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Abstract—Deep neural network models represent the state-
of-the-art methodologies for natural language processing. Here
we build on top of these methodologies to incorporate temporal
information and model how review data changes with time.
Specifically, we use the dynamic representations of recurrent
point process models, which encode the history of how business or
service reviews are received in time, to generate instantaneous
language models with improved prediction capabilities. Simul-
taneously, our methodologies enhance the predictive power of
our point process models by incorporating summarized review
content representations. We provide recurrent network and
temporal convolution solutions for modeling the review content.
We deploy our methodologies in the context of recommender
systems, effectively characterizing the change in preference and
taste of users as time evolves. Source code is available at [1].

Index Terms—dynamic language models, marked point pro-
cesses, recommender systems

I. INTRODUCTION

Dynamic models of text aim at characterizing temporal
changes in patterns of document generation. Most successful
dynamic language models are Bayesian in nature, and lag
behind state-of-the-art deep language models in terms of
expressibility. A natural space to study some of the temporal
aspects of language is that of the large review datasets found
in e-commerce sites. The availability of millions of reviewed
items, such as business or services, books or movies, whose
reviews have been recorded in time scales of years, opens up
the possibility to develop deep scalable models that can predict
the change in taste and preference of users as time evolves.
Originally, the interaction of users in these e-commerce sites
were studied in the context of collaborative filtering, where
the goal was to predict user ratings, based on user interaction
metrics. Here we aim to look directly at the content of reviews
as time evolves.

Costumer reviews provide a rich and natural source of
unstructured data which can be leverage to improve rec-
ommender system performance [2]. Indeed, reviews are ef-
fectively a form of recommendation. Recently, a variety of
deep learning solutions for recommendation have profit from
their ability to extract latent representations from review data,
encoding rich information related to both users and items.
Time represents yet another dimension of context, as user pref-
erence and item availability change with time – and indeed,
causal and temporal relations have been known to improve

Fig. 1: Recurrent Point Review (RPR) Model. We treat the pair
(tj , (w

j
0, · · ·wj

Lj−1)) as input to our model. The hidden state
of the temporal model hj captures the non-linear dependency
between timing and text content from past reviews. On the
other hand, the mean hidden state of the language model s̄j
holds information about the text content of the current review
and is used for updating the global representation hj . See
Table I for reference to our notation.

the performance of recommender systems [3] [4]. Despite this
fact, recent natural language processing (NLP) methodologies
for rating and reviews [5] lag behind at incorporating temporal
structure in their language representations. In the present work
we exploit recurrent neural network (RNN) models for point
processes, and feed them neural representations of text, to
characterize costumer reviews. Our goal is to capture the
changes in user taste and item importance during time, and to
exploit those changes to better predict when are new reviews
arriving, and what do they actually say. We summarize our
contributions as follows:

• A text-augmented marked temporal point process model
for review arrival times with better predictive perfor-
mance,

• A hierarchical language model that leverages the global
dynamic representations of the review arrival point pro-
cess, effectively defining instantaneous language models
with improved modelling performance.

We present the related work in Section II and introduce our
model in Section III. The baseline models used for comparison
in this paper are presented in Section IV. The experimental
setup and results are presented in Section V. Finally, in Section
VI we conclude and discuss future work.
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II. RELATED WORK

The dynamics of language is of fundamental importance
in social sciences as a proxy for cultural evolution [6].
Complex system methods seek to understand the emergence
of the encoding capabilities of language [7], and evolutionary
approaches – following the Bayesian tradition from Phyloge-
netics, study the competition between grammar and syntax
in the context of historical linguistics [8]. Closer to our line
of work, research of online communities point to temporal
linguistic changes as means to enforce community norms
[9]. Our methodologies aim at studying similar systems in
the e-commerce review context, wherein linguistic change is
relevant in time scales of months and years.

The work on language dynamics from the machine learning
community has mainly focused on the dynamics of word em-
beddings and topics. On the one hand, different embeddings,
as e.g. word2vec [10], are trained in slices of temporal data
and alignments methods are performed a posteriori [11], [12].
The probabilistic framing of word embeddings has, in contrast,
allowed for a stochastic-process point of view of embedding
evolution [13]. On the other hand, within the dynamic topic
modelling approach, the parameters of models like Latent
Dirichlet Allocation are defined to follow known stochastic
processes in time [14], [15]. Likewise, self-exciting point
processes in time have allowed for clustering of document
streams [16], [17]. Lastly, while writing this paper we found
[18], in which a RNN language model is conditioned on
a global dynamic latent variable. In contrast to this work,
our dynamic representations explicitly encode both timing
and content of past reviews, and can capture non-Markovian
dynamics.

Finally, within the recommender system realm deep neural
networks models of review data for rating predictions use
embedding representations, as well as convolutional neural
networks [19]. They also provide characterization of review
usefulness [20], use reviews for product description [21], and
provide better representations for rating prediction [22]. The
need to interact with the costumer has also led to question
answering solutions [23], [24]. Different from these works,
we focus on the temporal aspects of review content.

III. RECURRENT POINT REVIEW MODEL (RPR)

Rather intuitively, the generation process underlying the
content of the reviews received by a business or service is
intimately related to how fast and when these reviews are
created (or received) in time. It is nor hard to imagine, for
example, reviews with similar content clustering and forming
different kind of patterns in time. Based on this intuition, we
develop a model that explicitly uses the text content of reviews
to better predict the arrival times of new ones. Simultaneously,
the model leverages the history of how reviews have arrived
in time to yield instantaneous language models, i.e. language
models which are informed by time. As a result we improve
the text prediction capabilities of standard language models by
learning representations which characterize the time evolution

Symbol Description
V vocabulary size
H dimension of hidden state for temporal dynamics
S dimension of hidden state for language model
W word embedding dimension
a item index (business)
Na number of reviews for business a
M total number of businesses
raj review of business a at time step j
xaj text of review raj
Lj number of words in the jth review
taj timestamp of review raj
wj
i ith word embedding in the jth review

Xa
j bag of words embedding for review raj

haj hidden state of the temporal model for review raj
s̄j summary content representation for the jth review

TABLE I: Summary of notation used throughout the paper.

of the review content describing the business or service in
question.

Consider an item a (e.g. a business, service or movie) and
assume that, since its opening to the public, it has received a
collection of Na reviews raj = {(xaj , taj )}Na

j=1, where taj labels
the creation time of review raj and xaj = (wa,j

1 , ...,wa,j
La,j

) cor-
responds to its text1. Such a collection of reviews effectively
defines a point process in time. Our main idea is to model
these point processes as RNNs in continuous time, and feed
them representations summarizing the content of past reviews.
We then use the point process’ hidden representations, which
encode the nonlinear relations between text and timing of past
reviews, to predict both (i) how the reviews’ content of a given
item changes with time, and (ii) when are new reviews going to
arrive. The model thus consists of two interacting components:
a neural point process model which leverages the information
encoded in the review content, and a dynamic neural language
model which uses the point process history. In what follows
we dwell into the details of these two building blocks. Figure
1 summarizes the Recurrent Point Review model.

A. Dynamic language models for review text content

Auto-regressive neural language models approximate the
joint probability distribution over sequences of words with a
product over conditional probabilities such that

p(x) =

L∏
i=0

pθ(wi|w<i), (1)

where x = (w1, ...,wL) labels the sequence of words in ques-
tion, and pθ is a discrete probability distribution, parametrized
by a neural network with parameter set θ, which yields the
probability of observing wi given the previously generated
words w<i [25]. In order to capture how the review content
of a given item changes with time, we assume the conditional
probabilities in Eq. (1) additionally depend on a vector repre-
sentation hj , which encodes the nonlinear relations between
creation times and content of past reviews. Let us assume
for the moment that hj−1 is given. We shall explain how to

1In what follows we shall drop the index a over items.



Fig. 2: Neural networks parametrizing our dynamic language
models. Upper figure: LSTM network for which the hidden
state sji is updated recursively. Lower Figure: Dilated TCN,
whose effective receptive size grows exponentially with each
layer. The temporal vector representation hj−1 is concatenated
with each word embedding in both models. S0S and EOS label
the star-of-sequence and end-of-sequence tokens. See Table I
for reference to our notation.

calculate it in Section III-B below. Given hj−1, we can rewrite
Eq. (1) for the jth review of an item thus

p(xj |hj−1) =

Lj∏
i=0

pθ(w
j
i |wj

<i,hj−1). (2)

In practice we define pθ as a categorical distribution over a
vocabulary of size V whose class probabilities πji ∈ RV are
given by

πji = softmax(Wsji ), sji = gθ(w
j
<i,hj−1), (3)

where the index “i” runs from one to Lj , W ∈ RV×S

is a learnable weight matrix, and sji ∈ RS is the hidden
representation of the ith word in review j. We shall model the
function gθ with two standard neural network architectures,
namely a Long short-term memory (LSTM) neural network
and a Temporal Convolutional Network (TCN). We briefly
revisit these two architectures below.

1) Long Short Term Memory Network: One of the most
common variants of recurrent neural networks, aimed at solv-
ing the vanishing gradient problem, is the long short-term
memory network [26]. Let us define ŵj

i = concat(wj
i ,hj−1).

The LSTM network recursively processes each element ŵj
i in

review j while updating its hidden state sj as follows

it = σ(W1
i ŵt + W2

i st−1 + bi),

ot = σ(W1
o ŵt + W2

o st−1 + bo), (4)

ft = σ(W1
f ŵt + W2

f st−1 + bf ),

ct = ft � ct−1 + it � tanh(W1
c ŵt + W2

c st−1 + bc),

st = ot � tanh(ct).

Fig. 3: Temporal Convolution Network: Residual Block

Here it, ot ft, ct, and st are the input, output, forget, memory
and hidden states of the LSTM, respectively; “t” runs from
one to L, the number of words in the jth review (note we
have omited j above); σ labels the ReLU nonlinearity and
� labels element-wise multiplication. The upper sub-figure in
Fig. 2 depicts the LSTM dynamic language model.

2) Temporal Convolutional Network: Convolutional neural
networks have shown to be the workhorse for image pro-
cessing tasks [27], [28], and NLP applications have profit
from their rich representations of text [29]. To extend these
model architectures for sequential modelling tasks, one must
enforce two conditions [30]: (i) no information “leakage” from
the future to the past, and (ii) the architecture should take a
sequence of any length and map it to an output sequence of
the same length. Both these conditions can be achieved with
the correct padding, and we refer to [30] for reference.

Dilation: One would like the network to look very far into
the past. This characteristic is accomplished by what is known
as diluted convolutions [31]. Essentially, dilation boils down
to skipping d − 1 inputs at each step. More formally, for a
filter f : {0, ..., k− 1} → R, the dilated convolution operation
g on the ith word of review j reads

gθ(w
j
i ) =

k−1∑
l=0

fθ(l) · xji−dl, (5)

where d is the dilation factor and k is the filter size. With
dilation, the effective receptive size can grow exponentially2.

Residual Block: Our TCN model also uses residual con-
nections [32] to speed up convergence. Specifically, we use
a residual block similar to that of [33], [34]. The block is
sketched in Fig. 3.

The sequence of word representation sji of Eq. (3) is thus
given by

sji = gθl(ReLU(gθl−1
( . . . ReLU(gθ1(ŵj

i )) . . . ))), (6)

where l is the total number of layers in the TCN, ŵj
i =

concat(wj
i ,hj−1) and gθ is defined in Eq. (5) above. The lower

sub-figure in Fig. 2 shows the TCN dynamic language model.

2In practice, we double the dilation step at each layer, i.e. dl+1 = 2dl.



Fig. 4: Text-augmented Recurrent Point Process (RPP) model.
We treat the pair (tj , s̄j) as input to the temporal model. The
hidden state hj captures the non-linear dependency between
timing and content of the review arrival process. The summary
representation of the language model s̄j holds information
about the text content of the current review and is used for
updating the global representation hj . See Table I for reference
to our notation.

B. Temporal model for review creation: Recurrent Point Pro-
cess (RPP) model

The collection of reviews received by a business or service
effectively defines a point process in time. Let us consider
a point process with compact support S ⊂ R. Formally,
we write the likelihood of a new arrival (i.e. a new review)
rj+1 as an inhomogeneous Poisson process between reviews,
conditioned on the history Hj ≡ {r1, ..., rj}3 [35]. For
the one-dimensional processes we are concerned here, the
conditional likelihood function reads

f∗(t) = λ∗(t) exp

{∫ t

tj

λ∗ (t′) dt′

}
, (7)

where λ∗ is (locally) integrable and is known as the intensity
function of the point process. Following [36], [37], we define
the functional dependence of the intensity function to be given
by a RNN with hidden state hj ∈ RH , where an exponential
function guarantees that the intensity is non-negative

λ∗(t) = exp
{
vt · hj + wt (t− tj) + bt

}
. (8)

Here the vector vt ∈ Rd and the scalars wt and bt are trainable
variables.

Now, we can modify the original RPP model of [37]
and augment hj to explicitly encode the nonlinear relations
between content and timing of past reviews. Consider the
summary representation s̄j for review rj defined as the average

s̄j =
1

Lj

Lj∑
i

sji , (9)

where sji is given by Eq. (3). The update equation for the
hidden representation hj can then be written as

hj = gθ(tj , s̄j ,hj−1), (10)

where tj labels the creation time of review rj and θ denotes
the network’s parameters. In practice, gθ is implemented via

3a.k.a. filtration.

an LSTM network with update equations similar to those in
Eq. (4). To summarize, we use the summary representations
s̄j of the review content as marks in the recurrent marked
temporal point process [38]. Figure 4 sketches our text-
augmented RPP model.

Inserting Eq. (8) into Eq. (7) and integrating over time
immediately yields the likelihood f∗ as a function of hj , that
is

f∗(t|hj) = exp
{
vt · hj + wt (t− tj)

+bt +
1

wt
exp

{
vt · hj + bt

}
− 1

wt
exp{vt · hj + wt (t− tj) + bt}

}
. (11)

Prediction and sampling. In order to use the RPP model
for both prediction and sampling we require p(T |Hj), the
probability that the next review arrives at time T given the
previous history until the arrival of rj . In the Appendix we
calculate the latter and give expressions for both the average
time of the next arrival and the inverse of the cumulative
function of p(T |Hj), which is required to sample the next
review arrival time via inverse transform sampling.

C. Recurrent point review model log-likelihood
We shall train our model using maximum likelihood. The

complete log-likelihood of the RPR model can by written as

L =

M∑
a=1

Na∑
j=1

{
log f∗(δaj+1|haj ) + log p(xaj |haj−1)

}
, (12)

where f∗ is the conditional likelihood function of the RPP
model defined in Eq. (11); δaj+1 ≡ taj+1 − taj denotes the
inter-review time for item a; and p(xaj |hj−1) labels the joint
probability distribution over the sequence of words in raj , as
defined in Eq. (2).

IV. BASELINE MODELS

In this section we present a set of dynamic review models
to be used as baselines [39] in the experiment section below.
These baselines will help us test the relevance of some of
the properties of the RPR model, as well as of some of the
hypothesis implicitly made while defining it. We shall replace
the auto-regressive neural language models (LM) of Section
III-A with a Bag of Words (BoW) Neural Text Model. This
allows us to test, for example, whether the review word order
(i.e. its grammar and distributed semantics) helps in modelling
the arrival times of new reviews, or if it is enough to simply
know the presence of some key words to successfully perform
this task. We also consider replacing the RPP model of Section
III-B with a simpler LSTM model. Such a modification helps
us test e.g. whether the point-process nature of how reviews
are received in time (e.g. its self-exciting properties) really
plays a role when modelling the evolution of review content.

In total we consider four combinations of dynamic review
models: (i) RPP+(BoW) in which we replaced the autoregres-
sive LM with a BoW model, (ii) t-LSTM+(RNN) and (iii) t-
LSTM+(CNN), for which we replaced the RPP model with



Dataset #reviews #items #users #sentences #words
Yelp-Shopping 227K 12K 174K 1,6M 11,5M

TABLE II: Yelp shopping category dataset statistics.

a simple LSTM, and (iv) t-LSTM+(BoW), for which both
language and RPP models were replaced. Below we describe
the BoW and t-LSTM models in detail.

A. Bag of Words (BoW) Neural Text Model

We start by transforming the text of each review into a
bag of words (BoW) representation Xj ∈ RV , where V is
the vocabulary size [40]. To model the text component of
reviews we assume the words in review rj+1 are generated
independently, conditioned on hj , a vector representation
describing the review creation dynamics. Note that hj can
come from either the RPP model of Section III-B or the t-
LSTM model of Section IV-B. Following [41] we write the
conditional probability of generating the ith word wj+1

i of the
(j + 1)th review as

pθ(w
j+1
i |hj) =

exp {−z(wj
i ,hj)}∑V

k=1 exp {−z(wj
k,hj)}

, (13)

z(wj
i ,hj) =− hTj Rwj

i − bwj
i , (14)

where R ∈ RH×V and b ∈ RV are trainable parameters, and
wj
i is the one-hot representation of the word at position i of

review j. We train this model via maximum likelihood.

B. t-LSTM model for review creation

The inter-review time δj+1 ≡ tj+1− tj can be modelled as
the mean of an exponential distribution with parameter λθ(hj).
The function λθ is modelled by a multilayer perceptron and
the hidden state encoding the history of review arrivals is given
by

hj = fθ(tj , αj ,hj−1), (15)

where fθ is implemented by an LSTM network and αj
labels a text representation which can either be the summary
representation s̄j from the language models of Section III-A
or the BoW representation Xj of Section IV-A.

mean std max 50% 95% 99%
reviews 17.57 29.99 1 147 10 53 123
sentences 7.32 5.93 99 6 18 31
words 50.41 46.40 493 36 136 238

TABLE III: Review statistics.

V. EXPERIMENTS AND RESULTS

A. Data set

For performance validation of the models we choose the
Yelp19 dataset.4 We take all reviews for businesses that are
labeled with the shopping parent category from 01 Jan 2016
to 30 Nov 2018. The creation time of a review is defined as
the difference in days between the original timestamp and 01

4https://www.yelp.com/dataset

Jan 2016. Next, we group reviews by business. All businesses
with less than 5 reviews are removed. The sequential language
models use the raw text from the reviews changed into
lower case. In contrast, we convert the text from each review
into a BoW vector of size 2000 [40] for the BoW models.
Preprocessing scripts can be found at [1].

The result from the preprocessing is summarized in Tables II
and III. Note that the average number of reviews per business
is 17.57, and 50% of the businesses have less or equal to 10
reviews. The average length of a review is 50.41 sentences.
This information gives insights helpful in the hyperparameter
search during training. Finally, Figure 5 shows the number of
posts per business distribution (Fig. 5a) and the log inter-arrival
distribution (Fig. 5b), as well as the number of sentences (Fig.
5c) and number of words (Fig. 5d) per review distributions.

B. Training and Model Configuration

Training. The RPR models training on the objective Eq. (12)
has shown to be challenging. This is due to the fact that
each model component (RPP and dynamic LM) use the latent
representation from the other (s̄j and hj , respectively). Since
we are using very flexible models, we have to be careful not to
end up in a situation wherein one of the models is significantly
much better than the other. Such a situation would cause one,
or maybe both, of the models to ignore the latent embedding
from the other one. To prevent such a situation, the frequency
of gradient updates for each model should be tuned. Bear
in mind that the RPP model is trained with backpropagation
trough time (BPTT) [42], [43], as to avoid the inherent RNN
problems – like vanishing or exploding gradient. Therefore,
our propose solution is to run two forward steps for each
BPTT window. In the first step, we freeze the parameters
of the RPP model, and only update the parameters of the
dynamic LM at each time step in the window, while storing
the summary content representations. For the second forward
run we freeze the parameters of the LM, and use the stored
s̄j as input to compute the gradients of the RPP model. This
time we can perform gradient updates at the end of the BPTT
window. Using one optimizer to train both models showed to
be unstable.5

Model Configuration. In our experiments, we randomly
split each dataset into two parts: training set (80%) and test
set (20%). We use grid search for hyper-parameters tuning.
The temporal component of all dynamic review models have
hidden state size of H = 128, and we project s̄j into a 16-
dimensional space before concatenation. The LM-RNN model
has a hidden dimension S of 1024. We set the convolution filter
to size k = 3 for the LM-CNN model, and choose to use 6
residual blocks with dilation [1, 2, 4, 8, 16, 32], respectively.
Weight normalization [45] is used between the convolution
layers. The vocabulary size is V = 3000 for all sequential
language models and we use the GloVe word embeddings [46],
with dimension W = 300.

5This is due to the fact that optimizers like Adam [44] keep information
about the dynamics of training. Using the same optimizer for the two models
will lead to instabilities since the models have different learning dynamics.
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Fig. 5: Empirical distribution for different aspects of the data.

We use Adam [44] to optimize the language model compo-
nents of our models, with learning rate 0.0002 and β1 = 0.9.
The optimization of the temporal component was done with
Adadelta [47], initialized with a learning rate of 1. The size of
the BPTT window for the RPP model is 20, since the average
number of arrivals per business is 17.57. We limit the length of
each review to be of 80 tokens. All methods are implemented
using PyTorch v1.36. Source code for all models can be found
at [1].

C. Results

Given an item (business) of interest, the RPR model predicts
both the arrival time of its next review and the probability
of the word sequences within that review. To quantitatively
evaluate the performance of the model on these tasks, we
compute the root-mean-squared error (RMSE) ε on the inter-
review times, and the perplexity per word P with respect to
the review content. Specifically, we define the RMSE as

ε =

√√√√ M∑
a

Na∑
j

|δaj − 〈δ̃aj 〉|
MNa

, (16)

where 〈δ̃aj 〉 is the mean predicted inter-review time7 and δaj is
its empirical value, Na is the number of reviews for business
a and M the total number of businesses. Likewise we define
the perplexity per word as

P = exp

−
M∑
a

Na∑
j

La,j∑
i

log p(wa,j
i |wa,j

<i ,h
a
j−1)

MNaLa,j

 , (17)

where wa,j
i and La,j label the ith word and the number of

words, respectively, in the jth review of business a.
To set yardsticks by which to judge the performance of

our models, let us first analyse the review arrival process
and the word distribution of the review content separately,
that is, as though they were independent. Consider the time
series defined by the review creation times {taj }Na

j=1. We model
the inter-review time of these series with (i) the RPP model
of section III-B and (ii) the t-LSTM model of section IV-B,
excluding in both cases any representation (s̄j or Xj) encoding

6https://pytorch.org/
7To compute 〈δ̃aj 〉 via the RPP model we sample tj 1000 times using Eq.

(21). In the t-LSTM model 〈δ̃aj 〉 is obtained directly from λθ .

information from the reviews’ content. The RMSE obtained
via these models is shown in the first two rows of Table
IV. Note how the RPP model slightly outperforms the LSTM
model. Likewise, consider the aggregated set of all review
content received by all the businesses we study. We compute
the perplexity per word of all reviews with respect to two
language model, one parametrized by a LSTM and the other
by a TCN. Let us refer to these models as LM-RNN and LM-
TCN. Their perplexity is shown in the third and fourth rows of
Table IV. Note that for this data set the RNN performs better
than the TCN.

With these values as yardsticks we are now in position
to discuss our results. Let us start by evaluating how well
our dynamic review models predict the arrival time of new
reviews. The results are shown in the second column of Table
IV. The first thing one can conclude from these results is that,
as expected, review content does provide useful information
for predicting when are the next reviews going to arrive.
Even using a simple text representation as that of a BoW
improves the RMSE values, as compared to the yardsticks.
This makes sense intuitively, for one can imagine that reviews
with similar content clusters in time. The last four rows of
column 2 in Table IV show our results for models whose
content representation comes from auto-regressive LMs. All
these instances beat the BoW models, which hints at the
importance of accounting for word order. Finally our RPR
models (with either RNN or TCN) improve by about 25%
the RMSE values as compared to the yardsticks, and about
19% as compared to the baselines. This last comparison
is surprising, given that RPP and t-LSTM models with no
review content information yield similar RMSE values. Thus
a marked point process model which uses the content summary
representations from auto-regressive LMs as marks describes
significantly better the empirical review arrival process, as
compared to e.g. a stand alone RPP.

Having seen that the review content information helps
when modeling the review arrival process for the businesses
we study, we can now ask whether the opposite flow of
information is also useful, i.e. does the dynamics of review
arrival help in modeling the content of reviews? The last
column in Table IV shows the perplexity per word computed
over all reviews received by a collection of businesses (i.e.
aggregated over time). Low perplexity values indicate the
model is able to predict well the sentences in a given review.



Model RMSE ↓ R2 ↑ Perplexity ↓
t-LSTM 96.8813 0.1788 -
RPP 96.3794 0.1873 -
LM-RNN - - 32.09
LM-TCN - - 32.81
t-LSTM+(BoW) 95.3414 0.2046 519.90*
RPP+(BoW) 92.3850 0.2533 511.32*
t-LSTM+(RNN) 89.9555 0.2920 29.86
t-LSTM+(TCN) 89.8053 0.2944 31.74
RPR+(RNN) 71.8748 0.5480 29.61
RPR+(TCN) 74.0945 0.5197 31.48

TABLE IV: Model performance on RMSE, R2 and perplexity
per word. The RPR models significantly outperforms all
baselines in all metrics. The perplexity for the BoW models
corresponds to the predictive perplexity as defined in [14].

Let us start with the BoW models. By definition, these models
do not take into account the word sequence in a review rj ,
and can only predict the distribution of words in the next
review rj+1. Accordingly, their perplexity values corresponds
to the predicted perplexity, as defined in [14]. Despite not
being able to directly compare the BoW models with the
LMs, we can see that RPP+(BoW) performs better than t-
LSTM+(BoW). Let us move on now to our dynamic review
models with summary content representation s̄i. All models
yield lower perplexity values than the yardsticks. Therefore all
models are able to successfully use the vector representation
hj encoding the review arrival dynamics. We can conclude
that its inclusion does make sequence words prediction easier.
Note, in particular, that the RPR+(RNN) model outperforms
all baselines. Finally, we have also computed the instantaneous
perplexity, or perplexity per review, and noticed that the RPR
models consistently yield better values than all baselines.

VI. CONCLUSION AND FUTURE WORK

In this work we introduced neural dynamic language models
of text for review data. We are able to leverage dynamic
representations of point process models in language modelling
tasks, and augment the point processes with text representa-
tions. We showed that our approach improves performance on
both content and arrival times prediction, as well as opens the
door for dynamic generative language models. Future work
includes the implementation of attention mechanisms, as well
as the inclusion of neural factorization machines aimed at
predicting ratings values.

VII. APPENDIX

We start by denoting with p(T |Hj) the probability that
the next point arrives at T given the previous history until
the arrival of rj — we require p(T |Hj) for both prediction
and sampling. First, notice that the probability of no review
arriving between tj and tj + τ can be obtained as an integral
over p(T |Hj), say

exp

{
−
∫ tj+τ

tj

λ(t)dt

}
=

∫ ∞
τ

p(T |Hj)dT ≡ G(τ),

with p(T |Hj) = −dG(T )
dT , where we used the Poisson distribu-

tion for zero arrivals in the first expression. Solving for G(τ)
we find

G(τ) = exp

{
−eαj

1

wt

(
ew

tτ − 1
)}

, (18)

with αj = vthj + bt. The average time of the next arrival is
then given by

E[T ] =

∫ ∞
0

p(T |Hj)T dT =

∫ ∞
0

G(T ) dT. (19)

Finally, in order to sample the next arrival time one can use
inverse transform sampling on P (T ). To this end one requires
the inverse of the cumulative function of P (T ). We calculate
the cumulative function thus

F [p(T |Hj)] =

∫ τ

0

p(T |Hj)dT

= −
∫ τ

0

dG(T )

dT
dT = G(0)−G(τ) (20)

whose inverse function then follows

F−1[p(T |Hj)](y) =
1

wt

(
− αj + log

{
wt
(

log

{ −1

y − 1

}
+

eαj

wt

)})
. (21)
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