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Abstract—The current study addresses the problem of feature
selection performed for the data set collected in the milling
process. The data consists of 1709 records with 44 statistical

parameters computed on the basis of the measured input signals
from the accelerometer mounted on a lower bearing of the spindle
of Haas VM-3 CNC machining centre and the acoustic emission
sensor mounted in the machine cabin. A new feature selection
approach is proposed which is based on the fusion of three
filter methods: Pearson’s linear correlation coefficient, ReliefF
and single decision tree. By means of the introduced combined
ranking set, the most significant features are stored and then
employed to create the reduced data set. The validity of the
proposed solution is tested by computational intelligence models
in original and reduced data classification task. Based on the
experimental study the efficacy of the approach is confirmed.

Index Terms—feature selection, features’ significance, com-
bined ranking, neural networks, support vector machines, milling

process

I. INTRODUCTION

Feature selection (FS) involves creating a subset of attributes

from the entire set of predictor variables. This results in a

lower dimensionality of the input data space. When performing

FS, no data transformation occurs – one retains original values

of chosen attributes. For supervised classification tasks, FS

approaches are split into filter and wrapper methods. In filter

methods, FS process is isolated from the learning algorithm of

a model. The relevant attributes are chosen based on assumed

correlation between particular features and an output class.

FS is usually conducted by means of FOCUS algorithm [1],

fast correlation based filter approach [2], ReliefF [3] or a

decision tree [4]. In the wrapper approach, which is not under

investigation in the presented work, a classifier is involved

in FS process since based on its performance most suitable

feature subset is chosen.

In the literature, some attention has been paid to the feature

selection in the tool condition monitoring, also in the milling

processes. For example, in [5], decision tree (C4.5), scatter

matrix, adaptive neuro-fuzzy inference system and a crosscor-

relation method are utilized to find various features’ subsets

out of 25 available features from the data representing a wear

of the face mill. Regular and entry cuts are investigated. The

data are collected by acoustic emission sensors, accelerometers

and motor current sensor to determine the state of the tool.

A feed forward neural network is applied to evaluate five

sensors-based FS schemes by comparing their classification

rate and test errors. A significant improvement of the network’s

classification capabilities is observed after performing FS. The

authors of [6] apply a modified Fisher’s linear discriminant

analysis for FS from cutting force signals acquired in the

micro-milling process. The attributes are ranked according to

their class–discriminant ability. The data with reduced number

of features from 37 to 8 are used as the input for the hidden

Markov model (HMM) in the classification task. It is shown

that the proposed method improves HMM performance. The

work [7] focuses on the fault diagnosis of the face milling tool

during machining of a steel alloy. Vibration signals of the tool

are acquired under healthy and different fault conditions. FS is

performed with the use of the decision tree (J48) which selects

7 salient attributes out of all 30 histogram features extracted

from the original signals. A K–star algorithm is then used as

a classifier. After feature selection, high performance of the

algorithm is achieved.

One must be aware of the fact that the use of a sole FS

method in a considered attribute selection problem may prove

to be inadequate for a given model. The resulting feature

subset may turn out to be nonoptimal. Also, a selected method

may be applicable to a certain task while the other one can

be unsuitable. Thus, choosing a single best method for feature

selection is problematic.

However, as shown in many FS related scientific papers,

an in-depth investigation has been carried out to determine

whether a fusion of state-of-the-art FS methods can enhance

prediction capabilities of tested models. Rokach et al. [8]
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present how an ensemble approach can be applied to improve

FS performance. They show a general framework for creating

the subsets of attributes which are further combined into a

single final set. The combination is realized with the use of the

scheme based on voting. In [9], an algorithm of merging vari-

ous FS approaches is provided. It is based on the combinatorial

fusion analysis model. A rank-score function and an associated

graph are used to determine the diversity among applied FS

methods. The work in [10] presents the algorithm which allows

an ensemble of FS methods to reject detrimental attributes. It

uses feature “rankers” which determine the list of features

sorted based on their importance. The attributes are then

collected into a single list with the use of a suitable aggregation

function which provides a score for each feature based on the

feature’s placing in the original ranking list. Cateni et al. [11]

introduce a novel combination of three filter FS algorithms:

Fisher criterion, T–test and Kullback-Leibler divergence. Each

method calculates attribute scores which are then appropriately

combined to determine the mean value. Based on the mean and

assumed threshold, reduced feature set is created. Finally, an

exhaustive search is conducted to obtain a sub-optimal set of

variables. In [12], a framework of methods for constructing

ensembles of feature rankings is investigated. The methods

take as input attribute rankings, generated by selected FS

algorithms, and provide a feature relevance using various

rank aggregation procedures. For experimental purposes, four

different aggregation approaches are explored.

Based on the significant and justified contribution of fusion

based feature selection methods in the field of attribute impor-

tance estimation, in this paper we propose new FS approach.

It is based on Pearson’s linear correlation coefficient, ReliefF

and single decision tree algorithms. FS is applied to the data

set represented by 44 parameters extracted from the signals

acquired in the real milling process. The proposed approach,

with the use of a combined ranking idea, collects the most

significant attributes provided by each of the aforementioned

methods. The obtained features are then fed as the input to

three data classifiers: the multilayer perceptron (MLP), the

probabilistic neural network (PNN) and the support vector

machine (SVM). The accuracy of the classifiers computed

on the data set with features obtained by the proposed ap-

proach as well as three independently utilized FS methods

and original 44 attributes is compared. It is shown that the

solution introduced in the current study contributes to the

highest performance of the models.

The work presented in this paper is a part of a project

aimed at developing efficient classification methods which

can be used in real-time intelligent milling diagnostic system

[13]. Milling is still a substantial technique used in industrial

production, despite new developments in this field, i.e. 3D

printing. Practical implementation of Industry 4.0 concept

(i.e. automation and robotisation of manufacturing processes)

requires application of intelligent diagnostic methods in tech-

nological processes supervision systems. In consequence, pre-

sented work has great practical significance.

This paper is organized as follows. Section II puts forward

the architecture of the platform used for data acquisition, the

way the milling experiments are conducted and the description

of the extracted features. In Section III, the filter methods

utilized for FS are described. In Section IV, the proposed

FS method is introduced. The comparative analyses of the

obtained results are presented in Section V. Finally, Section

VI concludes current work.

II. MACHINING PROCESS AND DATA REPRESENTATION

This section describes the data acquisition environment

employed in the milling process. The features extracted from

the measured signals used for the analyses are also presented.

A. Testbed

The testbed consists of a 3–axis vertical CNC machining

center, a set of sensors and a data acquisition system. Milling

experiments are performed on Haas VM-3 CNC machining

center equipped with an inline direct-drive spindle. The set

of sensors includes: 7 accelerometers (single-axis), 1 acoustic

emission sensor and 1 force and torque sensor (thee-axis). In

this study, the signals collected from two sensors are used,

i.e. the accelerometer (ACC) mounted on a lower bearing of

the spindle (sensitivity 100 mV/g, bandwidth 10 kHz) and

the acoustic emission (AE) sensor mounted in the machine

cabin (sensitivity 53 mV/Pa). The data acquisition process is

performed by a platform for rapid prototyping of intelligent di-

agnostic systems developed by the authors [13]. The platform

includes Beckhoff Industrial Computer C6920 (IPC) and the

distributed input/output system based on EtherCAT protocol.

To collect signals from ACC and AE sensors, the analog input

modules EL3632 from Beckhoff are applied. The modules

EL3632 are designed for devices which meet the Integrated

Electronics Piezo-Electric standard. The oversampling factor

of EL3632 module is set to 50. The software part of the data

acquisition system consists of a real-time PLC task created in

Structured Text language (norm IEC 61131-3) with the use

of a factory automation programming environment TwinCAT

3 form Beckhoff as well as custom made Simulink projects

and Matlab scripts. Data collection performed during milling

experiments is done using Matlab/Simulink External Mode.

The sampling interval of the IPC real-time data collection task

and the duration of signal buffer (time series data) are equal

to 2 ms and 640 ms, respectively. Taking into account the IPC

real-time collection task interval and the EL3632 oversampling

factor, the final sampling interval for the signals collected

from the ACC and AE sensors takes the value of 40 µs (25

kHz sampling frequency). 16000 samples from each sensor

are stored in each data buffer.

B. Milling experiments

In this study, the data from 11 experiments are analyzed.

A single experiment includes the time series data collected

from ACC and AE sensors for one complete circular milling

trajectory performed at the edge of one Inconel 625 disc

(diameter: 100 mm, thickness: 8 mm). Each machining ex-

periment, lasting approximately 100 seconds, is performed



Fig. 1: The exemplary time plots for acceleration signal – sharp

and blunt cutters.

with the use of the same one four-teeth milling cutter and

the spindle speed 862 rpm (revolutions per minute) which

corresponds to 14.36 Hz. Two types of milling cutters are used

during the experiments, i.e. sharp and blunt. After each milling

experiment, the roughness of the disk surface is measured;

it is approximately 0.5 µm and 1 µm for sharp and blunt

tools, respectively. In the current work, data buffers collected

for machining done with different pieces of sharp tools (7

discs) are treated equally. The same approach is applied in

case of different pieces of blunt tools (4 discs). Finally,

after cleaning and pre-processing operations performed for all

collected data, 1085 and 624 buffers are used for the analysis

of the machining process done with sharp and blunt tools

respectively. Exemplary plots for time series data collected

for ACC sensor during machining with sharp and blunt tools

are shown in Fig. 1.

C. Features Extracted From the Input Signals

The main purpose of feature extraction is to significantly

reduce the dimension of raw data in time and maintain the

relevant information in the extracted features. Many research

works have investigated various feature extraction methods

[14], [15], [16], [17]. In this paper, a set of features in time

domain obtained from ACC and AE sensors are studied and

defined. They are summarized in Table I. The amplitude values

of both signals are expressed as x1,x2, . . . ,xn, where n= 16000.

Finally, 44 features are extracted from the signals collected by

means of both sensors.

This work leaves out many problems, such as feature con-

struction, embedded and hybrid feature selection, individual

vs. subset feature evaluation, time complexity of the proposed

procedure, as well as time-series analysis techniques. Even

though the data are time-series, the authors try to make the

method proposed in this article applicable to other data sets,

not just time-series. Moreover, the results of this work allow

us to assess which groups of features of the considered time-

series in time or frequency domain are more or less important

if the time-series analysis approach is chosen in the milling

process data classification problem.

III. FEATURE SELECTION APPROACHES

This section outlines three filter methods used for feature

subset selection among all 44 available attributes described in

Section II and defined in Table I. At the end of this part of the

work, the relevance of the features determined by considered

filter methods is discussed.

A. Feature relevance based on Pearson’s linear correlation

coefficients

For the i-th feature, a Pearson’s linear correlation coefficient

(PLCC) is defined as the covariance of the variables divided

by the product of their standard deviations [18]:

ri =
∑L

l=1 (xli − x̄i)(tl − t̄)
√

∑L
l=1 (xli − x̄i)

2
√

∑L
l=1 (tl − t̄)2

, (1)

where x̄i is the mean value of the i-th feature over all input

data: x̄i = L−1 ∑L
l=1 xli, and t̄ is the mean target value: t̄ =

L−1 ∑L
l=1 tl . One can show that the values of ri are independent

of outputs coding, and ri = ±1 if the vectors [x1i, . . . ,xLi]
T

and [t1, . . . , tL]
T

are linearly dependent, and 0 if they are

linearly uncorrelated. Since the probability that two variables

are correlated is established based on the complementary

error function P = erfc
(

|r|
√

I/2
)

which is monotonically

decreasing function of |r|, the feature relevance ranking can

be obtained using the values of P or |r|.

B. ReliefF algorithm

ReliefF, proposed in [3], computes a weight vector whose

elements provide the significance of particular data features.

Formally, it finds K nearest neighbors for the record xl among:

(i) data of the same class: [h1, . . . ,hk, . . . ,hK ] – nearest hits;

(ii) data from the remaining classes: [m
( j)
1 , . . . ,m

( j)
k , . . . ,m

( j)
K ]

– nearest misses; j = 1, . . . ,J and j 6= c where c refers to the

class of xl . The feature weights are determined as follows:

wnew
i = wold

i −
K

∑
k=1

∆(xli,hki)
2

L ·K

+
J

∑
j=1, j 6=c

[

P( j)

1−P(c)

K

∑
k=1

∆
(

xli,m
( j)
ki

)2

]

/(L ·K),

(2)

where P( j) and P(c) are the occurrence probabilities of class

j and c, respectively and ∆ calculates the difference between

the values of the i-th feature for two records; ∆ ∈ {0,1} for

discrete features while for continues values ∆ ∈ [0,1] [3]. The

greater weight value, the higher significance of a feature. The

choice of K influences the obtained relevance. In [19], K = 10

is recommended.



TABLE I: The list of features extracted from the input signals.

Index of the feature

ACC AE Feature description Expression

1 23 Maximum max = max
i=1,...,n

{xi}

2 24 Minimum min = min
i=1,...,n

{xi}

3 25 Peak to peak P = max−min

4 26 Median “middle” value in the sample

5 27 Maximum of the absolute value maxa = max
i=1,...,n

{|xi|}

6 28 Mean µ = 1
n

n

∑
i=1

xi

7 29 Mean of the absolute value µa =
1
n

n

∑
i=1

|xi|

8 30 Variance σ2 = 1
n

n

∑
i=1

(xi −µ)2

9 31 Root mean square RMS =

√

1
n

n

∑
i=1

x2
i

10 32 Standard deviation σ

11 33 Energy E =
n

∑
i=1

x2
i

12 34 Energy of the centered signal Ec =
n

∑
i=1

(xi −µ)2

13 35 Kurtosis K =
m4

σ4

14 36 Skewness S =
m3

σ3

15 37

k-th order moment
for k = 5, . . . ,10

mk =
1
n

n

∑
i=1

(xi −µ)k

16 38
17 39
18 40
19 41
20 42

21 43 Shannon entropy I =−
n

∑
i=1

x2
i log2 x2

i

22 44 Signal rate S =
P

µ

C. Single decision tree

Decision trees make splits that maximize the decrease

in impurity. By calculating the mean decrease in impurity

for each feature across all trees we can know that feature

importance. Feature importance is calculated as the decrease

in node impurity weighted by the probability of reaching that

node. The node probability can be calculated by the number

of samples that reach the node, divided by the total number of

samples. The higher the value the more important the feature.

D. Generated importance of the features

Table II shows the indices of 44 features ranked by PLCC,

ReliefF and SDT in terms of their decreasing importance. As

delineated, there are only 19 features specified by SDT since

the grown tree selected only 19 features as nodes rejecting

remaining 25 attributes. The first row of the table indicates

that all three FS methods provide different feature as the most

significant, i.e. m5 for the ACC and µa for both the ACC and

AE sensors.

IV. PROPOSED FEATURE SELECTION METHOD

The main purpose of this study is to propose an approach

that allows us to determine the most relevant ordered subset

of features, called a combined ranking score set. However,

the total number of ordered subsets of the set {1, . . . , I} is

|N (I,k)|= ∑k
j=0I!/(I− j)!, where I = 44 in our case, and k

is cardinality of N . For example, |N (44,3)| = 81401 and

|N (44,15)| ≈ 3.1 · 1023. Thus, an exhaustive search method

for an optimal combined ranking score set is unfeasible. In

order to solve this issue, three different filter methods are

applied. However, as presented in Section III, each method

provides different outcome which is reflected in diversified

features importance order (see Table II). One can state the

problem whether it is possible to find a subset of features that

is an effect of applying various filter methods at the same time.

Therefore, in this section we are interested in a fusion of three

different FS methods. As a result we find a suboptimal subset

of features which selects the most relevant ones, utilizing the

results of PLCC, ReliefF and SDT algorithms. This solution

is based on simple combined ranking score criterion which

takes into account the particular position of the feature in the



TABLE II: The sets of features’ indices sorted according to

the importance provided by PLCC (P), ReliefF (R) and SDT

(T ). The descending order is preserved meaning, the first

feature is the most significant, as denoted by rank column N.

N P R T N P R

1 15 7 29 20 20 38
2 14 14 7 21 3 36
3 17 29 8 22 5 15
4 19 35 15 23 33 39
5 29 28 13 24 30 43
6 10 32 17 25 34 21
7 9 31 32 26 36 37
8 8 25 23 27 22 22
9 12 24 5 28 37 11

10 11 27 31 29 39 12
11 7 13 6 30 38 8
12 31 23 28 31 6 9
13 32 26 25 32 28 10
14 16 34 20 33 41 16
15 1 30 33 34 44 44
16 27 33 1 35 40 17
17 18 42 18 36 42 3
18 23 40 2 37 2 18
19 25 41 24 38 26 19

39 43 2
40 13 5
41 24 1
42 21 20
43 4 6
44 35 4

significance order. Two following definitions are required to

select a feature as important.

Definition 1: Let P , R and T denote the sets of features’

indices ordered according to the criterion of significance

determined by PLCC, ReliefF and SDT methods, respectively.

Let Pi, Ri and Ti denote the subsets of the first i elements

of P , R and T , respectively. Since not all the features

may be included as tree nodes by SDT, it is assumed that

|P|= |R|> |T |, where | · | is the set’s cardinality. The set of

common features’ indices is defined as follows:

Ci = [(Pi ∪Ri)∩T ]∪Ti, (3)

where i = 1, . . . , |T |.
Definition 2: Given the sets P , R, T and the set of

common features’ indices Ci. Let C
j

i denote some feature

that is the j-th element of Ci. Let X

{

C
j

i

}

be some natural

number which directly corresponds to the index of C
j

i in X

where X stands for any of predefined sets of features’ indices.

A combined ranking score which is determined for the feature

C
j

i selected in Pi, Ri and Ti simultaneously is defined as

follows:

R
C

j
i

=
3

∑
s=1

(

|T |−Xs

{

C
j

i

}

+ 1
)

(4)

for Xs

{

C
j

i

}

6 |T |. In (4), Xs=1 = P , Xs=2 = R, Xs=3 =

T and j = 1, . . . , |Ci|. For any Xs

{

C
j

i

}

> |T |, the s-th

summand is not considered in computing R
C

j
i

. Adding 1

ensures assignment of the score from the set {1, . . . , |T |} ∀s.

As the working example, it is convenient to use the sets

P , R and T presented in Table II. Let us consider i = 3

first elements of these sets; this means that 3 features are

treated as important as the effect of applying PLCC, ReliefF

and SDT. Then: P3 = {15,14,17}, R3 = {7,14,29} and

T3 = {29,7,8}. Since 14 does not occur in T , (P3 ∪R3)∩
T = {15,7,17,29}. The set of common features’ indices

is therefore equal to: C3 = {15,7,17,29,8}. If one regards

j = 1, C 1
3 = 15 and therefore: P3{15} = 1, R3{15} = 0

and T3{15} = 4. The combined ranking score for the fea-

ture 15 chosen in P3, R3 and T3 simultaneously takes

the value: R15 = 19 − 1 + 1 + 19 − 4 + 1 = 35. Similarly,

R7 = 46, R17 = 31, R29 = 51 and R8 = 29. Based on the

values of R, one obtains the following combined ranking set

RC3
= {29,7,15,17,8}. RC3

determines the indices of the

features from most to least significant in C3.

Table III (the upper part) presents the combined ranking sets

RCi
. Note that the values of i are not successively increased

by 1. This is explained as follows; if we choose, for example,

i = 1 first elements of P , R and T then RC1
= {29,7,15}.

However, taking i = 2 implies RC2
= RC1

∪{14,14,7}. Since

the feature 14 does not occur in T and the 7-th attribute is

already included in RC1
, RC2

= RC1
. Therefore, i = 2 is ex-

cluded from the table. Thus, from i= 1, . . . , |T | of all possible

values, we solely obtain {1,3,5,6,7,8,9,11,14,15,17,18} as

the desired subset of indices i.

V. SIMULATION RESULTS

In this section, we present the performance of MLP [20],

PNN [21] and SVM [22] in the classification of consid-

ered input records with the FS applied to reduce data di-

mensionality. Each of these models operates on the train-

ing data which are regarded in terms of input–output pairs

(xl , tl), where xl = [xl1, . . . ,xlI ]
T is the feature vector and

tl is its associated target. The data cardinality, the number

of features and the number of given classes are equal to

L = 1709, I = 44 and J = 2, respectively. For the purpose

of the analysis, the following two tasks are regarded, i.e.: (i)

the features are selected based on three filter methods and

(ii) the features are chosen by means of the proposed approach.

Additionally, the models are tested in the classification of the

original data set consisting of 44 attributes. The performance

is evaluated with the use of the classification accuracy:

Acc =
1

L

L

∑
l=1

δ [y(xl) = tl ] , (5)

where y(xl) is the classifier’s output calculated for xl . In (5),

δ [·] = 1 when y(xl) = tl and 0, otherwise. Acc is determined

using a 10–fold cross validation procedure.

A. Parameter settings

In the experiments, both FS methods and data classifiers

need to be adjusted to provide the highest possible accuracy.



TABLE III: The upper part: the combined ranking sets for the indices of particular common features stored in Ci. The lower

part: the accuracy values (in %) achieved by MLP, PNN and SVM for the attributes included in RCi
.

N RC1
RC3

RC5
RC6

RC7
RC8

RC9
RC11

RC14
RC15

RC17
RC18

In
d
ic

es
1 29 29 29 29 29 29 29 29 29 29 29 29
2 7 7 7 7 7 7 7 7 7 7 7 7
3 15 15 15 15 15 15 15 15 15 15 15 15
4 17 17 32 32 32 32 32 32 32 32 32
5 8 8 17 17 17 17 17 17 17 17 17
6 13 8 31 31 31 31 31 31 31 31
7 28 13 8 8 8 8 8 8 8 8
8 28 13 13 13 13 13 13 13 13
9 28 28 28 28 28 28 28 28
10 23 23 23 23 23 23 23
11 25 25 25 25 25 25 25
12 24 24 24 24 24 24
13 5 5 5 5 5 5
14 6 6 1 1 1
15 20 6 6 6
16 33 33 33
17 20 18 18
18 20 20
19 2

Classifier

A
cc

u
ra

cy

MLP
83.39 84.55 87.67 87.14 87.03 85.66 84.97 84.87 84.54 84.32 84.62 84.21
±1.53 ±1.31 ±1.28 ±1.62 ±1.67 ±2.44 ±1.82 ±2.17 ±2.40 ±2.17 ±2.13 ±2.08

PNN
86.01 86.43 88.42 87.99 88.02 87.62 87.91 87.62 87.88 87.55 87.81 87.36
±0.18 ±0.15 ±0.23 ±0.36 ±0.35 ±0.18 ±0.60 ±0.35 ±0.22 ±0.14 ±0.24 ±0.33

SVM
85.37 86.52 88.29 88.52 88.77 88.60 87.99 86.60 86.14 85.20 85.78 85.38
±0.32 ±0.16 ±0.22 ±0.29 ±0.14 ±0.10 ±0.40 ±0.43 ±0.33 ±0.34 ±0.45 ±0.29

For this purpose, the appropriate grid search is performed and

the following parameter settings are applied:

1) For FS approaches:

• ReliefF: number of the nearest neighbors: K =
{6,8,10,12}.

• SDT: splitting algorithm: entropy; minimum rows in

a node: 10; maximum depth: 10.

2) For classification models:

• MLP: single-hidden-layer network with the number

of neurons H1 ∈ {2,4,6, . . . ,100} and two-hidden-

layer network where H1 > H2; training algorithm:

conjugate gradients, Levenberg–Marquardt method;

• PNN: smoothing parameter in the form of a matrix

with elements referring to each class and each feature

adjusted by means of conjugate gradient procedure.

• SVM: kernel function: (i) polynomial with d =
{2,3,4,5}, (ii) Gaussian with σ ∈ [0.05,50]; C =
{100,101,102,103,104,105}; quadratic programming

problem solved by sequential minimal optimization.

The simulations are run in Matlab and DTREG software.

B. Application of filter methods

The purpose of the current analysis is to show how the

FS conducted by means of PLCC, ReliefF and SDT methods

affects the classification accuracy of MLP, PNN and SVM.

Given the significance of the attributes, which are ordered from

the most to the least relevant, the considered data classifiers are

firstly applied in the classification task of all input examples

with only one, most important feature. Thereafter, a single

less meaningful feature is added to the input space and data

classification is performed. The procedure is repeated until all

attributes (44 for PLCC, ReliefF and 19 for SDT) are presented

to the classifiers. Fig. 2 (a), (b) and (c) illustrate the influence

of the features’ significance provided by filter methods on the

accuracy of MLP, PNN and SVM, respectively. The following

observations are worth stressing:

1) The accuracy changes follow similar pattern for each

model: low initial values, then abrupt increase and settling

within small changes for a greater number of features (N).

2) For each model, some analogy resulting from the appli-

cation of FS takes place:

• PLCC: four low initial values of Acc at ≈ 65%;

sudden increase of Acc to ≈ 82%; 82% accuracy level

for N = {6,7,8,9,10}; further gain in the accuracy

up to ≈ 87% for N > 12.

• ReliefF: two low early accuracy values; sudden in-

crease of Acc to ≈ 85% followed by its constant level

for N = {3, . . . ,25}; for N > 25, ≈ 5% growth of the

accuracy for MLP and SVM;

• SDT: single low Acc ≈ 75% for N = 1 followed by

sudden increase up to ≈ 85%; subsequent accuracy

gain to ≈ 87%; minor decrease of Acc for N > 10.



Fig. 2: Averaged accuracy for MLP, PNN and SVM. The axes

labeled N represents the number of features which constitute

the input for all classifiers.

Table IV presents the highest accuracy results attained by

MLP, PNN and SVM for the input records having features

reduced by the PLCC, ReliefF and SDT methods (columns 2,

3 and 4, respectively). Next to the Acc values, we indicate

the number of features for which a particular outcome is

obtained. As shown, for each filter method, the accuracies

of data classifiers achieve higher rates than those for original

44 input space (last column in the table). Also note that this

improvement takes place when N < 44.

C. Features’ selection based on combined ranking set

The data sets with features’ subsets provided by the com-

bined ranking method (Table III) are used to train considered

data classifiers.

The remarks presented below stress the validity and effi-

ciency of the proposed FS approach. From the results shown

in Table IV we can conclude as follows:

1) There exist such a data set with the features represented

by RCi
for which the accuracy values of MLP, PNN and

SVM are higher than Acc for the original data set.

2) The number of features provided by the proposed method

is significantly lower than N obtained by the PLCC and

ReliefF methods for all classifiers. However, for MLP,

N = |RC5
| is equal to 7 which is the number of the

attributes determined by SDT, while for SVM model

N = |RC7
|= 9. Admittedly, the proposed methods returns

N = 7 for PNN while N = 6 for SDT, but the PNN’s

accuracy value is higher than the one of the SDT model.

3) For each data classifier, the accuracy achieved on the data

set reduced by the proposed method is higher than Acc

obtained after applying two out of three filter methods.

4) For all classification models, the highest accuracy is

determined by a different base FS method. There is no

single FS method that provides the highest Acc for at

least two models.

If we have a closer look to the bottom three rows in

Table III, one observes that achieving maximum value of Acc

for MLP and PNN at N = 7 is influenced by the features

indexed 13 and 28 which occurred in RC5
. Similarly, those two

features contribute to the improvement of the SVM’s accuracy.

However, the highest performance of SVM is attained for RC7
,

i.e. when the features 32 and 31 are also included in the input

space. It is also worth noting that the accuracies of MLP and

SVM steadily decrease their values after the highest Acc is

determined (RC5
and RC7

, respectively) to reach over 3%

lower rates for RC18
. In the case of a PNN, such a decrease

is equal to over 1%.

VI. CONCLUSIONS

In this article, the method for the attributes’ selection was

proposed. The utilized data set took the form of 44 parameters

extracted from the input signals acquired within the milling

process. By merging three filter methods: PLCC, ReliefF and

SDT the proposed method utilized the combined ranking score

to provide the set of the most relevant features. To verify the

validity of the introduced approach, MLP, PNN and SVM were



TABLE IV: First three columns: the highest Acc for MLP, PNN and SVM obtained on the data set with the number of attributes

reduced to N according to three FS procedures; fourth column: the highest Acc for the combined ranking set RCi
; final column:

Acc for the entire data set. The outcomes (in %) are averaged over 10 simulation runs; standard deviations are included.

PLCC ReliefF SDT Proposed method All features
Acc N Acc N Acc N Acc N Acc N

MLP
87.43

14
86.62

31
88.43

7
87.67

7
85.94

44
±1.60 ±2.09 ±1.52 ±1.28 ±1.87

PNN
88.75

26
88.18

26
88.34

6
88.42

7
84.97

44
±0.24 ±0.24 ±0.18 ±0.23 ±0.73

SVM
88.06

25
89.98

33
87.81

9
88.77

9
86.81

44
±0.44 ±0.23 ±0.16 ±0.14 ±0.01

applied to the classification tasks of the studied data set with

features provided by the proposed method, PLCC, ReliefF, and

SDT and also all training attributes.

The propounded heuristic fusion of feature selection meth-

ods can be perceived as universal since, due to the fact of

the aggregation of the results obtained by the base filter

algorithms, it is unnecessary to conduct the comparative ex-

periments aiming at the choice of the FS method predisposed

to a particular classification problem. The solution provided in

this paper is concerned with three state-of-the-art approaches;

however, it can be applied to other FS methods or a greater

number of theirs.

The future work will focus on the task of weighting the fea-

tures selected as significant by individual FS methods. Some

criterion will be assumed for this purpose, e.g classification

correctness of the model attained for a data with the subset of

features selected by the base methods.
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