
Segmented Pairwise Distance for Time Series with

Large Discontinuities

Jiabo He1, Sarah Erfani1, Sudanthi Wijewickrema2, Stephen O’Leary2, Kotagiri Ramamohanarao1

1School of Computing and Information Systems, The University of Melbourne, Australia
2Department of Otolaryngology, The University of Melbourne, Australia

Email: {jiaboh@student., sarah.erfani@, sudanthi.wijewickrema@, sjoleary@, kotagiri@}unimelb.edu.au

Abstract—Time series with large discontinuities are common
in many scenarios. However, existing distance-based algorithms
(e.g., DTW and its derivative algorithms) may perform poorly in
measuring distances between these time series pairs. In this paper,
we propose the segmented pairwise distance (SPD) algorithm to
measure distances between time series with large discontinuities.
SPD is orthogonal to distance-based algorithms and can be
embedded in them. We validate advantages of SPD-embedded
algorithms over corresponding distance-based ones on both open
datasets and a proprietary dataset of surgical time series (of
surgeons performing a temporal bone surgery in a virtual reality
surgery simulator). Experimental results demonstrate that SPD-
embedded algorithms outperform corresponding distance-based
ones in distance measurement between time series with large
discontinuities, measured by the Silhouette index (SI).

Index Terms—segmented pairwise distance, distance-based
algorithms, time series, large discontinuities

I. INTRODUCTION

Time series are a ubiquitous form of data in scientific

disciplines. There may be value gaps in time series, which

are jumps of value orthogonal to the time axis. Time series

with large discontinuities (value gaps) are common in a variety

of scenarios, such as surgical procedures, human activity, etc.

It is quite challenging to measure distances between these time

series with the existence of such large discontinuities. Large

discontinuities can impede putting local characteristics into

the spotlight. Since distance measurement for time series is

the core of similarity analysis, classification and clustering,

we should address this issue of measuring distances between

time series with large discontinuities.

There are a large quantity of algorithms measuring distances

between time series, among which Euclidean distance and

dynamic time warping (DTW) along with their derivative

algorithms are the most widely used. Many classification

and clustering algorithms are based on Euclidean distance

when all elements have the same dimension or length [1]–

[4]. However, it can perform poorly when there is distortion

in time series along the time axis [5]. DTW is also widely

used for global distance measurement of time series, applied

in a diverse range of domains including gesture recognition

[6], [7], time series classification [8], trajectory clustering [9],

disease detection [10], etc. DTW can address distortion in time

series to certain extent by aligning two time series with indices

in monotonically increasing order. DTW is a global distance-

based algorithm which cannot fully extract local characteristics
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Fig. 1. Example of segmentation and alignment for time series with large
discontinuities using DTW and SPD-embedded DTW (SDTW).

of time series. Due to this, DTW is unsuitable for certain kinds

of data where local similarity is more significant than global

similarity.

In order to address the above issue, we propose the seg-

mented pairwise distance (SPD) algorithm, which can be em-

bedded in distance-based algorithms. Although both Euclidean

distance and DTW have difficulty in measuring distances

between time series with large discontinuities, we use DTW

and its derivative algorithms as our baselines, since DTW

performs comparatively better than Euclidean distance. Fig.

1 is an example to exhibit the difference between DTW and

SPD-embedded DTW (SDTW) when dealing with time series

with large discontinuities. DTW aligns two time series with

indices monotonically increasing, while SDTW can segment

time series based on large discontinuities and sum all distances

between the most similar segment pairs. As a result, SDTW

is able to detect similar time series sharing similar segment

pairs by obtaining small overall distances between them.

This paper mainly contributes to proposing a new algorithm,

SPD, to measure distances between time series with large

discontinuities. Moreover, there are two technical merits in

SPD: (1) SPD is orthogonal to distance measurement and can

be embedded in all distance-based algorithms; (2) SPD can

decide a unique segmentation threshold for every time series

in different datasets so that it can be applied to a variety of

datasets. We validate advantages of SPD-embedded algorithms

over corresponding distance-based ones on both open datasets

and the surgical dataset that we collect, where surgeries are

performed by expert surgeons on the same patient’s temporal

bone in the virtual reality surgery simulator. It will provide a

new challenging benchmark dataset for distance measurement

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



of time series with large discontinuities1. In addition, all

techniques for speeding up distance-based algorithms can also

be applied to SPD-embedded algorithms, which is beyond the

scope of this paper.

II. RELATED WORK

A. Segmentation algorithms for time series

Many segmentation algorithms for time series are based

on regression subroutines [11]–[13]. There are three main

categories of regression-based segmentation algorithms, in-

cluding Sliding-Windows, Top-Down, and Bottom-Up algo-

rithms. They are utilized to address multiple segmentation

problems: generate piecewise representations (1) using only

K segments, (2) minimizing the piecewise error, (3) and

minimizing the total error in various scenarios [14]. [11]

caught segmentation points by combining the Lasso penalty

with dynamic programming. [15] first learned a sequence

of local relationship models that could best fit time series

data, and then combined changes of local relationships to

identify the operational behavior switching in the system level.

Regression-based segmentation algorithms have two main lim-

itations: (1) regression subroutines are not efficient if one just

needs segments of time series without regression; (2) linear

representations for univariate segments are not applicable in

high-dimensional multivariate time series.

There are also some segmentation algorithms for time series

without employing regression. [16] successfully segmented

multivariate time series with differential evolution. Later, the

fast low-cost online semantic segmentation (FLOSS) algorithm

segmented time series at a high level by detecting the regime

change [17]. In addition, Matrix Profile distance (MPdist) was

proposed to detect the similarity of two time series when

they share multiple similar subsequences based on Euclidean

distance [18]. However, these algorithms still have some

limitations: (1) they are not computationally efficient because

they traverse all possible subsequences; (2) there are some

hyperparameters (e.g., the length of subsequences in time

series and the quantile threshold in MPdist) to be decided

before measurement, which is domain dependent.

B. Euclidean distance, DTW and their derivatives

Both Euclidean distance and DTW have difficulty in mea-

suring distances between time series with large discontinu-

ities. Euclidean distance regards each time series as a high-

dimensional point, which is extensively applied as the distance

function in time series classification [1], clustering [2], [3], and

other scenarios. In addition, DTW and its derivative algorithms

can also measure distances between time series. Complexity

invariance was proposed to measure distances between time

series with varying complexities, which could be embedded in

DTW as the complexity-invariant DTW (CIDTW) algorithm

[19]. The shape of time series is also a significant feature.

[20] proposed the derivative DTW (DDTW) algorithm to align

1The code and dataset is available at https://github.com/Jacobi93/
Segmented-Pairwise-Distance.

time series using high level features of shape. Moreover, the

phase difference is also a potential problem because DTW

provides non-linear alignments. [21] proposed the weighted

DTW (WDTW) algorithm to penalize points with higher

phase difference, in order to achieve minimum distance dis-

tortion caused by outliers. The weighted version of DDTW

(WDDTW) was then proposed in [21]. These derivative al-

gorithms of DTW all perform competitively well in their

specific scenarios and exhibit their limitations in others. They

are all whole time series distance-based algorithms, which

measures distances between time series using all elements

in them. We do not consider those shapelet-based, interval-

based, or dictionary-based algorithms. They measure distances

between subsequences from whole time series with different

feature selection methods, which were compared and analyzed

comprehensively in [22].

Some research embedded segmentation techniques in DTW

for distance measurement as well. [23] implemented peak

identification and pairing for time series before DTW analysis.

The limitation is that the number of segments between two

time series must be the same, which is not ubiquitous in

many scenarios. In contrast, our proposed segmented pairwise

distance (SPD) algorithm can be embedded in any distance-

based algorithm and the numbers of segments of two time

series are not restricted to be the same. Another segmented-

based DTW (SBDTW) algorithm was proposed for similarity

measurement in urban transportation systems [24]. Point-

segment, prediction and segment-segment distances were de-

fined in SBDTW. The minimal distance of time series pairs

was computed by accumulating the minimum of three dis-

tances. Instead, SPD only segments time series based on their

large discontinuities. Following that, original distance-based

algorithms are employed on every segment pair from different

time series to obtain pairwise distances, which is then used

for calculating the overall distance between time series.

C. Local similarity

Some researchers also noticed the significance of local

similarity for time series. Local descriptors for recognizing

motion patterns in videos were presented to classify human

actions [25]. Internal self-similarities were captured by a local

self-similarity descriptor [26], which provided matching ca-

pabilities of complex visual data. Besides, all-pairs-similarity-

search algorithms were also proposed to evaluate similarity

joins for time series subsequences [27]. To extend this idea,

our work measures local similarity between time series with

large discontinuities using SPD-embedded algorithms.

III. SEGMENTED PAIRWISE DISTANCE ALGORITHM

This paper proposes the segmented pairwise distance (SPD)

algorithm to measure distances between time series with

large discontinuities. The SPD algorithm can be embedded in

all distance-based ones. Since DTW performs comparatively

better than Euclidean distance, we use DTW and its derivative

algorithms in our experiments. We embed SPD in DTW to



Algorithm 1 SDTW

Input: Time series A and B in length n1 and n2, q
Output: SDTW (A,B)

1: Calculate consecutive distances for A and B, obtain

segmentation thresholds based on q and sorted distance

distributions of A and B, respectively

2: Segment A and B into s1 segments (a1,a2, . . . ,as1
),

and s2 segments (b1, b2, . . . , bs2
) based on thresholds

3: Calculate DTW (ai, bj) for all i in [1, s1] and j in [1, s2]
to obtain the DTW matrix D in size of (s1, s2)

4: Dis1 =
∑s1

i=1 min(row(i))
5: Record the column numbers of min(row(i)) in step 4 and

delete recorded columns with s′2 columns remained in D’

6: Dis1 = Dis1 +
∑s′

2

j=1 min(col(j))

7: D = DT , repeat steps 4-6 to obtain Dis2
8: SDTW (A,B) = min(Dis1,Dis2)

n1+n2

build the SDTW algorithm as an example, with details in

Algorithm 1.

A. Dynamic Time Warping

Before we go deep into our proposed SPD, it is necessary

to introduce DTW first. We select DTW and its derivative

algorithms as distance measurement baselines because DTW

performs comparatively better than Euclidean distance in mea-

suring distances between time series with large discontinuities.

DTW is flexible to align time series with variant lengths.

Equations (1) and (2) are recursive functions of DTW [5].

A and B are two time series in sequence (a1, a2, . . . , an1
)

and (b1, b2, . . . , bn2
). n1 and n2 are the number of elements

in A and B. d(ai, bj) is the distance (usually it is Euclidean

distance) defined between the ith element in A and the jth

element in B.

D(1:n1, 1:n2) = d(an1
, bn2

) +min[D(1:(n1 − 1),

1:(n2 − 1)), D(1:(n1 − 1), 1:n2), D(1:n1, 1:(n2 − 1))]
(1)

D(1:1, 1:1) = d(a1, b1) (2)

B. SPD-embedded Dynamic Time Warping

We are finally in the position to introduce the core contribu-

tion of our work. This paper proposes SPD to help distance-

based algorithms measure distances between time series with

large discontinuities. We embed SPD in DTW to build SDTW

as an example (Algorithm 1). In order to measure the SDTW

distance between two time series, we first calculate distances

of consecutive elements for each one of them, respectively.

The quantile q of sorted distance distribution decides the seg-

mentation threshold for each time series (step 1). The quantile

q is not completely domain agnostic. The knowledge of the

dataset can help set a reasonable q for distance measurement

between time series, although we find that it is insensitive

in range of [0.9, 0.99] in most scenarios by experiments.

q = 0.99 represents that the time series will be segmented
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Fig. 2. Example of distance measurement between time series with large
discontinuities using DTW and SPD-embedded DTW (SDTW).

where the distance between two consecutive elements is larger

than 99% of all in the time series. For example, if there are

about one thousand elements in the time series, it will be

segmented into 10 subsequences approximately. There is a

unique segmentation threshold for every time series when q is

determined.

After segmentation of two time series based on their thresh-

olds we obtain (step 2), we can calculate the DTW matrix for

every segment pair from two different time series based on the

DTW algorithm (step 3). Afterwards, all minimal distances

from every segment in A to any segment in B are found

and accumulated (step 4). There are probably some segments

in B, which are never paired by A in step 4. Then minimal

distances from those remaining segments in B to any segment

in A are then found and accumulated to obtain Dis1 (steps

5-6). Dis2 can be measured after transposing D and repeating

steps 4-6 (step 7). Finally, we can obtain the SDTW distance

between two time series A and B in step 8.

Here is an example of the comparison between DTW and

SDTW when calculating the distance between two time series

with large discontinuities (Fig. 2). Sequence A is (4, 5, 6,

1, 2, 3, 7, 8, 9). Sequence B is (1, 2, 3, 7, 8, 9, 4, 6,

5). We set the segmentation threshold to be 2 for each one

of them so that each time series can be segmented into 3

subsequences. From the local point of view, two time series

are very similar to each other but not exactly the same. Both

A and B have subsequences (1, 2, 3) and (7, 8, 9) while

there is a unique subsequence (4, 5, 6) in A and (4, 6, 5) in

B. SDTW outperforms DTW when analyzing local similarity

between two time series, which successfully detects similar

subsequence pairs from different time series.

The time complexity of DTW is O(n1n2). The

time complexity of SDTW is O(n1) + O(n2) +
O(

∑s1
i=1

∑s2
j=1 l(ai)l(bj))+O(s1s2), where O(n1)+O(n2)

is the time complexity for segmenting A and B (steps 1-2),

O(
∑s1

i=1

∑s2
j=1 l(ai)l(bj)) is that for calculating the DTW

matrix (step 3) and O(s1s2) is that for calculating the SDTW

distance based on the DTW matrix (steps 4-8). l(ai) is the

length of the ith subsequence in A and l(bj) is the length

of the jth subsequence in B. Since
∑s1

i=1 l(ai) = n1 and
∑s2

j=1 l(bj) = n2, O(
∑s1

i=1

∑s2
j=1 l(ai)l(bj)) is equal to



O(n1n2). Because O(s1s2) < O(n1n2), the time complexity

of SDTW is O(n1n2) in the end, which is the same as that

of DTW although it takes a little longer to implement SDTW

than DTW in experiments. In addition, all techniques for

speeding up DTW can also be applied to SDTW, and SDTW

has the advantage of less space complexity over DTW. Both

of them are beyond the scope of this paper.

IV. DATASETS

A. The Cortical Mastoidectomy dataset

The Cortical Mastoidectomy (CM) dataset is collected with

the help of expert ear surgeons performing this operation

on the Virtual Reality Temporal Bone Surgery (VRTBS)

simulator [28]. The VRTBS simulator was developed as a

platform for temporal bone surgery training, including CM.

Expert surgeons can record their surgeries in the simulator so

that trainees can learn from them. Trainees can also practise

performing surgeries repetitively in the simulator before they

achieve expertise. Long time series of the surgical drilling bit

are recorded as voxel positions in the 3D space. Fig. 3 is an

example of a temporal bone after the completion of a CM

surgery on the simulator [29]. The vacant region in the center

is the drilled part of the mastoid from a temporal bone. Data

preprocessing is implemented for better distance measurement

because surgical time series collected in the simulator are

usually constrained with noise. First, all consecutive and

duplicated elements are deleted so that no repeated positions

are recorded. Second, we also delete positions without the

removal of the mastoid so that all changes of positions in

time series are effective actions. In the end, remaining time

series with varying lengths are saved for further distance

measurement. [30] proposed processing methods to deal with

varying-length time series, such as the uniform scaling, the

prefix and suffix padding, etc. We do not include them because

(1) there is no noticeable improvement and (2) DTW and its

derivatives are able to measure distances between time series

with varying lengths.

Surgeons remove the mastoid part by part so that time series

with large discontinuities are recorded. Surgeons have a variety

of ways to remove mastoid air cells in different styles. Time

series of the surgical drilling bit in every surgery are different

from each other from the global point of view. However, some

parts of them are analogous to each other from the local point

of view because surgeons tend to remove parts of the mastoid

in their own way when they perform CM surgeries. As the

surgery goes on, there are more and more stochastic actions

of removing the mastoid out of the temporal bone, which

is unavoidable to be recorded as stochastic elements in time

series. These stochastic elements can impede the discovery of

surgeries from the same surgeon severely. In order to alleviate

this problem, we truncate the first 1/5 of all time series to build

the CM dataset. 21 surgeries are collected from 7 surgeons

on the same temporal bone, with each surgeon performing

3 surgeries in their unique style. Therefore, there are 21 time

series pairs from the same surgeon and 189 pairs from different

surgeons in total. Surgical time series from the same surgeon

Fig. 3. Processed temporal bone image after the cortical mastoidectomy (CM)
surgery (bottom right is one surgeon performing a CM surgery in the VRTBS
simulator).

tend to share smaller distances between each other than those

from different surgeons.

To our knowledge, the CM dataset is a very challenging

benchmark dataset. Surgeries from the same surgeon can still

be different from each other from a global point of view (Fig.

4). Our goal is not to propose a novel algorithm and identify

every surgery from every surgeon without any mistake (we

believe that no algorithms can successfully do it right now).

We provide this benchmark dataset to help researchers explore

the possibility of distance measurement for time series with

large discontinuities. There are some significant characteristics

of the CM dataset:

• All surgical time series are collected from expert surgeons

in the VRTBS simulator. It is different from those time

series collected from sensors or other professional tools

because there are not only noise but also unavoidable

stochastic actions in them, which makes it more chal-

lenging to measure distances between these time series

pairs.

• Apart from the noise and unavoidable stochastic actions

in the CM dataset, there are large discontinuities in every

surgical time series. The detection of consecutive ele-

ments with large discontinuities is crucial for measuring

distances between them.

• All surgical time series collected in the CM dataset are

3D time series. while most open datasets are composed of

1D (e.g., stock price, ECD) or 2D (e.g., GPS trajectories)

time series.

B. Open datasets

There are not a lot of open datasets where time series

own large discontinuities. This should be one reason why few

research addressed the issue of measuring distances between

them before. However, it is still important to discuss about this

issue as they are common in some scenarios, such as surgical

procedures and human activity. We will release the CM dataset

as a supplement to existing datasets. It will be beneficial to

researchers who want to do further research on measuring

distances between time series with large discontinuities.

In order to validate the segmented pairwise distance (SPD)

algorithm, we should find some other open datasets and mod-

ify them if necessary. After thorough (may not be complete)

searching throughout the UCR Archive and other online data



Fig. 4. Cortical mastoidectomy surgery time series performed by seven surgeons with each performing three surgeries.

resources, two datasets are used for our experiments after

limited modification.

1) Activity Recognition dataset: The first dataset is the

Activity Recognition (AG) dataset [31]. AG is collected from

wearable accelerometers mounted on chests of 15 participants

performing 7 activities, such as standing, walking, going

updown stairs, etc. It provides challenges for identification and

authentication of people using motion patterns.

Although there are 7 different activities in the recorded

time series of every participant, there is still no large dis-

continuities in time series. In order to build time series with

large discontinuities as the benchmark dataset, we concatenate

different activities of the same participant to build new time

series for everyone. The activity standing and walking are

selected because their patterns are quite different from each

other in fluctuation amplitude and frequency. For every partic-

ipant, two new time series are built as (S1,W1, S2,W2) and

(W3, S3,W4, S4), where S stands for standing and W stands

for walking. They are randomly selected from subsequences

of time series representing the same participant with the same

length (500 elements in each subsequence and 2000 in total).

We partition 15 participants into 5 sub-datasets so that there

are 3 participants in each experiment in AG (from AR1 to

AR5 in Table I), with each participant having two newly-built

time series.

2) Indoor User Movement dataset: The second dataset is

the Indoor User Movement (IUM) dataset [32]. IUM contains

patterns of user movements in real-world office environments

from time series generated by a Wireless Sensor Network

(WSN), comprising 5 sensors: 4 anchors deployed in the

environment and 1 mote worn by the user. Target data in IUM

consists in a class label indicating whether the user’s time

series will lead to a room change or not. In particular, the

target class 1 is associated to the location changing movements

(156 sequences), while the target class -1 is associated to the

location preserving movements (158 sequences).

For the same reason mentioned above, we need to build

new time series to evaluate the performance of SPD. Every

movement is recorded by 4 anchors in IUM. We can concate-

nate them together and add constant values in the second and

fourth subsequences to create large discontinuities. We select

26 time series from IUM non-repetitively every time, with 13

from class 1 and the other 13 from class -1. As a result, the

IUM dataset is partitioned into 12 sub-datasets (from IUM1

to IUM12 in Table I).

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will compare and analyze the perfor-

mance of SPD-embedded algorithms with their corresponding

distance-based ones on open datasets and the cortical mas-

toidectomy (CM) dataset collected by expert surgeons.

A. Silhouette index

To evaluate the performance of SPD-embedded algorithms

along with corresponding distance-based ones, we should



test if they measure distances between time series reason-

ably. The internal cluster criteria are built to evaluate the

performance of clustering algorithms, which compare av-

erage within-cluster distances and between-cluster distances

obtained by different algorithms [21]. There are a group of

validity indices to interpret and validate distance measurement

of clustering algorithms, including Silhouette index, Dunn

index, Davies–Bouldin index, etc. In this paper, the Silhouette

index (SI) is used as an evaluation metric for our task [33].

Equations (3)-(7) define SI, where t are time series in the

dataset Dt. We can calculate SI(ti) for every time series ti and

the overall SI(Dt) can be an estimation of the performance of

distance-based algorithms on the dataset. a(ti) is the average

pairwise distance between ti and any other time series in

the same cluster while b(ti) is the average pairwise distance

between ti and any time series in the neighbouring cluster. SI

are in range of [−1, 1] and high SI means appropriate distance

measurement for clustering the dataset.

a(ti) =
1

|Cti | − 1

∑

j∈Cti
,i 6=j

D(ti, tj) (3)

b(ti) = min
k 6=i

1

|Ctk |

∑

tj∈Ctk

D(ti, tj) (4)

SI(ti) =
b(ti)− a(ti)

max(a(ti), b(ti))
, if |Cti | > 1 (5)

SI(ti) = 0, if |Cti | = 1 (6)

SI(Dt) =
1

|Dt|

∑

ti∈Dt

SI(ti) (7)

B. Experimental algorithms

We select 5 distance-based algorithms, namely DTW,

CIDTW, DDTW, WDTW and WDDTW mentioned in Section

II. We chose DTW as an example in Section III to exhibit how

SPD can be embedded in distance-based algorithms. Here are

other four algorithms which are to be compared in following

experiments.

1) CIDTW: Complexity invariance was proposed as a sup-

plement to the invariance family including amplitude invari-

ance, local scaling invariance, uniform scaling invariance,

phase invariance, occlusion invariance, and their combinations

[19]. The complexity invariance was achieved by the introduc-

tion of a correction factor CF for existing distance measures,

obtained by the complexity estimate CE. It can be embedded

in DTW as the complexity-invariant DTW (CIDTW) algorithm

defined by (8)-(10).

CIDTW (A,B) = DTW (A,B)× CF (A,B) (8)

CF (A,B) =
max(CE(A), CE(B))

min(CE(A), CE(B))
(9)

CE(A) =

√

√

√

√

n−1
∑

i=1

(ai − ai+1)2 (10)

2) DDTW: The derivative DTW (DDTW) algorithm aligns

time series considering high level features of shape. It obtains

information about shapes by considering the first derivative of

time series [20]. DDTW preprocesses time series using (11),

where the undefined elements aD1 and aDn are obtained by

aD1 = aD2 and aDn = aDn−1. Distances between preprocessed

time series are then calculated by DTW.

aDi =
(ai − ai−1) + (ai+1 − ai−1)/2

2
, 1 < i < n (11)

3) WDTW: The phase difference is also a common prob-

lem because DTW provides non-linear alignments, which is

regarded as the phase invariance problem in the invariance

family. [21] proposed the weighted DTW (WDTW) algorithm

to penalize elements with larger phase difference using (12)-

(13), in order to achieve minimum distance distortion caused

by outliers. Equation (14) is the modified logistic weight

function (MLWF) proposed to systematically assign weights as

a function of phase difference. g is the penalty coefficient for

phase difference. There is no guarantee that SPD can improve

the performance of WDTW for any g on any dataset, but

we found positive results in most experiments. g = 0.01 is

selected as the penalty for WDTW shown in Table I.

D(1:n1, 1:n2) = wn1−n2
d(an1

, bn2
) +min[D(1:(n1 − 1),

1:(n2 − 1)), D(1:(n1 − 1), 1:n2), D(1:n1, 1:(n2 − 1))]
(12)

D(1:1, 1:1) = w1−1d(a1, b1) (13)

wi =
wmax

1 + exp (−g(i− nc))
(14)

4) WDDTW: The penalty for phase difference can be

extended to variants of DTW, including DDTW. The weighted

version of DDTW (WDDTW) was then proposed in [21]. We

use the same g for WDDTW in all experiments.

C. Results and analysis

We validate advantages of SPD by selecting 5 distance-

based algorithms with their corresponding SPD-embedded ver-

sions to measure pairwise distances on the CM, AR and IUM

datasets, respectively. All odd columns are results of existing

distance-based algorithms and all even columns are those

of corresponding SPD-embedded algorithms. The quantile of

sorted distance distribution is insensitive when it is in range

of [0.9, 0.99] in most scenarios. We set the quantile to be 0.99
in all experiments based on a priori knowledge of datasets.

On the CM dataset, all SPD-embedded algorithms perform

better than corresponding distance-based ones, with overall

improvement of 0.312 in average measured by SI. DDTW,

WDTW and WDDTW all perform poorly on the CM dataset.

Although their corresponding SPD-embedded algorithms im-

prove much based on their poor performance, they are still

worse than DTW. The poor performance of DDTW implies

that high level features of shape extracted by the first deriva-

tive of time series should impede the measurement of their



TABLE I
EXPERIMENTAL RESULTS ON ALL DATASETS MEASURED BY SI (SI IN RANGE OF [−1, 1]; CM: CORTICAL MASTOIDECTOMY DATASET; AG: ACTIVITY

RECOGNITION DATASET; IUM: INDOOR USER MOVEMENT DATASET).

DTW SDTW CIDTW SCIDTW DDTW SDDTW WDTW0.01 SWDTW0.01 WDDTW0.01 SWDDTW0.01

CM 0.054 0.139 0.156 0.226 −0.234 −0.044 −0.627 0.009 −0.673 −0.094

AR1 0.226 0.260 0.245 0.309 0.220 0.222 −0.198 0.223 −0.171 0.038
AR2 0.264 0.406 0.355 0.415 0.186 0.182 −0.216 0.138 −0.208 0.056
AR3 0.291 0.488 0.376 0.504 0.248 0.277 −0.199 0.315 −0.174 0.154
AR4 0.280 0.449 0.351 0.539 0.161 0.117 −0.193 0.203 −0.147 −0.063
AR5 0.091 0.459 0.180 0.511 0.060 0.144 −0.168 0.196 −0.144 −0.064

Overall 0.230 0.412 0.301 0.456 0.175 0.188 −0.195 0.215 −0.169 0.024

IUM1 0.020 0.140 0.013 0.169 0.023 0.026 0.023 0.137 0.028 0.059
IUM2 0.031 0.155 0.070 0.163 0.022 0.071 0.040 0.145 0.031 0.069
IUM3 0.013 0.232 0.017 0.143 −0.017 0.032 0.031 0.264 0.006 0.110
IUM4 0.076 0.295 0.074 0.318 −0.031 0.043 0.112 0.325 0.035 0.095
IUM5 0.059 0.385 0.069 0.348 0.007 0.051 0.129 0.424 0.071 0.201
IUM6 0.093 0.123 0.114 0.166 −0.010 0.037 0.120 0.109 0.051 0.066
IUM7 0.136 0.478 0.127 0.472 −0.061 0.087 0.199 0.451 0.069 0.113
IUM8 −0.043 0.112 −0.041 0.180 −0.084 0.043 0.116 0.135 0.078 0.128
IUM9 −0.019 0.366 −0.012 0.403 −0.082 0.093 0.111 0.338 0.076 0.150
IUM10 0.024 0.212 0.028 0.246 −0.058 0.052 0.145 0.239 0.080 0.104
IUM11 0.001 0.082 0.004 0.086 −0.045 0.013 0.107 0.127 0.066 0.074
IUM12 0.083 0.233 0.081 0.161 −0.056 0.130 0.163 0.241 0.078 0.185
Overall 0.040 0.234 0.045 0.238 −0.033 0.057 0.108 0.245 0.056 0.113

pairwise distances in the CM dataset. The poor performance

of WDTW and WDDTW implies that we should tolerate the

phase difference between time series when measuring their

pairwise distances in the CM dataset. SCIDTW performs

the best on the CM dataset, with CIDTW the second and

SDTW the third. SDTW does not defeat CIDTW but CIDTW

can be additionally improved by our proposed SPD as the

champion SCIDTW on the CM dataset. SDTW improves the

performance of DTW by 157% and SCIDTW improves the

performance of CIDTW by 45%, respectively.

On the AR dataset, most SPD-embedded algorithms perform

better than corresponding distance-based ones on sub-datasets,

with overall improvement of 0.19 in average measured by SI.

DDTW performs slightly worse than DTW, while WDTW

and WDDTW perform poorly on the AR dataset. Although

their corresponding SPD-embedded algorithms improve much

based on their poor performance, they are still worse than

DTW. The poor performance of DDTW implies that it is

not necessary to extract high level features of shape by the

first derivative of time series when measuring their pairwise

distances in the AR dataset. The poor performance of WDTW

and WDDTW implies that we should also tolerate the phase

difference between time series in the AR dataset. SCIDTW

performs the best on the AR dataset, with SDTW the second.

SDTW defeats CIDTW on the AR dataset. Both SCIDTW and

SDTW perform much better than all other algorithms. SDTW

improves the performance of DTW by 79% and SCIDTW

improves the performance of CIDTW by 51%, respectively.

On the IUM dataset, most SPD-embedded algorithms per-

form better than corresponding distance-based ones on sub-

datasets as well, with overall improvement of 0.134 in av-

erage measured by SI. However, almost all distance-based

algorithms perform badly on the IUM dataset. It is quite

necessary to use SPD-embedded algorithms in order to im-

prove the performance of corresponding distance-based ones

in measuring pairwise distances of time series in the IUM

dataset. SWDTW performs the best on the IUM dataset, with

SCIDTW the second and SDTW the third. SDTW, SCIDTW,

and SWDTW improves the performance of DTW, CIDTW, and

WDTW by 485%, 429%, and 127%, respectively. The top 3

algorithms share very close performance to each other, which

is one main reason why we do experiments on randomly-

selected sub-datasets. We can clearly see the distribution of

best performance on these sub-datasets when overall results

are close to each other.

In conclusion, all algorithms perform quite differently from

each other on different datasets. SPD-embedded algorithms

can help improve the performance of corresponding distance-

based algorithms dominantly on every dataset, even when

distance-based ones perform very badly. DTW is a widely used

algorithm, which is hard to beat by its derivative algorithms

(CIDTW, DDTW, WDTW and WDDTW). CIDTW performs

the best among 5 distance-based algorithms, which shows the

importance of achieving complexity invariance when measur-

ing distances between time series with large discontinuities.

Moreover, none of these distance-based algorithms are ubiqui-

tously well-performing ones and they can only perform well in

their specific scenarios. The poor performance of SWDDTW

on all datasets implies that complicated algorithms can not

make sure of good performance. It may not be necessary

to learn shape features of time series or consider the phase

invariance when measuring their pairwise distances all the

time. It is always necessary to obtain a priori knowledge of

scenarios in order to select suitable algorithms. In this scenario



where all time series own large discontinuities, SCIDTW

performs the best, followed by SDTW.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new algorithm, the segmented pair-

wise distance (SPD), to measure distances between time series

with large discontinuities, which are common in many scenar-

ios. SPD is orthogonal to distance-based algorithms and can be

embedded in them. We validate advantages of SPD-embedded

algorithms over corresponding distance-based ones on both

open datasets and our collected cortical mastoidectomy (CM)

dataset. We provide the potential of distance measurement with

SPD-embedded algorithms in more challenging scenarios. In

the near future, we plan to (1) find an intelligent method

to decide the segmentation threshold for SPD on different

datasets and (2) consider the extension of SPD to surgical

time series identification, human activity recognition and other

challenging tasks.
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