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Abstract—Crowd analysis is receiving an increasing atten-
tion in the last years because of its social and public safety
implications. One of the building blocks of crowd analysis is
crowd counting and the associated crowd density estimation.
Several commercially available drones are equipped with on-
board cameras and embed powerful GPUs, making them an
excellent platform for real-time crowd counting tools. This
paper proposes a light-weight and fast fully-convolutional neural
network to learn a regression model for crowd counting in images
acquired from drones. A robust model is derived by training
the network from scratch on a subset of the very challenging
VisDrone dataset, which is characterized by a high variety of
locations, environments, perspectives and lighting conditions. The
derived model achieves an MAE of 8.86 and an RMSE of 15.07
on the test images, outperforming models developed by state-
of-the-art light-weight architectures, that are MobileNetV2 and
YOLOv3.

Index Terms—unmanned aerial vehicles, crowd counting, com-
puter vision, convolutional neural networks

I. INTRODUCTION

Crowd analysis is by nature an interdisciplinary research
topic which in the last years has been drawing the increasing
attention of sociologists and psychologists, as well as engi-
neers and computer scientists [1]. The exponential increase of
world population and the growing urbanization, in fact, have
led to a higher incidence of unusual concentrations of people.
They are due to a number of reasons, including social activities
such as sport events and political rallies. Critical applications
of crowd analysis include: video-surveillance for security
purposes; overcrowding detection for disaster management;
public safety design and traffic monitoring; simulation studies
for a better understanding of crowd phenomena; and so on
(e.g., [2]–[5]).

Crowd counting and its associated crowd density estimation
are among the most crucial crowd analysis related tasks [1].
Crowd counting refers to the task of counting the number
of people in the scene; whereas, crowd density estimation
refers to the prediction of the corresponding density map.
These are fundamental tasks for the application of any sub-
sequent processing pipeline. Over the last years, researchers
have addressed these issues by applying pattern recognition
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and computer vision strategies. Such problems are difficult
because of several challenges posed by crowded images: non-
uniform distribution of people; variable lighting conditions;
heavy occlusion; etc. While several attempts were made with
models based on hand-crafted features (e.g., [6]–[8]), the re-
cent advancements in Convolutional Neural Network (CNN)-
based methods have led to improved performance, thanks to
their ability to approximate complex nonlinear relationships
and to learn automatically meaningful representations from
the low-level pixel features (e.g., [9]–[11]). Several successful
applications of CNNs, in fact, based on images acquired from
traditional cameras, have been reported in the literature (e.g.,
[12]–[14]).

An alternative way to acquire crowd images is to use
unmanned aerial vehicles (UAVs), most commonly known
as drones. They are increasingly used for crowd analysis
because of their fast, real-time and low-cost image acquisition
capability [15]. Several commercially available drones, in
fact, are equipped with on-board cameras and inexpensive,
yet powerful embedded GPUs, which make them excellent
platforms for decision making tools. In addition, the acquired
images can be geo-referenced using positioning sensors, such
as GPS, and can be transmitted to base stations, for example
via wireless, for further processing [16], [17].

However, additional difficulties must be faced when dealing
with crowd counting in images captured from drones [18]. On
one hand, the computer vision algorithms applied to aerial
images are burdened with further difficulties, because scale
and perspective issues are taken to an extreme. On the other
hand, the methods commonly applied in this field, which are
sophisticated and computational intensive, do not meet the
strict computational requirements imposed by the UAV.

In order to address these issues, the present paper proposes a
light-weight fully-convolutional neural network (FCN) model
for crowd counting in images captured from drones. The
model is used as a regressor for estimating the global count
of the crowd, starting from an aerial image. Although it
is generally recognized that regression-based methods suffer
from the limited size and variance of currently available
datasets [1], in our work the model is made more robust by
using the recently published VisDrone dataset [18]. VisDrone
is a very large benchmark database which collects images
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covering a wide spectrum of locations, environments, objects
and density, in different scenarios and under various weather
and lighting conditions. We show that the proposed method
outperforms the popular MobileNetV2 architecture [19], which
is tailored for mobile and embedded applications. Moreover,
the proposed model is able to outperform, on the same dataset,
the well-known YOLOv3 model for object detection [20],
which can be used for crowd counting as people detector.
Finally, the proposed method can be used to output heatmaps
that semantically enrich the flight maps. These heatmaps may
be used for further tasks, such as detection of crowd areas for
autonomous landing.

The rest of the paper is structured as follows. Section 2
discusses the related work. Section 3 presents the proposed
method. Section 4 describes the data used for the present study
and reports the obtained results. Section 5 concludes the work.

II. RELATED WORK

Most of the early attempts to perform crowd counting were
made with detection-based methods, where sliding window
detectors were used to detect people in the scenes. Vari-
ous learning approaches based on hand-crafted features were
experimented to this purpose (e.g., [21], [22]). While these
approaches provided successful results on low dense crowds,
they proved to be ineffective in the presence of highly dense
crowds. To address this issue, research started to focus on
regression-based methods, aimed at learning a direct mapping
between the features extracted from the input images and
their global people count (e.g., [23], [24]). Although the
use of a regressor makes the approach independent of the
precise localization of the individuals in the crowd, which is
a very complex task, it ignores spatial information which can
be indeed very useful for the prediction task. To avoid the
difficulty of detecting and precisely localizing people in the
scene, several works (e.g., [25], [26]) proposed to learn object
density maps, thus incorporating spatial information directly
within the learning process.

In the last years, motivated by the unprecedented success of
CNN-based methods in a number of learning tasks, researchers
began to use this methodology for the purposes of crowd
counting and crowd density estimation. Zhang et al. [14]
introduced an iterative switching process where the density
estimation and the count estimation tasks are alternately opti-
mized, through backpropagation: in this way, the two related
tasks help each other and are able to achieve a lower loss.
Moreover, since a model trained on a specific scene can have
difficulties when used in other scenes, the authors proposed
a data-driven method to select samples from the training set
to fine-tune the pre-trained CNN: the model is thus more
apt to the unseen target scenes it is asked to estimate. The
proposed crowd CNN model outperformed classic approaches
based on hand-crafted features on a challenging dataset. In
[12], Boominathan et al. proposed CrowdNet: a deep CNN-
based framework for estimating crowd density from images
of highly dense crowds (more than one thousand people).
Highly dense crowds typically suffer from severe occlusion

and are characterized by non-uniform scaling: for instance, an
individual near the camera is captured in great detail, while
an individual away from the camera could be represented as a
head blob. To address this issue, CrowdNet uses a combination
of a shallow and a deep architecture which simultaneously
operate at a high semantic level, i.e. face detection, and at
the head blob low-level. Moreover, the model is made robust
to scale variations by using a data augmentation technique
based on patches cropped from a multi-scale pyramidal rep-
resentation of each training image. In [13], Sindagi et al.
presented an end-to-end cascaded CNN that jointly learns the
crowd density map and a high-level global prior which is
conceived to aid the prediction of density maps from images
with large variations in scale and appearance. The high-level
prior consists in a crowd count classification, where crowds are
categorized in several groups depending on the people count.
Unfortunately, these works did not consider aerial images
taken from drones. Correspondingly, they proposed complex
methods which can be too expensive for the real-time and
computational requirements of the application deployed on
UAVs.

Only a few recent works have focused their attention
specifically on drones. In [27], motivated by the inability of
regression counters to generate precise object positions, Hsieh
et al. proposed to inject spatial layout information into the deep
network model to improve localization accuracy. To evaluate
the effectiveness of their method, the authors addressed the
problem of car counting in images of car parkings. However,
having precise spatial layout information is an assumption
which is not met in the non-uniform and casual human
crowded scenes.

In [28], Liu et al. showed that providing a deep network
with an explicit model of perspective distortions effects, along
with enforcing physics-based spatio-temporal constraints, can
improve prediction performance on video frames acquired
from moving drones. To this end, they fed the network not
only with the original image but also with an identically-
sized image which contains the local scale as a function of
the camera orientation with respect to the ground plane. In
addition, they imposed temporal consistency by forcing the
densities in consecutive images to correspond to physically
possible people flows. Conversely, in contrast to the recent
trend, Küchold et al. [29] used features based on the lumi-
nance channel and kernel density estimation, showing that
this approach can be faster and more accurate than a CNN-
based method. Unfortunately, both methods were tested on
very little data, thus more experiments are needed to estimate
their generalization capability.

Finally, a different way to look at the problem of crowd
analysis from drones is crowd detection. In [30] and [31],
Tzelepi and Tefas adapted a pre-trained CNN model by
discarding the fully-connected higher layers in favor of an
extra convolutional layer, making it an FCN: this approach
was conceived to reduce the parameters to be learnt and
thus the computational cost. Due to the lack of available
datasets, experiments were performed on the Crowd-Drone



Fig. 1. Proposed FCN architecture.

dataset, purposely designed by the authors. Specifically, the
dataset was created by querying YouTube using keywords
describing crowded scenes captured from drones (e.g., festival,
parade, political rally, etc.). The proposed approach achieved
successful results in the binary discrimination crowded vs.
non-crowded scenes. This approach is suitable for several
applications as it is able to output heatmaps that semantically
enrich the flight maps, for example by defining “fly” and
“no-fly” zones for autonomous landing. Each heatmap is
obtained by feeding the network with the corresponding image
labeled as “crowd” and by extracting the feature map of
the last convolutional layer. Unfortunately, Crowd-Drone is
not provided with annotations of people count. Inspired by
the work of Tzelepi and Tefas, in [32] we have proposed
a crowd detector for drone-captured images based on an
FCN trained on a subset of the very challenging VisDrone
dataset. The proposed method is based on a two-loss model
in which the main classification task, aimed at distinguishing
between crowded and noncrowded scenes, is simultaneously
assisted by a regression task, aimed at people counting. In
[33], we improved upon the proposed model by replacing the
auxiliary loss based on crowd counting with a loss based on
the agglomeration tendency of the crowd.

III. PROPOSED METHOD

In the context of crowd analysis from aerial images, a light-
weight model is required to meet the computational limitations
imposed by the UAVs’ hardware. To this end, we propose
an FCN architecture. Relying only on convolutional layers
for feature extraction reduces considerably the amounts of
parameters to be learnt, as the fully connected layers typically
stacked on top of the convolutional base contribute the most
to the overall computational cost. Another advantage is that
the network can be fed with images of arbitrary dimensions,
as only the fully connected layers expect inputs having a
fixed size. Finally, the convolutional layers preserve the spatial
information which is destroyed by the fully connected layers,
because of their connection to all input neurons.

The proposed FCN architecture is depicted in Fig. 1. To
speed up calculation, without sacrificing too much capacity,
the input to our model are 128 × 128 three-channel images,
normalized in the range [0, 1] before training. Each image
is then propagated through a convolutional layer having 32
filters, with kernel size 5× 5 and stride 1. This configuration
is intended to preserve the initial input information. The

first convolutional layer is followed by a Parametric ReLU
(PReLU) non-linearity, in which a parameter a is adaptively
learned during backpropagation to avoid zero gradient when a
unit is not active:

f(x) =

{
x if x > 0,

ax otherwise,

where x is the input to a neuron. This modification can
slightly improve performance in large datasets [34]. Then, the
output of PReLU is down-sampled by a max pooling layer,
which divides each spatial dimension by a factor of 2. The
output of the max pooling layer is propagated through a batch
normalization layer, with momentum of 0.99 and ε of 0.001, to
aid generalization [35]. Next, three consecutive convolutional
layers follow, each having 64 filters with kernel size 3 × 3.
The number of filters in these layers is higher mainly because
the number of low level features (i.e., circles, edges, lines,
etc.) is typically low, but the number of ways to combine
them to obtain higher level features can be high. Each of the
three convolutional layers is followed by a PReLU activation.
These layers are not interleaved by pooling layers, which
would further reduce the resolution of the feature maps, thus
preventing the network from learning globally relevant and
discriminating features from images that are characterized by
large variations of scale. Finally, the output layer is preceded
by a dropout layer with dropout rate of 50%, which is
introduced to mitigate overfitting, and by a global average
pooling layer, which calculates the average of each feature map
in the previous layer and thus reduces considerably the number
of features to be used for the final regression. We conceived
this architecture mainly because it provides a very light-weight
model which meets the strict computational requirements of
the UAV; moreover, it is complex enough to avoid underfitting
the data.

In order to predict the global count of the crowd, the FCN
model is asked to minimize a classic mean absolute error loss
function:

L(θ) = 1

N

N∑
i=1

|yi − hθ(xi)| ,

where N is the number of training examples, while yi and
hθ(xi) represent the actual and predicted crowd count, re-
spectively. We preferred this loss over other regression loss
functions, because of its precise physical meaning.



Finally, it is worth noting that the last convolutional layer
can be used to obtain heatmaps for semantically enriching
the flight maps. To do this, inspired by the class activation
map method described in [36], we propose to use a regression
activation map (RAM) which is essentially a weighted sum
of the feature maps in the last convolutional layer. This
layer retains the last available information maintaining a
correspondence with a given original input image, before the
drastic reduction caused by the global average pooling. More
formally, let Ak ∈ Ru×v be the k-th feature map from the
last convolutional layer, being u and v its height and width.
The information in these feature maps can be used to localize
the “most active” regions in the original image with respect
to the final regression prediction y′. A summary of the overall
feature maps, i.e. a regression activation map LRAM , can be
obtained as a linear combination, followed by a ReLU:

LRAM = ReLU

(∑
k

αkA
k

)
.

Since some feature maps would be more important than others
to make the final decision, as in [36] we propose to use the
averaging pooling of the gradient of y′ with respect to the k-th
feature map as a weight for the feature map:

αk =
1

uv

u∑
i=1

v∑
j=1

∂y′

∂Aki,j
.

In practice, ∂y′

∂Ak
i,j

measures the effect of the (i, j)-th pixel
in the k-th feature map on the y′ score. Differently from
[36], we are interested not only in the features that have a
positive influence on a certain class, but we are interested in
the influence of the features on the overall regression score.
Upsampling the RAM to the size of the input image enables
the identification of the regions that are most relevant for the
final prediction. This approach allows one to obtain a kind of
crowd density map without explicitly learning it.

IV. EXPERIMENT

To evaluate the effectiveness of the proposed method in
correctly estimating the crowd count, we re-arranged the
VisDrone dataset, as described in the next subsection. As
a baseline to compare our method against, we employed
the popular MobileNetV2 architecture [19], pre-trained on
ImageNet [37] and fine-tuned to our data. MobileNet is a
light architecture which is well suited to mobile and embedded
computer vision applications [38]. This architecture introduced
the so-called depthwise separable convolutions, which perform
a single convolution over each colour channel rather than
combining all of them. This significantly reduces the numbers
of parameters to be learned. MobileNetV2 still uses depthwise
separable convolutions as efficient building blocks; however,
it introduces linear bottlenecks between layers and shortcut
connections between bottlenecks to improve the efficacy and
effectiveness of the network. To perform transfer learning
on the VisDrone dataset, we used the common practice to
remove the top level classifier, which is very specific for the

original classification problem, and to stack a custom layer to
be trained on our task.

Similarly, since the task of counting people can be ac-
complished also through object/pedestrian detection, we fairly
compared our method to the well-known YOLOv3 object
detector [20]. The “You Only Look Once” (YOLO) family
is a family of models designed for fast object detection [39].
The approach involves a single deep convolutional network
that splits the input image into a grid of cells, where each
cell is responsible for predicting the bounding box and object
category of the object it contains. The resulting outcome is
a number of candidate boxes which are consolidated into a
final detection through a following non-maximum suppression.
There are three main variations of the originally proposed
architecture: the third version is currently the last one. In
contrast to MobileNetV2, we used a version of YOLOv3
pre-trained on the large-scale MS COCO object detection
dataset [40]. Clearly, to speed up calculations, we forced the
network to detect only persons, ignoring the other existing
categorizations, such as animals and vehicles.

A. Dataset Preparation

Developing a large crowd dataset from a drone perspective
is a very time consuming and expensive process. To overcome
this issue, we used an adaptation of the VisDrone benchmark
dataset,1 collected by the AISKYEYE team at the Laboratory
of Machine Learning and Data Mining, Tianjin University,
China. The data have been used for the VisDrone 2018 and
2019 challenge. To date, VisDrone is the largest dataset of
aerial images from drones ever published.

The original dataset consists of 288 video clips, with
261, 908 frames and 10, 209 additional static images: they
were acquired by various drone platforms, across 14 different
cities separated by thousands of kilometers in China [18].
The captured scenes cover various weather and lighting condi-
tions, environment (urban and country), objects (pedestrians,
vehicles, etc.) and density (sparse and crowded scenes). The
maximum resolutions of video clips and static images are
3840×2160 and 2000×1500, respectively. Sample images are
shown in Fig. 2. Frames and images were manually annotated
with more than 2.6 million bounding boxes of targets. The
manually annotated ground truth is available only for the
training and validation sets, but not for the test sets to avoid
the overfitting of the algorithms proposed by the challenge
participants. The object categories involve human and vehicles
of the daily life: pedestrians, persons, cars, vans, buses, and so
on. If an individual maintains a standing pose or is walking,
it is classified as a pedestrian, otherwise as a person. For our
purposes, we considered both pedestrians and persons as a
unique people category.

The benchmark data embedded in VisDrone have been
originally conceived to tackle different kinds of tasks, ranging
from object detection in images/videos to single or multi-
object tracking. Since object categories are not provided for the

1http://aiskyeye.com



Fig. 2. Sample images from VisDrone.

Fig. 3. Distributions of the crowd counts in the training and test set estimated
with a kernel density estimation. For a better visualization, we removed from
the training set a single image with a count of 888.

tracking tasks, we used only the data for the object detection
tasks. Then, starting from the provided annotations of pedes-
trians and persons, in particular their count, we developed
our own crowd dataset: it is composed by 30, 672 images
as training set and 3, 394 images as test set. We used the
challenge training sets as our training data, while the validation
sets formed our test data. The distributions of the crowd counts
in the training and test set are illustrated in Fig. 3. As it can
be seen, VisDrone is characterized by a prevalence of sparse
scenes with few tens of people. Artificially augmenting the
dataset with overcrowded scenes calls for future research.

B. Implementation Details

Experiments were run on an Intel Core i5 equipped with the
NVIDIA GeForce MX110, with dedicated memory of 2GB.
As deep learning framework, we used TensorFlow 2.0 and the
Keras API.

The proposed FCN model was trained from scratch by
performing stochastic gradient descent with randomly sam-
pled mini-batches of 64 images, learning rate of 10−5 and
momentum of 0.9. As previously mentioned, to reduce the
computational cost the input images were resized to 128×128
and normalized within the range [0, 1].

In order to assess the effectiveness of our model, we made
a comparison with state-of-the-art approaches: MobileNetV2

and YOLOv3. Concerning the MobileNetV2 model, we used a
low learning rate of 10−4 in order to prevent the weights pre-
viously learned on ImageNet from being destroyed. Moreover,
it is worth remarking that we used larger input images of shape
224×224, so as to address the higher capacity of the network,
and each input channel was re-scaled to the range [−1, 1],
as this is the input expected by the network. Concerning
YOLOv3, the network expects inputs with a square shape of
416 × 416 and pixel values scaled between 0 and 1. As for
any object detection system, we needed to set thresholds for
the confidence score, i.e. the confidence for a bounding box
to accurately describe an object, and the amount of overlap
between bounding boxes referring to the same objects under
which they are filtered out during non-maximum suppression.
We used a confidence score of 0.50 and an overlapping
threshold of 0.50: these values are typically used in pedestrian
detection as they represent a good compromise between the
precision and recall of the detections.

For all the models we employed, we used early stopping
with patience of 1 to avoid over-training. This technique
was applied by monitoring the loss value on a validation set
randomly held out as a fraction of 10% of the training set. As
for the training time, each model was trained for few tens of
epochs before reaching convergence, requiring a few hours of
time. This was expected, as VisDrone is characterized by high
variance, thus a model starts overfit soon.

C. Experimental Results

Experimental results are provided in Table I. For the pur-
poses of the evaluation, we used standard metrics used by
many existing methods for crowd counting: mean absolute er-
ror (MAE) and root mean squared error (RSME). Analogously
to the loss function we used, MAE is the average absolute
difference between the ground truth and the predicted count
for all test scenes:

MAE =
1

N

N∑
i=1

|yi − y′i| ,

where N is the number of test examples, while yi and y′i are
the actual and estimated crowd count, respectively. Similarly,
RMSE is the square root of the averaged squared difference



between the ground truth and the predicted count over all test
scenes:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − y′i)
2
,

where N , yi and y′i have the same meaning as before. The
main difference between the two metrics is that RMSE is more
sensitive to large errors. In addition, we also provide measures
of size (MB in HDF5 format) and speed (frames per second)
of the experimented models.

As it can be observed, the worst results both in terms of
efficacy and efficiency have been obtained by YOLOv3. The
worst results in terms of prediction accuracy were expected,
since it is well-known the difficulty of running object detection
algorithms on the very challenging VisDrone dataset [41]. It
is worth noting that, for each scene, we did not consider
only the true positive detections, but also the false positive
ones, as their sum represents the overall number of people
the model “believed” were in the scene. Also the lower
recognition speed was expected, as YOLOv3 was asked to
predict not only the presence of people, but also to localize pre-
cisely their position by estimating the corresponding bounding
boxes. Better results were obtained by MobileNetV2 which
drastically reduced the size of the predictive model, while
improving speed. This finding confirms that a regression-
based method may be preferred over an object detector for
the task of crowd counting. Finally, the overall best results
were achieved with the proposed FCN model trained from
scratch. The better results with respect to MobileNetV2 can
be explained considering that the proposed FCN has lower
capacity, thus it may have suffered less from overfitting. In
addition, it should be considered that, although MobileNetV2
was fine-tuned to VisDrone, the ImageNet dataset the model
was originally trained on is characterized by a number of
scenes which are very different from aerial images captured
from drones. In other words, a perspective problem arises.

Unfortunately, the averaged results provided by MSE and
RMSE do not allow the evaluation of the model behaviour
depending on the sparseness or on the crowdedness of the peo-
ple in the scenes. However, to perform a finer evaluation, it is
worth to note that the test images can be divided into categories
and then the model can be evaluated by reformulating the task
as a classic classification problem. In particular, we made two
distinct evaluations. In the first one, test images were divided
into two classes: sparse scenes, with less than 10 people in the
scene; and crowded scenes, with more than 10 people in the
scene. In the second one, we considered three classes, in which
the “crowd” class was further divided depending on whether
the number of people exceeded 30 individuals. Accordingly,
we adjusted the actual and predicted counts as category labels.
In this way, we were able to measure standard classification
metrics such a precision and recall. Precision is calculated as
follows:

Precision =
TP

TP + FP
,

TABLE I
CROWD COUNTING RESULTS.

Model MSE RMSE Size (MB) Speed (fps)
MobileNetV2 10.84 15.40 ∼ 16.5 53.87
YOLOv3 12.14 19.12 ∼ 242.8 3.4
Proposed FCN 8.86 15.07 ∼ 10.3 57.52

TABLE II
TWO-CLASS CROWD CLASSIFICATION RESULTS OF THE PROPOSED FCN.

Class Precision Recall
< 10 0.89 0.80
≥ 10 0.83 0.91
Average 0.86 0.85

TABLE III
THREE-CLASS CROWD CLASSIFICATION RESULTS OF THE PROPOSED

FCN.

Class Precision Recall
< 10 0.89 0.80
≥ 10 and < 30 0.46 0.86
≥ 30 1.00 0.48
Average 0.78 0.71

where TP and FP stand for the number of true positives and
false positives, respectively. Intuitively, precision is the ability
of the model not to label as positive a sample that is negative.
Similarly, recall is calculated as the following ratio:

Recall =
TP

TP + FN
,

where FN is the number of false negatives. Intuitively, recall
is the ability of the model to find all the positive instances.

As it can be seen in Table II, which reports the results of the
proposed FCN model in discriminating between sparse (less
then 10 people) and crowded (more than 10 people) scenes,
the model was, on average, pretty good in correctly detecting
the presence or absence of a crowd in the test images. In
the more refined evaluation based on three classes (see Table
III), we found that the model had difficulties in finding all
the highly dense crowds (more than 30 people), which were
often mistakenly categorized as low dense crowds (i.e., with
a number of individuals between 10 and 30).

Finally, from a qualitative point of view, the proposed
method can be used to output regression activation maps that
can semantically augment the flight maps. Examples of test
images and corresponding heatmaps are depicted in Fig. 4.
It can be seen that the model was able to some extent to
distinguish the zones where people were in the scene from the
areas with no people. This discriminating ability is desirable,
as it can be beneficial to several tasks, for example during
autonomous landing operations in order to prevent the drone
from landing on a “risky” zone.

V. CONCLUSION

Today, unmanned aerial vehicles are increasingly used in
a plethora of domains, from fast delivery to precision agri-
culture. With the recent breakthroughs in deep learning and



Fig. 4. On the top, four test images; on the bottom, the corresponding heatmaps provided by the method. For a better visualization, they have been re-scaled
to the original proportions.

computer vision, these platforms can now be empowered
with real-time and accurate decision making tools. One of
the most promising applications of computer vision on aerial
images from drones is crowd counting and its associated crowd
density estimation. The present paper addressed this problem
by proposing a light-weight fully-convolutional network re-
gression model, which can cope with the strict computational
requirements of the UAVs’ hardware and can provide real-time
responses. While regression methods have shown non-optimal
performance because of the limited size and variability of most
currently available datasets, we have proven that by relying
on a sufficiently large and general dataset, they can achieve
successful performance. To this end, we employed the large
VisDrone benchmark dataset, characterized by a large variety
of aerial scenes from drones. The proposed method is able not
only to regress on the global people count, but can also provide
heatmaps that can be used to semantically enrich the flight
maps for several applications, e.g. for autonomous landing.
These heatmaps provide a kind of crowd density maps that,
in contrast to traditional approaches, are not required to be
directly learned by the deep model.

The proposed method was able to provide better results than
a more complex model based on the MobileNetV2 architec-
ture. A deep network pre-trained on ImageNet can be less
tailored to distinguish among aerial images, mainly because
of their different perspective against traditional photographic
scenes. In addition, both models outperformed the YOLOv3
state-of-the-art real-time object detector. This finding confirms
that the use of a regression-based method may be preferred
over the use of an object detection strategy, for the purposes
of crowd counting, even if based on a CNN-based solution.

Finally, a major limitation of the proposed approach should
be remarked. Probably because of the dataset’s characteristics,
the proposed model is biased in favor of the correct prediction
of the less sparse scenes instead of the overcrowded ones.
Future developments of the present research should address
this issue, for example by enlarging the data at disposal with
data augmentation [42] or synthetic data generation through
generative adversarial networks [43]. Another future direction
is to consider the video captured by the drone naturally as a

data stream [44], instead of a collection of still images.
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