scheme. The DCT-conv layer is presented in
Fig. 1.

V. EXPERIMENTS

In the empirical study below we compare the performance
of original networks with convolutional layers against similar
architectures with DCT-Conv layers with the same number of
filters of the same size. Also, we analyze how the switch-
off probability impacts the performance of the networks with
DCT-Conv layers. We analyze 4 benchmark learning problems,
all based on the CIFAR-100 dataset of images.

A. Dataset: CIFAR-100

The CIFAR-100 dataset [17] contains 60,000 images in
RGB with a size of 32x32px. Each image is of one of 100
equivocal disjoint classes. The dataset is divided into a training
set (50,000 images) and a test set (10,000 images).

In our experiments the images have been normalized: For
each channel, c, an average, av(Itr[·, ·, c]), and standard devia-
tion, σ(Itr[·, ·, c]) were computed for the images in the training
set. The normalized images feeding the neural networks are
computed according to

Î[i, j, c] = (I[i, j, c]− av(Itr[·, ·, c])/σ(Itr[·, ·, c]) (4)

where (i, j) are the coordinates.

Table I
RESNET50 ARCHITECTURE. CONVBLOCK2D AND IDENTBLOCK2D ARE

PRESENTED IN FIG. 2. THE NUMBERS IN THE SIZE COLUMN NEXT TO
BLOCKS DENOTE THE NUMBERS OF FILTERS WITHIN CONVOLUTIONAL
LAYERS IN A BLOCK. COLUMN 3 AND 4: NUMBER OF PARAMETERS IN

3× 3 AND 1× 1 FILTERS, RESPECTIVELY.

ResNet50
Layer/Block Size Parameters

Conv2D 64x3x3 1792
MaxPool2D 2x2

ConvBl2D 64, 64, 256 36,928 37,440
IdentBl2D x2 64, 64, 256 73,856 66,256

ConvBl2D 128, 128, 512 147,584 230,528
IdentBl2D x3 128, 128, 512 442,752 395,136

ConvBl2D 256, 256, 1024 590,080 919,808
IdentBl2D x5 256, 256, 1024 2,950,400 2,627,840

ConvBl2D 512, 512, 2048 2,359,808 3,674,624
IdentBl2D x2 512, 512, 2048 4,719,616 4,199,424

GlobalAveragePooling2D
Dense 100 204,900

B. Problem 1. ResNet50 classifier

a) Architecture: We adopt the ResNet50 architecture
with bottleneck blocks [6]. ResNets are generally deep mod-
ular convolutional networks parameterized by the number of
layers. Characteristic modules in ResNets are residual blocks
that combine convolution with parallel passing of the block
input to its output. These by-passes prevent exploding and
vanishing gradients, and enable very deep architectures.

The orthogonal initialization [18] has been applied to all
the filters within the network. The output dense layer has been
initialized by means of Glorot’s method [19].

The network architecture is depicted in detail in Tab. I.
The network has 23,676,990 trained parameters, including
11,317,248 in 3x3 filters, and 12,130,384 in 1x1 filters.

b) Training: Classic Momentum [20] was applied with
a momentum decay factor of 0.9. The step-size was evolving in
the training time according to the following scheme: 0.001 in
epoch 1, 0.1 till epoch 60, 0.02 till epoch 120, 0.004 till epoch
160, and 0.0008 till the final epoch 200. The minibatches of
size 128 were used.

C. Problem 2. VGG-16 classifier

a) Architecture: The original VGG architecture [5] was
designed to process large images. The architecture used here
is based on VGG-CIFAR [22]. It was optimized to process
smaller images. It has a different number of dense layers,
their sizes are different, and it contains batch normalization
layers. Originally, VGG contains two dense layers with 4096
neurons and 1000 output neurons (the original VGG had
been trained on ImageNet). VGG-CIFAR contains only one
dense layer with 512 neurons and 100 output neurons (the
number of classes in CIFAR-100). Additionally, as compared
to the architecture from [22], we resigned from drop-out after
convolutional layers. That modification leads to a noticeable
improvement in performance on the test set.

The activation function in each convolutional layer is ReLU.
After each convolutional and dense layer there is a batch

Figure 2. Structure of ConvBlock2D and IdentBlock2D. The term K1×3×3
denotes that a convolutional layer includes K1 filters of size 3× 3. The term
2×2 denotes strides in both coordinates. The default strides are 1×1. A batch
normalization block [21] is after each convolutional layer.

Table II
VGG-16 ARCHITECTURE. 64X3X3 DENOTES 64 FILTERS WITH SLICES OF

SIZE 3X3. CONV2D X2 DENOTES 2 LAYERS ONE AFTER ANOTHER.

VGG-16
Layer/Block Size Parameters
Conv2D x2 64x3x3 38,720

MaxPool2D 2x2
Conv2D x2 128x3x3 221,440

MaxPool2D 2x2
Conv2D x3 256x3x3 1,475,328

MaxPool2D 2x2
Conv2D x3 512x3x3 5,899,776

MaxPool2D 2x2
Conv2D x3 512x3x3 7,079,424

MaxPool2D 2x2
Dense, ReLU 512 262,656

Dropout 0.5
Dense, softmax 100 51,300

normalization layer. A detailed description of the architecture
is presented in Tab. II. The network has 15,028,644 trained
parameters, including 14,710,464 in convolutional layers.

b) Training: The network was trained with the use of
the NAG algorithm. The momentum decay factor was set to
0.9. The step-size was evolving according to the formula

βt = β0(0.5
bt/20c), (5)

where t is the epoch index, β0 = 0.1 is the initial step-
size. The whole training lasted for 200 epochs. The loss
function was categorical cross-entropy with L2 regularization
of weights (with the coefficient of 0.0005). Minibatches of
size 128 were used for the training.

D. Problem 3. Autoencoder 1

a) Architecture: The first autoencoder is taken from [23].
It contains 6 layers: 2 convolutional, 2 dense, and 2 layers
with transposed convolution. Its architecture is presented in
detail in Tab. III. The network has 4,204,435 trained param-
eters, including 5,472 in convolutional layers and those with
transposed convolution.

Table III
AUTOENCODER 1. 16X3X3 DENOTES 16 FILTERS WITH SLICES OF SIZE

3X3. CONV2DT DENOTES TRANSPOSED CONVOLUTION.

Autoencoder 1
Layer Size Parameters

Conv2D, ReLU 16x3x3 448
MaxPool2D 2x2

Conv2D, ReLU 16x3x3 2,320
Dense 512 2,097,664

Dense, sigmoid 4096 2,101,248
Conv2DT, ReLU 16x3x3 2,320

UpScale2D 2x2
Conv2DTranspose, sigmoid 16x3x3 435

Table IV
AUTOENCODER 2. 16X3X3 DENOTES 16 FILTERS WITH SLICES OF SIZE

3X3. CONV2DT DENOTES TRANSPOSED CONVOLUTION.

Autoencoder 2
Layer Size Parameters

Conv2D, ReLU 16x3x3 448
Conv2D, ReLU 32x3x3 4,640
Conv2D, ReLU 64x3x3 18,496

MaxPool2D 2x2
Conv2D, ReLU 128x3x3 73,856
Conv2D, ReLU 64x3x3 73,792

MaxPool2D 2x2
Conv2D, ReLU 32x3x3 18,464
Conv2D, ReLU 16x3x3 4,624

Conv2D, sigmoid 8x3x3 1,160
Conv2DT, ReLU 16x3x3 1,168
Conv2DT, ReLU 32x3x3 4,640

UpSampling2D 2x2
Conv2DT, ReLU 64x3x3 18,496
Conv2DT, ReLU 128x3x3 73,856

UpSampling2D 2x2
Conv2DT, ReLU 64x3x3 73,792
Conv2DT, ReLU 32x3x3 18,464
Conv2DT, ReLU 16x3x3 4,624

Conv2DT, sigmoid 3x3x3 435

b) Training: The network was trained with the ADAM
algorithm using the momentum decay factor of 0.9 and the
step-size of 0.001. The minibatches size was 64. The loss
function was the binary cross-entropy.

E. Problem 4. Autoencoder 2

a) Architecture: The second autoencoder is based
on https://github.com/Puayny/Autoencoder-image-similarity.
However, the convolutions in its decoder were replaced with
a transposed convolution. The architecture is presented in
detail in Tab. IV. The network contains 390,955 trained
parameters, including 390,240 in (transposed) convolution
filters.

b) Training: The network was trained with the ADAM
algorithm using a momentum decay factor of 0.9 and the step-
size of 0.0005 (this was the largest value that assured stable
learning of the network). The minibatches size was 64. The
loss function was the binary cross-entropy.

F. Implementation and computational efficiency

Our experimental software has been written in
Python/Tensorflow 2.0. DCT-Conv layers were implemented

Table V
RESULTS. EACH REPORTED RESULT IS AN AVERAGE REGISTERED ON THE
TEST SET AFTER TRAINING. THE AVERAGE IS OVER 5 RUNS. LEFT-MOST

COLUMNS CONTAIN RESULTS FOR NETWORKS WITH CNN LAYERS.
OTHER COLUMNS CONTAINS RESULTS FOR NETWORKS WITH DCT-CONV

LAYERS WITH DIFFERENT PROBABILITY OF SWITCHING OFF WEIGHTS.

Problem 1, ResNet50, all filters. Result reported: Accuracy
CNN p = 0 p = 0.3 p = 0.5 p = 0.7 p = 0.9 p = 0.97
0.6698 0.7127 0.7198 0.6845 0.7044 0.7067 0.6529

Problem 1, ResNet50, only 3x3 filters. Result reported: Accuracy
CNN p = 0 p = 0.99 p = 0.999 p = 0.9999 p = 1
0.6698 0.6826 0.7331 0.7141 0.6415 0.3416

Problem 2, VGG-16. Result reported: Accuracy
CNN p = 0 p = 0.3 p = 0.5 p = 0.7 p = 0.9
0.7177 0.7221 0.7088 0.7099 0.6930 0.6517

Problem 3, Autoencoder 1. Result reported: MSE for pixels in [0, 1]
CNN p = 0 p = 0.3 p = 0.5 p = 0.7 p = 0.9
0.00136 0.00126 0.00132 0.00138 0.00151 0.00283

Problem 4, Autoencoder 2. Result reported: MSE for pixels in [0, 1]
CNN p = 0 p = 0.3 p = 0.5 p = 0.7 p = 0.9
0.00153 0.00118 0.00135 0.00149 0.00188 0.00381

such that an additional DCT block was applied to produce
filters of ordinary convolutional (or transposed convolution)
layers. Switching off was implemented such that the weights
were multiplied elementwise by mask tensors with appropriate
number of entries set to zero.

The real time overhead resulting from adding the DCT block
to the convolutional layer is comparable to the computing
time that the original layer takes. Therefore, our experiments
with DCT-Conv networks lasted up to twice longer than
with the original convolutional networks. This time could be
significantly reduced if DCT-Conv layer was implemented as
a single block.

G. Results

All the experiments were performed according to the fol-
lowing pattern:

1) The original neural network is trained.
2) The convolutional layers of the network are replaced

with DCT-Conv layers. Its trained DCT coefficients
are initialized as the components of the filters were
originally initialized. The network is retrained from the
beginning according to the original regime.

3) The DCT coefficients of the DCT-Conv layers are reini-
tialized, and some of them are switched off, i.e. set
equal to zero and excluded from the training. They
are switched off on random, each with probability p.
Technically, they are assigned random real numbers,
sorted according to those numbers, and first p100%
of them are switched off. Once again, the network is
retrained from the beginning according to the original
regime.

Note that the network architecture, as well as its training
regime, has been optimized with respect to its performance
when it is used without any further modifications. We do not

change any of these when replacing the original convolutional
layers with DCT-Convs.

The results are presented in Tab. V. Each second row in
Tab. V presents performance on the test set. Each number
averages 5 runs. For problems 1 and 2, the performance is
expressed with accuracy. For problems 3 and 4, the per-
formance is expressed with a mean square error. Every left
column shows the performance of the original convolutional
neural network. Other columns demonstrate the performance
of the network with its convolutional layers replaced by DCT-
Convs and their DCT coefficients switched off with a different
probability, p.

a) Problem 1: Here we can observe that the network
with our proposed layers outperforms the original one if only
p ≤ 0.9.

A debatable issue for this problem is how to treat 1 × 1
convolutions. At first, we joined them over 16 consecutive
channels and performed IDCT on such packs. In another
experiment we leave the original convolutional layers with
1× 1 filters, and the convolutional layers with W ×H filters
for W,H > 1 are replaced with DCT-Convs. The result is
stunning: Even if DCT coefficients of such layers are switched
off with the probability p = 0.999, the network performs
better than the original one. Let us consider a filter with 3×3
slices and 128 input channels. It has 3 · 3 · 128 = 1152 DCT
coefficients. When they are switched off with the probability
p = 0.999, some filters are switched off entirely, and each of
the others has only a few slices that are in fact operational.
This happens to be enough for a fairly good performance of
the network. However, it is not true that 3×3 filters are useless
in this network. When they are all switched off (p = 1), the
network performs poorly.

b) Problem 2: Here we can observe that the network
with our proposed layers outperforms the original one if only
p is very close to zero. However, the accuracy on the test set
decreases rather slowly with growing p.

c) Problem 3: Here we can observe that the network
with our proposed layers outperforms the original one if only
p < 0.5.

d) Problem 4: Here we can observe that the network
with our proposed layers outperforms the original one if only
p ≤ 0.5.

H. Summary

In all problems analyzed in the above empirical study, a net-
work with our proposed DCT-Conv layers performed better
than the original network with convolutional layers. Switching
DCT coefficients off in DCT-Conv layers led to the deterio-
ration of performance. However, the performance decreased
rather slowly with the growing probability of switching off. If
less than about 50% DCT coefficients were switched off, the
network still performed better than the original one. However,
in the case of the ResNet50 classifier (Problem 1) 90% DCT
coefficients could be switched off without deterioration of
performance. If only convolutional layers with 3 × 3 filters
in ResNet50 were replaced with DCT-Convs, then 99.9% of

DCT coefficients could be switched off without deterioration
of performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper DCT-Conv layer was introduced — a layer in
which trained weights are DCT coefficients of spatial filters.
The DCT-Conv layer realizes the idea that a sufficiently rich
set of spacial filters can have sparse frequency representation.

In four experiments with benchmark convolutional neural
networks, it was demonstrated that the networks with their
convolutional layers replaced by DCT-Conv layers outperform
the original networks even if large part, about 50%, of their
DCT coefficients are switched off (set equal to zero and
excluded from training). In some cases that part could be
significantly larger.

In this paper we considered switching off the DCT co-
efficients of the DCT-Conv layer on random with equal
probability for each layer. We plan to investigate strategies
of determining those probabilities for different layers and their
specific DCT coefficients. Also, optimization of the DCT-Conv
layers shape is a curious topic of future research.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan X Pascal GPU used for
this research.

REFERENCES

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deep-
face: Closing the gap to human-level performance in
face verification,” in 2014 IEEE Conference on Computer
Vision and Pattern Recognition, June 2014, pp. 1701–
1708.

[2] A. Esteva, B. Kuprel, R. Novoa, J. Ko, S. Swetter,
H. Blau, and S. Thrun, “Dermatologist-level classifica-
tion of skin cancer with deep neural networks,” Nature,
vol. 542, 01 2017.

[3] R. Ghosh, K. Ghosh, and S. Maitra, “Automatic detection
and classification of diabetic retinopathy stages using
cnn,” in 2017 4th International Conference on Signal
Processing and Integrated Networks (SPIN), Feb 2017,
pp. 550–554.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,
“You only look once: Unified, real-time object detection.”
CVPR, 06 2016, pp. 779–788.

[5] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv:1409.1556, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” arXiv:1512.03385, 2015.

[7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen,
D. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen,
“Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” arXiv:1811.06965, 2018.

[8] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained

quantization and huffman coding,” arXiv:1510.00149,
2015.

[9] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and
N. de Freitas, “Predicting parameters in deep learning,”
in Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2, 2013,
pp. 2148–2156.

[10] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and
Y. Chen, “Compressing neural networks with the hashing
trick,” in Proceedings of the 32nd International Confer-
ence on Machine Learning, 2015, pp. 2285–2294.

[11] M. Tan and Q. V. Le, “Efficientnet: Rethinking model
scaling for convolutional neural networks,” in Interna-
tional Conference on Machine Learning, 2019.

[12] Y. Xu, T. Xiao, J. Zhang, K. Yang, and Z. Zhang,
“Scale-invariant convolutional neural networks,”
arXiv:1411.6369, 2014.

[13] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia,
“Rotation equivariant vector field networks,” in The IEEE
International Conference on Computer Vision, 2017.

[14] M. Ulicny and R. Dahyot, “On using cnn with dct based
image data,” in 19th Irish Machine Vision and Image
Processing conference, 2017, pp. 44–51.

[15] S. Kant, P. Kumar, A. Gupta, and R. Gupta,
“Leukonet: Dct-based cnn architecture for the classifi-
cation of normal versus leukemic blasts in b-all cancer,”
arXiv:1810.07961, 2018.

[16] Y. Wang, C. Xu, S. You, and D. Tao, “Cnnpack: Packing
convolutional neural networks in the frequency domain,”
in Advances in Neural Information Processing Systems
29, 2016.

[17] A. Krizhevsky, “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep.,
05 2012.

[18] A. Saxe, J. McClelland, and S. Ganguli, “Exact solutions
to the nonlinear dynamics of learning in deep linear
neural networks,” arXiv:1312.6120, 2014.

[19] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in Pro-
ceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[20] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural Networks, vol. 12, no. 1,
pp. 145–151, 1999.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” in 32nd International Conference on Machine
Learning, 2015.

[22] S. Liu and W. Deng, “Very deep convolutional neural
network based image classification using small training
sample size,” in 3rd IAPR Asian Conference on Pattern
Recognition, 2015, pp. 730–734.

[23] P. Wawrzyński, “Efficient on-line learning with diagonal
approximation of loss function hessian,” in International
Joint Conference on Neural Networks, 2019.

