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Abstract—Bitcoin is the leading currency in the cryptocurrency
market capturing attention worldwide. Forecasting the Bitcoin
price as accurate as possible is essential, but due to its high volatil-
ity this task is challenging. Many researchers try, through the
years, to develop efficient models for predicting the Bitcoin price
using several different data-driven approaches. The objective of
this paper is to develop a novel decomposition-ensemble learning
model that combines Variational Mode Decomposition (VMD)
and Stacking-ensemble learning (STACK) with machine learning
algorithms to forecast the Bitcoin price multi-step ahead. The
algorithms are k-Nearest Neighbors, Support Vector Regression
with Linear kernel, Feed-forward Artificial Neural Network
with single-layer perceptron, Generalized Linear Model, and
Cubist. Correlation matrix (CORR), principal component anal-
ysis (PCA), and Box-Cox transformation (BOXCOX) were used
as data preprocessing techniques. Estimating the performance
of the proposed models (namely VMD–STACK–CORR, VMD–
STACK–PCA, and VMD–STACK–BOXCOX) using relative root
mean square error, symmetric mean absolute percentage er-
ror, and absolute percentage error measures, defined that for
one-day-ahead forecast VMD–STAK–BOXCOX model presented
the better performance, and for two and three-days-ahead
forecast VMD–STACK–CORR model was chosen, compared
to VMD, STACK, and machine learning algorithms models’
performance. Diebold-Mariano statistical test was conducted
to evaluate a reduction in forecasting errors. Therefore, the
proposed models (VMD–STACK–CORR, VMD–STACK–PCA,
and VMD–STACK–BOXCOX) indeed forecast accurately Bitcoin
price and outperformed the compared models (VMD, STACK,
and machine learning models).

Index Terms—Bitcoin price, variational mode decomposition,
stacking-ensemble learning, forecasting, time series.

I. INTRODUCTION

A cryptocurrency is a digital asset designed to work as a
medium of exchange that uses strong cryptography to secure
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financial transactions, control the creation of additional units,
and verify the transfer of assets. Cryptocurrencies use decen-
tralized control as opposed to centralized digital currency and
central banking systems. [1]. Bitcoin is generally considered
the first decentralized cryptocurrency, and it was first released
as open-source software in 2009 [2]. With the emergence of
the cryptocurrency market, the Bitcoin, its leading currency,
has captured global attention [3].

Due to high volatility of Bitcoin [4]–[6], many studies have
been conducted through the years using different approaches
with the objective to develop an efficient model to predict the
Bitcoin price as accurate as possible [3], [7]–[9].

Variational Mode Decomposition (VMD) is a recent ad-
vanced multiresolution technique for signal decomposition
into a set of sub-signals, where each sub-signals is compact
around a center pulsation and has a limited bandwidth [10].
VMD is applied in many different fields such as biomedical
[11], electronic [12], industrial material supply [13], and
economics/financial [14]–[17].

Moreover, ensemble learning approaches help increasing the
accuracy and efficiency of the models which learns different
data patterns, combining potentialities of each base (weak)
model making them efficient [18]. Stacking-ensemble learning
(STACK) is one of the many ways to work with ensemble.
STACK combines different prediction models in a single
model, working at levels or layers [19]. STACK do predictions
of several base learners to compose the stacking layer-0. These
predictions are used as inputs in the next layer for a meta-
learner on stacking layer-1 [20].

In this respect, the objective of this paper is to develop
a heterogeneous stacking-ensemble learning model by using
Variational Mode Decomposition (VMD) with machine learn-
ing models algorithms to train the intrinsic mode functions
(IMFs) generated by decomposition for Bitcoin price forecast-
ing multi-month-ahead (one, two and three-days ahead). The
time series is split into five different IMFs and trained each
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IMF of the VMD with k-Nearest Neighbors (k-NN), Support
Vector Regression (SVR) with Linear kernel, Feed-forward
Neural Network (NNET) with single-layer perceptron, and
Generalized Linear Model (GLM) as the Base-Learners (weak
models), and Cubist as the Meta-Learner (strong model). The
predictions of the IMFs in the Layer-0 are summed giving four
different predictions, one for each weak model. Those four
predictions are used as inputs in the Layer-1, which they were
preprocessed using three different techniques: correlation ma-
trix analysis(CORR), principal component analysis (PCA), and
Box-Cox transformation (BOXCOX). The three approaches
are trained using Cubist as Meta-Learner giving three proposed
models, namely VMD–STACK–CORR, VMD–STACK–PCA,
and VMD–STACK–BOXCOX, respectively.

The main contributions of this study are: (i) to develop a
novel heterogeneous decomposition-ensemble learning model
by using VMD combined with stacking-ensemble learning
method and machine learning models algorithms; (ii) to
compare the proposed decomposition-ensemble model to the
decomposition model, the stacking-ensemble model, and the
machine learning algorithms to evaluate the performance of
the proposed model; (iii) to realize comparisons between
the predictions of the models of the multi-step-ahead; (iv)
to compare different algorithms to preprocess the data and
evaluate their performance; and (v) to present a relevant novel
to the cryptocurrency field, as well to time series forecasting
multi-step-ahead using VMD decomposition-ensemble model.

The remainder of this paper is structured as follows:
Section II-A illustrates the dataset adopted in this paper.
Section II-B defines the models used in this paper. Section III
details the procedures of the research methodology applied.
Section IV presents the results obtained and discussions.
Finally, Section V concludes with the final considerations and
some proposals of future works.

II. MATERIAL & METHODS

This Section presents the description of the material ana-
lyzed (Section II-A) as well as the definitions of the models
applied in this paper (Section II-B).

A. Material

The dataset analyzed in this paper refers to the Bitcoin price
in United States dollars (US$). The dataset consists of 2045
daily observations from July 18th, 2010 to February 21st,
2016, and it is composed by four variables, as follows in
Table I, where the ‘Closing Price’ is the output and the others
are the system inputs.

TABLE I
INPUTS AND OUTPUT OF THE SYSTEM

Type Description Unit Measure
Input Opening Price

US$Input High Price
Input Low Price

Output Closing Price

The data was split into Training and Testing sets in the
proportion of 70 and 30%, respectively. In Table II is presented
a summary of the statistical indicators of the dataset, which
are the Maximum (Max), Minimum (Min), Mean, Median and
Standard Deviation (Std). The output was plotted as illustrated
in Figure 1. Moreover, the dataset is available at Github
Repository [21].
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Fig. 1. Daily ‘Closing Price’ observed over time

B. Methods

This section presents the main aspects of the methods
proposed in this paper. We will present the VMD method and
STACK approach, followed by the description of the layers
that compose the final ensemble model.

1) Variational Mode Decomposition: Variational Mode De-
composition (VMD) is an effective method for signal decom-
position. The goal of VMD is to decompose an input data into
a finite and predefined k number of Intrinsic Mode Functions
(IMF) uk(t) (1) that reproducing the input signal with different
sparsity properties. The IMF (uk(t)) can be defined as

uk(t) = Ak(t) cos (φk(t)) , (1)

where the phase φk(t) is a non-decreasing function, φ′k(t) ≥ 0,
the envelope is a non-negative Ak(t) and the instantaneous
frequency ωk(t) := φ′k(t) vary much slower than the phase
φk(t) [10].

VMD method relies on three main concepts which are
Wiener filtering, Hilbert transform and analytic signal, and
frequency mixing and heterodyne demodulation. Sparsity prior
of each mode is chosen as bandwidth in the spectral domain
and can be accessed by the following scheme for each mode:
(i) compute associated analytic signal utilizing the Hilbert
transform to obtain a unilateral frequency spectrum; (ii) shift
frequency spectrum of mode to baseband by mixing the expo-
nential tune to the respective estimated center frequency; and
(iii) the bandwidth estimated through the Gaussian smoothness
of the demodulated signal [10], [22], [23].

The specific process of the VMD algorithm is summarized
by [10], [24] as follows:
(a) Initialize

{
u1k
}
,
{
ω1
k

}
, λ1 and n;



TABLE II
SUMMARY OF THE STATISTICAL INDICATORS OF THE INPUTS AND OUTPUT OF THE DATASET

Variable Samples Percentage # of Samples Statistical indicator
Max Min Mean Median Std

Opening Price All set 100% 2045 1147.25 0.05 188.7906 93.105 230.1545
Training set 70% 1431 1147.25 0.05 122.9767 10.940 235.7119
Testing set 30% 614 647.34 177.28 342.0704 314.880 115.6923

High Price All set 100% 2045 1165.89 0.06 194.5988 96.900 238.1393
Training set 70% 1431 1165.89 0.06 128.3533 11.200 246.1440
Testing set 30% 614 654.77 211.51 348.8839 321.070 116.9866

Low Price All set 100% 2045 1110.21 0.01 182.5121 89.445 221.1107
Training set 70% 1431 1110.21 0.01 117.0763 10.645 223.8205
Testing set 30% 614 635.53 170.21 334.9114 309.185 113.6089

Closing Price All set 100% 2045 1147.25 0.05 189.2220 93.330 230.2082
Training set 70% 1431 1147.25 0.05 123.8177 10.950 236.3334
Testing set 30% 614 647.34 177.28 341.5478 314.880 114.8934

(b) Update the value of {uk}, {ωk} and λ, according to (2),
(3) and (4), respectively:

un+1
k ← argmin

uk

L
({
un+1
i<k

}
,
{
uni≥k

}
, {ωn

i } , λn
)
, (2)

ωn+1
k ← argmin

ωk

L
({
un+1
i

}
,
{
ωn+1
i<k

}
,
{
ωn
i≥k
}
, λn
)
,

(3)

λn+1 ← λn + τ

(
f −

∑
k

un+1
k

)
, (4)

where λ is Lagrangian multipliers;
(c) Judge whether or not uk meets the convergence condi-

tion (5),
K∑

k=1

∥∥un+1
k − unk

∥∥2
2

‖unk‖
2
2

< e, (5)

and repeat the above steps to update parameters until the
convergence stop condition is satisfied;

(d) The corresponding modal subsequences are obtained ac-
cording to the given modal number.

2) Stacking-Ensemble Learning: Stacking-ensemble learn-
ing (STACK) is an ensemble learning method proposed by
[25] as stacked generalization, with the purpose to improve
prediction accuracy by integrating several diverse sub-models
and operates using layers. Simplifying, several base-learners
(weak) are combined in the layer-0. The predictions of the
base-learners are used as an input set for the meta-learner
(strong) in the layer-1. The prediction from the layer-1 is the
desired result. In general lines, the model in level-1 learns with
the predictions of the models of the level-0. Special attention
should be given to the fact that the number of levels need not
be restricted to two [19].

3) Models used in STACK methodology : This subsection
describes the base-learners k-NN, SVR, NNET, and GLM, as
well as Cubist as meta-learner.
• k-NN is an algorithm proposed by [26], which works

by mapping k nearest past similar values to new values
drives, where k values are named nearest neighbors. A
similarity measure is adopted to find the nearest values,

where the k-nearest neighbors are those that similarity
measure between past and new values is the smallest.
Then, by calculating the average of past similar values,
the future values will be obtained [19].

• SVR consists in determining support vectors close to
a hyperplane that maximizes the margin between two-
point classes obtained from the difference between the
target value and a threshold [27]. To deal with nonlinear
problems SVR takes into account kernel (function that
calculates the similarity between two observations) func-
tions. In this paper, the linear kernel is adopted.

• NNETs are computing systems vaguely inspired by the
biological neural networks that constitute animal brains
[28]. NNET is known due to its superiority over tra-
ditional regression methods due to its efficient compu-
tations, generalization and limited dependence on prior
knowledge [29]. An NNET is specified by the information
processing unit of the NNET (neuron model), a set of
neurons and links connecting neurons (architecture) –
each link has a weight and a learning algorithm used
for training the NNET by modifying the weights to
model a particular learning task correctly on the training
examples. In this paper, Single-layer perceptron neural
network approach [30], which is a kind of feed-forward
neural network, is used.

• GLM, proposed by [31], is a flexible generalization
of ordinary linear regression that allows for response
variables that have error distribution models other than
a normal distribution, which includes in its framework
logistic, probit, Poisson and gamma models besides oth-
ers [32]. The purpose of the GLM is to extend the idea of
linear modeling to cases for which the linear relationship
between an independent variable and mean response,
while the normal distribution is not appropriate for the
error distribution [33].

• Cubist is a rule-based algorithm used to construct predic-
tive models based on the analysis of input data. constructs
such prediction models using a rule-based model tree



approach. Basically, Cubist branch the data to grow a
complete tree; develops of a regression model at each
node for pruning and prediction; prune the tree to avoid
the overfitting problem; and smooth the tree to compen-
sate for the sharp discontinuities caused by the splitting
[34].

III. PROPOSED MODEL FRAMEWORK

This section describes the proposed model framework ap-
plied in this paper, illustrated in Figure 2.

Fig. 2. Framework of the proposed forecasting models

A. Framework description

Step 1: The output variable is decomposed into 5 IMFs by
performing VMD, as illustrated on Figure 3;

Step 2: The lags equal 1, 2 and 3 for one, two and three-
days-ahead were chosen, respectively, and were applied on the
IMFs, as well on inputs variables;

Step 3: A Box-Cox transformation [35] preprocessing was
applied on the IMFs and the inputs;

Step 4: Training each IMF with each base-learner model
described in Section II-B3 using time-slice validation;

Step 5: The IMFs predictions were recomposed by a simple
summation grouping by model. In other words, the IMFs
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Fig. 3. Data decomposed into IMFs by VMD

trained by the same base-learner model are summed. Then,
four predictions were generated namely VMD–k-NN, VMD–
SVR, VMD–NNET and VMD–GLM;

Step 6: The four predictions generated in layer-0 were
used as input in the layer-1. They were preprocessed using
correlation matrix (CORR) which removes those predictors
whose correlation is greater than a threshold [36], principal
component analysis (PCA) [37], and Box-Cox transformation
(BOXCOX). Training each one using Cubist as meta-learner
gives three different final predictions, which are the proposed
models, namely VMD–STACK–CORR, VMD–STACK–PCA
and VMD–STACK–BOXCOX, respectively.

Table III presents the hyperparameters of the models used
in this paper, exception for GLM since it does not have
hyperparameters to be defined. A Grid-Search defined the best
tunes for the base-learners and meta-learner.

To forecast one (6), two (7) and three-days-ahead (8) the
applied structures are defined as,

ŷ(t+ h) = f {y(t+ h− 1),X(t+ h− 1)} , (6)
ŷ(t+ h) = f {ŷ(t+ h− 1), y(t+ h− 2),X(t+ h− 2)} , (7)
ŷ(t+ h) = f {ŷ(t+ h− 1), ŷ(t+ h− 2), y(t+ h− 3),X(t+ h− 3)} ,

(8)

where f is a function that maps the Bitcoin price, ŷ(t + h)
is the forecast Bitcoin price in horizon h = 1, 2, 3 at time t
(1, . . . , 2044), y(t+h−1), y(t+h−2), y(t+h−3), ŷ(t+h−1),
ŷ(t+ h− 2) are the previous observed and predicted Bitcoin
price, X(t+h−nx) is the inputs vector composed by Opening,
High and Low Price at the maximum lag of inputs (nx = 1 if
h = 1, nx = 2 if h = 2, and nx = 3 if h = 3).

Step 7: Performance (Section III-B) and statistical tests
(Section III-C) were conducted to evaluate the accuracy of the



TABLE III
CONTROL HYPERPARAMETERS FOR THE MODELS

Base-learner model Components Control Hyperparameters Meta-learner model Forecasting Horizon Control Hyperparameters
# of Neighbors One-day-ahead # of Committees # of Instances

k-NN IMF1 7 Cubist VMD–STACK–CORR 20 0
IMF2 5 VMD–STACK–PCA 1 9
IMF3 9 VMD–STACK–BOXCOX 1 9
IMF4 9 STACK–CORR 1 0
IMF5 9 STACK–PCA 20 0
Nondecomposed 7 STACK–BOXCOX 10 0

Cost Kernel Two-days-ahead # of Committees # of Instances
SVR IMF1 1

Linear

Cubist VMD–STACK–CORR 1 5
IMF2 1 VMD–STACK–PCA 20 5
IMF3 1 VMD–STACK–BOXCOX 1 0
IMF4 1 STACK–CORR 10 0
IMF5 1 STACK–PCA 20 0
Nondecomposed 0.25 STACK–BOXCOX 10 0

# of Hidden Units Weight Decay Three-days-ahead # of Committees # of Instances
NNET IMF1 1 1e-04 Cubist VMD–STACK–CORR 1 5

IMF2 5 0.1 VMD–STACK–PCA 20 5
IMF3 5 0.1 VMD–STACK–BOXCOX 1 0
IMF4 3 0 STACK–CORR 10 5
IMF5 1 1e-04 STACK–PCA 10 0
Nondecomposed 5 0.1 STACK–BOXCOX 20 0

proposed models compared to (i) different preprocessing algo-
rithms applied in the layer-1 phase; (ii) VMD models without
STACK method; (iii) STACK models without decomposition
and different preprocessing algorithms; and (iv) the models
applied directly to the dataset.

B. Performance indicators

To evaluate the performance of the proposed models, rel-
ative root mean square error (RRMSE) (9), symmetric mean
absolute percentage error (sMAPE) (10) and absolute percent-
age error (APE) (11) were performed, and they are described
as follows

RRMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

1
n

n∑
i=1

yi

, (9)

sMAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
(|yi|+ |ŷi|/2)

∣∣∣∣ , (10)

APE =
|yi − ŷi|
yi

, (11)

where n is the number of observations, yi and ŷi are the i-th
observed and predicted values, respectively.

C. Diebold-Mariano test

With the objective of comparing the forecast errors of the
models, a Diebold-Mariano (DM) test [38] is conducted. The
DM test will verify whether the forecasting errors are lower
in relation to each other. A hypothesis test is given by (12),
where null hypothesis (H0) says that there is no difference
between the forecasting errors of the models compared, and
the alternative hypothesis (H1) says that forecasting error of
the model proposed is lower than the compared one. The
hypothesis test can be defined as follows,

H :

{
H0 : εPi = εCi
H1 : εPi < εCi ,

(12)

and statistic of DM test is given by (13),

DM =

∑i=1
n [di]

n√
var(di)
n−1

, (13)

where di = L(εPi )−L(εCi ), L is a loss function that estimates
the accuracy of each model, εPi and εCi are the error of the
proposed model and the compared model, respectively, var(di)
is an estimate for the variance of di. By using the hypothesis
defined, the aim is to know if the errors for the proposed model
are lower than the compared model. If the null hypothesis is
rejected, it is possible to say that there is statically evidence
that there is a reduction in the errors of the proposed model
regarding the compared model at the α level of significance.

IV. RESULTS

The performance measures results of the models for predict-
ing one, two and three-days-ahead are shown on Table IV. The
best results are stated in bold. The models were listed in the
Table IV to facilitate comprehension further. For the one-day-
ahead prediction, model (C) presented a better performance
in both indicators. On two-days-ahead forecasting, models
(A) and (B) presented better results in sMAPE and RRMSE,
respectively. Finally, for three-days-ahead, models (A) and
(K) were more accurate according to sMAPE and RRMSE,
respectively. Further, Figure 4 illustrates a violin plot of the
fourteen models APE for the three forecasting horizons. By
this plot, it shows that model (A) presented error signals with
less variability.

Most of the VMD models (models (D) to (G)) presented bet-
ter results than stand-alone machine learning models (models
(K) to (N)). In contrast, STACK models (models (H) to (J))
outperformed all VMD models. However, the combination of
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Fig. 4. Violin plot for the models APE

TABLE IV
PERFORMANCE MEASURES RESULTS OF THE MODELS

Model
Forecasting Horizon

One-day-ahead Two-days-ahead Three-days-ahead
sMAPE RRMSE sMAPE RRMSE sMAPE RRMSE

(A) VMD–STACK–CORR* 0.0835 0.0936 0.0660 0.0943 0.0762 0.1060
(B) VMD–STACK–PCA* 0.0735 0.0915 0.0708 0.0934 0.2310 0.3812
(C) VMD–STACK–BOXCOX* 0.0626 0.0800 0.0836 0.1003 0.5766 0.7108
(D) VMD–k-NN** 0.1189 0.1244 0.1201 0.1274 0.1224 0.1304
(E) VMD–SVR** 0.7506 1.5222 0.7499 1.5187 0.7497 1.5184
(F) VMD–NNET** 1.9870 355.3495 1.9870 354.8142 1.9870 354.7863
(G) VMD–GLM** 0.2153 0.2867 0.2151 0.2858 0.2151 0.2858
(H) STACK–CORR* 0.0804 0.0935 0.0976 0.1099 0.2033 0.1954
(I) STACK–PCA* 0.0806 0.0936 0.1185 0.1263 0.2169 0.3395
(J) STACK–BOXCOX* 0.0985 0.1131 0.1315 0.1596 0.3608 0.5100
(K) k-NN** 0.0804 0.0935 0.0824 0.0985 0.0850 0.1028
(L) SVR** 0.7925 1.6495 0.7917 1.6458 0.7916 1.6456
(M) NNET** 1.9871 359.3776 1.9871 358.8427 1.9871 358.8427
(N) GLM** 0.2154 0.2863 0.2152 0.2854 0.2152 0.2854
Note: *Cubist as meta-learner; **BoxCox as pre-processing.

VMD + STACK (models (A) to (C)) presented a significant
improvement compared to others. This combination creates
a powerful model, due to the ensemble-learning principle of
divide-to-conquer, where the final model (ensemble on this
case) seeks to overcome the performance of a base model that
operates in isolation, and the characteristics of VMD. Even
though some VMD models presented bad performance (e.g.
model (F)), the combination of the weak models and then
performing a strong model make a relevant difference in the
model accuracy when comparing VMD-STACK and VMD
models. Yet, it was observed that dimensionality reduction
techniques (i.e. CORR and PCA) did not significantly improve
the predictions, once that the difference between models (A),
(B) and (C) performances, and between models (H), (I) and
(J) performance are almost irrelevant.

Analysing the performance results, it is possible to calculate
the percentage reduction of the indicators in relation to the
more accurate model (bold results in Table IV).

Firstly, comparing the VMD–STACK models: (i) for fore-

casting horizon of one day, in relation to sMAPE and model
(C) as reference, the models (A) and (B) were reduced in 25.03
and 14.83%, respectively. In relation to RRMSE and model
(C), the reduction of model (A) were 14.53% and model (B)
12.57%; (ii) for two days of forecasting horizon, in relation to
sMAPE and model (A), the models (B) and (C) respectively
reduced in 6.78% and 21.05%. In relation to RRMSE and
model (B), the models (A) and (C) were reduced 0.95% and
6.88%; and (iii) for three-days-ahead predictions, in relation
to sMAPE and model (A), the reduction of models (B) and
(C) were 67.01% and 86.78%. And, in relation to RRMSE
and model (K) as reference, the models (A), (B) and (C) were
reduced in 3.02, 73.03 and 85.54%, in the order.

Second, comparing the VMD models: (i) for one-day-ahead
forecasting, in relation to sMAPE and model (C), the models
(D) to (G) reduced in the range of 47.35%–96.85%, being
model (D) the smaller and (F) the bigger. In relation to
RRMSE and model (C), the models reduction were in the
range of 35.69% and 99.98%; (ii) for two-days-ahead, in
relation to sMAPE and model (A), the reduction range varies
from 45.05% (model (D)) to 96.68% (model (F)). For RRMSE
and model (B) as reference, the models reduction varies from
26.69% to 99.97%; and (iii) for three-days-ahead, in relation
to sMAPE and model (A), the VMD models reduction varies
in a range of 37.75% to 96.17%. And in relation to RRMSE
and model (K), model (D) presented the smaller reduction of
21.17% and model (F) the bigger of 99.97%.

Third, comparing the STACK models: (i) for one-day-ahead
predictions, sMAPE and model (C), the reduction of STACK
models were 22.14%, 22.33% and 36.45%, respectively. For
RRMSE, the reductions were 14.44%, 14.53% and 29.27%;
(ii) for two-days-ahead, sMAPE and model (A), models (H),
(I) and (J) reduced in 32.38%, 44.30% and 49.81%, respec-



tively. For RRMSE and model (B), the reductions of the
models were reduced in 15.01%, 26.05% and 41.48%; and
(iii) for three-days-ahead, sMAPE and model (A), the models
reduced in 62.52%, 64.87% and 78.88%. And for RRMSE and
model (K) the reductions were 47.39%, 69.72% and 79.84%.

Last, comparing the machine learning models, and knowing
that in all forecasting horizons and performance indicators the
model (K) and the model (M) were the best and the worse of
the machine learning models, respectively. Knowing this: (i)
for predictions of one-day-ahead, in relation to sMAPE and
model (C), the models reductions were in a range of 22.14%
and 96.85%. In relation to RRMSE, the reductions were
in a range of 14.44% and 99.98%; (ii) for two-days-ahead,
sMAPE and model (A) as reference, the reductions were in a
range 19.90%–96.68%. And for RRMSE and model (B), the
reductions were in a range 5.18%–99.97%; and (iii) for three-
days-ahead, sMAPE and model (A), the models reductions
were in a range of 10.35% to 96.17%. And for RRMSE and
model (K) as reference, the range of the reductions were
63.98%–99.97%.

In this respect, based on the metrics results, the predictions
for each forecasting horizon was chosen, where model (C) for
one-day-ahead, and model (A) for two and three-days-ahead.
Figure 5a illustrates the predictions for the whole dataset, and
Figure 5b is a window of the dataset illustrating the samples
from January 1st, 2015 to March 31st, 2015, where there are
the Observed is the ‘Closing Price’ (black line), the predictions
for One-day-ahead (blue dotted line), Two-days-ahead (red
dotted line), and Three-days-ahead (green dotted line). The
plots show that the proposed models indeed are accurate and
they have learned the dynamism of the time-series.

Moreover, DM tests were conducted to compare the pro-
posed models ((A), (B) and (C)) with the other models for each
forecasting horizon from one to three-days-ahead. Table V
presents the DM-values, calculated as (13).

Furthermore, DM test results shows that, for one-day-ahead
forecasting, model (A) is statistically equal to models (B), (H),
(I) and (K), model (B) is statistically equal to model (J), and
model (C) is statistically equal to models (H), (I) and (K).
For two-days-ahead forecasting, models (A), (B), (C) and (K)
are statistically equal. And, for three-days-forecasting, models
(A) and (K), and models (B) and (C) are statistically equal.
It is important to emphasize that even though errors of some
models are statistically the same, the results obtained by using
them are not.

V. CONCLUSION

Cryptocurrencies’ price forecasting interest, in specific the
Bitcoin price, has been growing in the last years, due to
the boom of the cryptocurrency market. This influences to
emerge many studies in the field to develop accurate prediction
models. In this context, this study proposed a novel het-
erogeneous decomposition-ensemble learning model by using
VMD and STACK with different preprocessing algorithms to
forecast Bitcoin price multistep-ahead. These models were
built by decomposing data into IMFs, training them using
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diverse weak models, recomposing the data, preprocessing
with three different algorithms, and then training the base
(weak) models with a meta (strong) one. The proposed models
are namely VMD–STACK–CORR, VMD–STACK–PCA and
VMD–STACK–BOXCOX.

To evaluate the effectiveness of this approach, the VMD–
STACK models performance were compared to VMD models,
STACK models and base models performance. Further, DM
tests were conducted to evaluate the forecasting errors of
the VMD–STACK approach regarding the other models. The
results indicate that VMD–STACK approach performs better
than the techniques individually applied and the base learners.
In all forecasting horizons presented in this paper, the proposed
methodology showed to be the most accurate.

As future researches, it is proposed to (i) test different
base models, as well as its quantity, and different meta-model;
(ii) optimize the hyperparameters of base and meta learners;
(iii) optimize the number of IMFs to be decomposed; (iv)
decompose time series using different decomposition method;
and (v) enlarge the forecasting horizon to over 3 days ahead.
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