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Abstract—Semantic segmentation is one of the key problems
in the field of computer vision, as it enables computer image
understanding. However, most research and applications of
semantic segmentation focus on addressing unique segmentation
problems, where there is only one gold standard segmentation
result for every input image. This may not be true in some
problems, e.g., medical applications. We may have non-unique
segmentation annotations as different surgeons may perform
successful surgeries for the same patient in slightly different
ways. To comprehensively learn non-unique segmentation tasks,
we propose the reward-penalty Dice loss (RPDL) function as the
optimization objective for deep convolutional neural networks
(DCNN). RPDL is capable of helping DCNN learn non-unique
segmentation by enhancing common regions and penalizing
outside ones. Experimental results show that RPDL improves
the performance of DCNN models by up to 18.4% compared
with other loss functions on our collected surgical dataset.

Index Terms—semantic segmentation, reward-penalty Dice
loss, cortical mastoidectomy surgery, medical image, simulator

I. INTRODUCTION

Semantic segmentation is pixel-wise image classification

applied in a variety of scenarios [1]–[4]. The importance of

semantic segmentation is due to the fact that it can help models

understand the context in the environment they are operating.

Deep convolutional neural networks (DCNN) are now the de

facto standard in semantic segmentation tasks because of their

state-of-the-art performance [5]–[7]. To train DCNN models,

researchers usually build the dataset by annotating the unique

pixel-wise segmentation output for every input as the ground

truth. However, this may not be the case in some surgical

scenarios. Different surgeons may provide non-unique surgical

procedures when performing the same surgery on the same

patient. Generating a model from non-unique segmentation is

essential for training purposes, e.g., designing surgery simu-

lators, verifying outcomes, and learning from other surgeons.

A typical example for this is cortical mastoidectomy (CM),

where surgeons remove part of the mastoid bone. The CM

surgery can be performed to remove diseased bones or as

a preliminary step of the cochlear implant surgery, which

is an effective surgery to help patients recover from hearing

loss [8], [9]. Surgeons follow a set of guidelines to achieve

this (such as identifying landmarks and drilling parallel to

anatomical structures), but there is also some leeway as to

how the procedure is performed. As such, the end products

(a) Original (b) Surgeon1 (c) Surgeon2

(d) Surgeon3 (e) Surgeon4 (f) Surgeon5

Fig. 1. Examples of the original temporal bone of a patient and corresponding
surgical regions performed by different surgeons in the cortical mastoidectomy
surgery.

drilled by different surgeons may not be the same even for

the same patient (Fig. 1).

The non-unique segmentation can also be defined as a

semantic segmentation task where every input corresponds

to multiple segmentation annotation outputs. DCNN models

are designed for accurate pixel-wise image segmentation in

semantic segmentation tasks. Fully convolutional networks

(FCN) [5], U-net [6] and V-net [7] are designed for specific

segmentation problems while autoencoders [10], [11] and

generative adversarial networks (GANs) [12]–[14] are also

applied to certain segmentation problems. However, they are

all designed to address unique segmentation problems. In

the non-unique segmentation task, original images are fed

into DCNN as inputs while non-unique segmentation results

are regarded as outputs. The generated segmentation result

by DCNN is evaluated by comparing them with all outputs

corresponding to the same input.

To train DCNN models, it is crucial to design the opti-

mization objective based on DCNN architectures and targets.

Existing loss functions, such as the cross-entropy loss (CEL)

[5], the weighted cross-entropy loss (WCEL) [6] and the

Dice loss (DL) [15], are utilized as optimization objectives in

semantic segmentation tasks. WCEL was derived from CEL

to alleviate the imbalance problem between the foreground

and the background of images [6]. Later, DL was proposed
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based on measuring overlaps between predicted outputs and

the ground truth, which is more robust than WCEL when the

level of imbalance increases [15]. However, they are limited to

address the unique segmentation problem and cannot enhance

the commonality of non-unique segmentation outputs for the

same input.

Driven by the significance of learning non-unique segmen-

tation and limitations of existing algorithms, a question arises:

How to learn non-unique segmentation better? In this paper,

we propose the reward-penalty Dice loss (RPDL) function to

address this problem. Specifically, pixel-wise positive rewards

are designed to enhance common segmentation regions and

pixel-wise negative rewards are designed to penalize outside

ones in RPDL. In order to demonstrate advantages of RPDL

over other loss functions in non-unique segmentation tasks, we

first collected 63 different CM surgeries in the simulator. We

invited 7 surgeons at the Royal Victorian Eye and Ear Hospital,

with each performing one CM surgery on 9 specimens of

different patients’ temporal bones. Surgeons have a variety of

ways to remove part of the mastoid. The final regions of the

removed volume performed by different surgeons are different

from each other for every patient. It is a medical image

segmentation task with original bone images regarded as inputs

and corresponding surgical results from different surgeons

regarded as outputs. Experimental results show that RPDL

can help DCNN learn CM surgeries from different surgeons

comprehensively. DCNN with RPDL outperform those with

other loss functions dominantly in providing surgical regions

for new patients. The automated generation of CM surgery

results for new patients can not only be of high efficiency in

time, but also provide valid surgeries with less variance after

learning all surgeries comprehensively from different surgeons.

There are three main contributions in this paper:

• We define non-unique segmentation as a new semantic

segmentation problem, where every input image cor-

responds to multiple possible outputs. We extend the

potential of DCNN to learn non-unique segmentation

tasks. In addition, we collect the CM dataset to provide

a new benchmark dataset for non-unique segmentation1.

• We propose a new loss function, RPDL, for DCNN to

learn non-unique segmentation tasks comprehensively.

RPDL is able to help DCNN models enhance their ability

to extract the similarity among different segmentation

results and get rid of touching outside regions.

• We validate advantages of RPDL over other loss functions

on the CM dataset that we collect. RPDL outperforms

other loss functions evaluated by both evaluation metrics

and expert surgeons.

II. RELATED WORK

A. Medical Image Segmentation

The success of pixel-wise segmentation is attributed to the

fast and effective in-network upsampling, which learns dense

1The code and dataset is available at https://github.com/Jacobi93/
Reward-penalty-Dice-loss.

prediction by deconvolution in deep convolutional neural net-

works (DCNN) [5], [16]. There have been a lot of medical

image segmentation competitions and challenges owing to

the development of DCNN in recent years, such as BraTS

Challenge [17], LiTS Challenge [18], Atrial Segmentation

Challenge [19], and Medical Segmentation Decathlon [20],

etc. These competitions and challenges are so competitive that

the grades of top teams are very close to each other. For

example, the difference among top 5 teams are within 3% in 7
out of 10 individual disciplines in the Medical Segmentation

Decathlon 2018 Challenge, measured by the Dice coefficient

[20]. Most top teams tend to build their models based on

different architectures of DCNN. DCNN models with delicate

design of architectures and fine tuning of hyperparameters

share comparable and close performance in medical image

segmentation tasks.

There are a plenty of architectures of DCNN designed

for medical image segmentation, among which U-net [21]–

[23], autoencoders [10], [11], [24], and generative adversarial

networks (GANs) [12]–[14] are popular ones. 3D U-net [25]

and V-net [7] are both inspired from the U-net architec-

ture. The major difference is that there are ResNet layers

[26] applied in every module of V-net instead of 3D U-

net for residual learning. U-net is actually one variation of

convolutional autoencoders with the concatenation of outputs

from the encoder and inputs from the decoder at the same

depth. Other autoencoders, such as dense autoencoders, spatial

autoencoders, and variational autoencoders may all obtain

competitive performance in medical image segmentation [11].

Unlike U-net and autoencoders, GANs are trained in a dif-

ferent way. GANs fool the discriminator to distinguish gold

standard images from synthetic ones by generating segmen-

tation outputs with the generator. In addition, there are also

further research on improving the performance of DCNN in

medical image segmentation by (1) embedding other modules

into DCNN, like attention modules for enhancing spatial

correlation features [27] or (2) utilizing cascaded DCNN

architectures for each sub-task [28]. However, there is only

limited improvement compared with basic DCNN models.

B. Loss Functions for Semantic Segmentation

The cross-entropy loss (CEL) function was commonly used

as the optimization objective of DCNN in semantic seg-

mentation tasks. The pixel-wise CEL evaluates each pixel

individually and optimizes the summation of them [5]. How-

ever, CEL cannot address the imbalance problem between the

background and the foreground of images. Thus, the weighted

cross-entropy loss (WCEL) function was proposed to handle

the mild-imbalance problem [6], [25], [29]. The weight is a

hyperparameter in WCEL, which is often set as the ratio of

the background and the foreground in order to enhance the

minority target. Later, the Dice loss (DL) function was also

proposed to address the high-imbalance problem, which is

commonly used in 3D medical image segmentation tasks [15],

[21], [28]. The intuition is that the Dice coefficient is the first

choice as the evaluation metric for the performance of models



in segmentation tasks. It is straightforward to set the evaluation

metric as the optimization objective. DL is also a differentiable

loss function enabling backpropagation of the gradient to

the upstream of DCNN pipelines. DL is based on overlap

measures and appears to be more robust than WCEL when

the level of imbalance increases [15]. To address the non-

unique segmentation problem, we propose the reward-penalty

Dice loss (RPDL) derived from DL. Compared with other loss

functions, RPDL can enhance common segmentation regions

and penalize outside ones by the reward-penalty map.

III. METHODOLOGY

We consider the following problem: different segmentation

results are provided by different annotation experts for the

same image; there are both deviation and commonality among

those results for every image; we train deep convolutional

neural networks (DCNN) to learn the non-unique segmentation

so that DCNN can provide a trustworthy segmentation output

when a new image is given.

A. Preliminaries

Loss functions are designed as the optimization objective

of models. In particular, some loss functions are proposed

for addressing the image segmentation problem. In this paper,

two commonly used loss functions for semantic segmentation

are selected as baselines, namely the weighted cross-entropy

loss (WCEL) and the Dice loss (DL) functions. These loss

functions can all be applied to both binary segmentation

tasks and multi-class segmentation tasks. In fact, multi-class

segmentation tasks are usually regarded as multiple binary

sub-tasks, with each corresponding to one channel of the one-

hot encoded outputs. In brief, all loss functions are described

below for binary segmentation tasks.

Weighted cross-entropy loss: In order to alleviate the im-

balance problem between the background and the foreground

of images, WCEL was proposed as the loss function for

DCNN.

WCEL = −
1

N

N∑

n=1

[wynlog(Pn)+(1−yn)log(1−Pn)] (1)

where N is the number of pixels (2D tasks) or voxels (3D

tasks) in the mini-batch. y (yn ∈ y) is the ground truth of

segmentation. P (Pn ∈ P ) is the output of DCNN, which

can be obtained using the sigmoid activation function for the

last layer. Pn is usually clipped into [ǫ, 1− ǫ] to avoid log(0)
for training stability, where ǫ is a small default term. w is the

weight to alleviate the imbalance problem, which is often set

as the ratio of the background and the foreground volume. For

example, if the ratio of the background and the foreground

in volume is 49 : 1 (only 2% of the total region should be

segmented in average), then w = 49 is set to the weight in

WCEL.

Dice loss: Although WCEL can address the imbalance

problem to certain extent, researchers found that DL outper-

forms WCEL in many segmentation tasks. The reason is that

DCNN with the DL function can be optimized directly for
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Fig. 2. Workflow to generate the reward-penalty map for one input.

the evaluation metric, which is the Dice coefficient. It is more

robust than WCEL when the level of imbalance increases.

DL = 1−
2
∑N

n=1 ynPn + ǫ
∑N

n=1 yn +
∑N

n=1 Pn + ǫ
(2)

where ǫ is added to avoid the denominator to be 0 for

training stability.
∑N

n=1 ynPn is the overlap of the ground

truth y and the output P .

B. Reward-penalty Dice loss

We are finally in the position to introduce the core contri-

bution of our work. This paper proposes the reward-penalty

Dice loss (RPDL) as the derivative of DL to address the

non-unique segmentation problem. When there are multiple

segmentation annotations for every input image, different re-

gions of the segmentation annotation may vary in importance.

Therefore, it is crucial to extract the importance of every

segmentation annotation, which is exhibited by the reward-

penalty map (RPMap) M . The RPDL function is inspired by

enhancing common regions segmented by different experts and

penalizing outside ones.

RPDL = 1−
2
∑N

n=1 ynPnMn + ǫ
∑N

n=1 yn|Mn|+
∑N

n=1 Pn|Mn|+ ǫ
(3)

where M (Mn ∈ M ) is the RPMap constructed by all

possible outputs for one input in the training set. Different

inputs have different corresponding RPMaps. Here is a 2D

example of the procedure to generate the RPMap for one

input in Fig. 2. First, we construct the pixel-wise RPMap by

recording the segmentation times for every pixel of the input

by all experts. Second, we set the penalty to those regions

that are not segmented by any expert, which is the negative of

the maximum. At last, we normalize the RPMap for training.

Normalization of the RPMap is empirically proven to be

helpful for training stability. The penalty is a hyperparameter

and we find that −1 after normalization is a good choice

by experiments. It indicates that those regions that are not

segmented by any expert should be penalized heavily if they

are segmented by the model. Instead, regions segmented by

different numbers of experts should be rewarded to different

extent. |Mn| is the absolute value of Mn. When a model

provides a region which should be penalized, RPDL tends to

be large in the model. In this case, |Mn| is designed in the

denominator to avoid the opposite result. Since y, P and M



are all in the same size, all loss functions compared in this

paper can be calculated efficiently by the Hadamard product.

RPDL is also a differentiable loss function derived from DL,

which is able to backpropagate its gradient to the upstream of

DCNN pipelines. The gradient of RPDL with respect to the

ith voxel of the output is obtained by

∂RPDL

∂Pi

= 2
|Hi|

∑
N

n=1
ynPnHn − yiHi(

∑
N

n=1
yn|Hn| +

∑
N

n=1
Pn|Hn|)

(
∑

N

n=1
yn|Hn| +

∑
N

n=1
Pn|Hn|)2

(4)

where ǫ is not included in the gradient.

IV. THE CORTICAL MASTOIDECTOMY SURGERY DATASET

In the cortical mastoidectomy (CM) surgery, the surgeon

removes part of the mastoid bone to identify the incus and

the facial nerve as well as avoid touching other anatomical

structures such as the sigmoid sinus and the dura. Fig. 3 is

an example of a processed CT-scan temporal bone after the

CM surgery in the Virtual Reality Temporal Bone Surgery

(VRTBS) simulator [30]. The vacant region in the center is the

drilled part of the mastoid on a temporal bone. The VRTBS

simulator is developed as a platform for the temporal bone

surgery training, including the CM surgery. Expert surgeons

can record their surgeries in the simulator so that trainees and

other experts can learn from them. Trainees can also practise

performing surgeries repetitively in the simulator before they

achieve expertise, which is effective to minimize potential risks

for patients [31]. The removal of the mastoid in the simulator is

consistent with effective operations of the surgery. The original

CT-scan image of the temporal bone is manually segmented

by expert surgeons according to different anatomical structures

(categories from 0 to 13 represent different structures such as

the air, the bone, the incus, the facial nerve, the sigmoid sinus,

and the dura, etc.). All 3D images are saved with different

structures annotated in different colors.

In our research, we invite 7 surgeons at the hospital, with

each performing one CM surgery on 9 processed specimens

of different patients’ temporal bones, respectively. In the end,

we collect 63 different CM surgeries in the VRTBS simulator.

Those processed images before surgeries are fed into DCNN

as inputs and those binary segmentation results generated after

surgeries are regarded as outputs. All bone images along with

their segmentation outputs are various in size and we build

the CM dataset by resizing each of them into 64 × 64 × 64
voxels.

Fig. 3. Temporal bone after the cortical mastoidectomy (CM) surgery (bottom
right is one surgeon performing a CM surgery in the VRTBS simulator).

V. EXPERIMENTAL RESULTS AND ANALYSIS

Model details: Four deep convolutional neural networks

(DCNN) are selected as representatives for comparison in

experiments: U-net [25], V-net [7], Isensee17 [21], and My-

ronenko18 [10]. U-net and V-net are two well-performing

and widely used architectures in medical segmentation tasks.

Isensee17 and Myronenko18 are two champions in BraTS

Challenge 2017 and 2018, respectively. We use same archi-

tectures of all models in their original papers with minor

change. For every model with different loss functions, they

share the same architecture and hyperparameters. We utilize

the weighted cross-entropy loss (WCEL), the Dice loss (DL)

and the reward-penalty Dice loss (RPDL) as loss functions for

the first 3 models, respectively. The original loss function of

Myronenko18 is L = DL+0.1×L2+0.1×LKL. We replace

DL with WCEL and RPDL in comparison experiments and

keep the rest terms the same.

Here are details about hyperparameters. 10% of the training

set is selected as the validation set in random. The size of

the mini-batch is 16 for Myronenko18 due to GPU memory

limit, and 64 for other models. The initial learning rate is

0.0001 for all models. The decay of the learning rate is 0.1
if the performance on the validation set does not improve in

10 epochs, with 200 epochs in maximum for training. The

early stopping patience is 20 epochs. The dropout rate is 0.3
for every CNN module in the first three models. There is no

dropout in Myronenko18. We use the Leaky ReLU activation

after all CNN layers and the sigmoid activation after the last

layer. All images in the training set are mirrored and rotated

in three axes (x, y and z) so that the size of the dataset is

augmented by hundreds of times, which greatly improve the

performance and stability of DCNN models.

There are also some other techniques designed to improve

the performance of DCNN in segmentation tasks, such as data

augmentation and building an ensemble of models. However,

we do not include them in our experiments because they are

all orthogonal to loss functions. Data augmentation techniques,

like the elastic deformation, random crops, and synthetic

generation for images, are proven to be useful in most tasks,

more or less [32], [33]. They are helpful regardless of the

architectures of models along with their various loss functions.

Our goal is to demonstrate advantages of our proposed RPDL

over other loss functions no matter what data augmentation

techniques are applied on the training set. Moreover, the

ensemble of models is helpful to improve the performance of

DCNN to limited extent as well. It is widely applied in many

competitions and challenges. Again, building an ensemble of

models can improve the performance of DCNN no matter

what loss functions are used in them. In conclusion, we do

not apply above techniques to our experiments because they

are (1) computation-exhausting techniques and (2) beyond the

discussion of our paper.

Training details: We implement our experiments on Keras

and train models on NVIDIA V100 GPUs. There are two

sets of experiments done on the cortical mastoidectomy (CM)



TABLE I
EXPERIMENTAL RESULTS TESTED ON DIFFERENT BONES, EXPERIMENT 1 PART 1 (Dice± std).

Model U-net [25] V-net [7]

Training loss WCEL DL RPDL WCEL DL RPDL

Bone1 0.480± 0.075 0.628± 0.052 0.696 ± 0.059 0.425± 0.046 0.584± 0.030 0.625 ± 0.063

Bone2 0.597± 0.100 0.523± 0.125 0.620 ± 0.094 0.464± 0.088 0.414± 0.103 0.538 ± 0.098

Bone3 0.482± 0.082 0.538± 0.055 0.684 ± 0.076 0.439± 0.074 0.458± 0.060 0.506 ± 0.065

Bone4 0.658± 0.080 0.609± 0.068 0.660 ± 0.070 0.614± 0.076 0.703± 0.052 0.725 ± 0.072

Bone5 0.620± 0.100 0.628± 0.089 0.683 ± 0.102 0.488± 0.097 0.322± 0.071 0.532 ± 0.107

Bone6 0.553± 0.042 0.613± 0.052 0.636 ± 0.078 0.478± 0.041 0.553± 0.041 0.559 ± 0.048

Bone7 0.561± 0.108 0.683 ± 0.075 0.662± 0.082 0.540± 0.107 0.641± 0.100 0.693 ± 0.097

Bone8 0.514± 0.108 0.568± 0.064 0.598 ± 0.089 0.543± 0.098 0.571± 0.066 0.574 ± 0.056

Bone9 0.544± 0.094 0.639 ± 0.107 0.636± 0.097 0.501± 0.085 0.598± 0.066 0.600 ± 0.056

Overall 0.556± 0.088 0.603± 0.076 0.653 ± 0.083 0.499± 0.079 0.538± 0.065 0.595 ± 0.074

TABLE II
EXPERIMENTAL RESULTS TESTED ON DIFFERENT BONES, EXPERIMENT 1 PART 2 (Dice± std).

Model Isensee17 [21] Myronenko18 [10]

Training loss WCEL DL RPDL WCEL DL RPDL

Bone1 0.460± 0.059 0.630± 0.033 0.668 ± 0.060 0.442± 0.067 0.661± 0.056 0.677 ± 0.066

Bone2 0.383± 0.098 0.428 ± 0.083 0.403± 0.088 0.463± 0.077 0.676± 0.086 0.680 ± 0.119

Bone3 0.419± 0.063 0.500± 0.054 0.547 ± 0.074 0.658± 0.114 0.624± 0.054 0.665 ± 0.072

Bone4 0.624± 0.083 0.645± 0.053 0.688 ± 0.065 0.650± 0.086 0.722 ± 0.037 0.692± 0.056

Bone5 0.406± 0.109 0.516± 0.111 0.567 ± 0.110 0.565± 0.099 0.689± 0.085 0.697 ± 0.108

Bone6 0.482± 0.048 0.508± 0.039 0.624 ± 0.049 0.580± 0.078 0.644± 0.042 0.680 ± 0.063

Bone7 0.549± 0.102 0.679± 0.097 0.682 ± 0.086 0.570± 0.103 0.697 ± 0.071 0.677± 0.076

Bone8 0.547± 0.102 0.532± 0.079 0.630 ± 0.080 0.380± 0.090 0.694 ± 0.051 0.680± 0.099

Bone9 0.476± 0.079 0.558± 0.058 0.618 ± 0.101 0.569± 0.095 0.585± 0.091 0.676 ± 0.093

Overall 0.483± 0.082 0.555± 0.067 0.603 ± 0.079 0.542± 0.090 0.666± 0.064 0.680 ± 0.084

dataset in this paper. First, we pick each bone out along with

7 surgeries performed on it by different surgeons as the testing

set, which is the 9-fold cross validation for every model. The

goal is to generate the surgical regions for new patients in the

first experiment. It is very challenging for DCNN to generate

comparable surgical regions to those provided by surgeons for

new patients because there are only 9 bones in the CM dataset

in total, which are very different from each other. However, it

is also a new benchmark with much potential for DCNN and

we believe that DCNN will be able to provide surgical results

competitive with those provided by surgeons, given a large size

of the dataset in near future. Second, we pick each surgeon

out along with 9 surgeries performed on each bone. There are

only 6 segmentation annotation images used for training in

the second experiment, which is to evaluate if DCNN models

can provide outputs more similar to segmentation annotation

images than surgeons in the testing set. The second experiment

is designed to compare all outputs provided by DCNN using

different loss functions with surgeons in the testing set, which

is not as challenging as the first experiment.

Evaluation metrics: The Dice coefficient is usually taken as

one of the most important evaluation metrics in medical image

segmentation tasks (Eq. (5)). Apart from the Dice coefficient,

we also propose the reward-penalty Dice (RPD) coefficient

corresponding to RPDL (Eq. (6)). Both evaluation metrics are

shown below:

Dice =
2
∑N

n=1 ynP
′
n∑N

n=1 yn +
∑N

n=1 P
′
n

(5)

RPD =
2
∑N

n=1 ynP
′
nMn∑N

n=1 yn|Mn|+
∑N

n=1 P
′
n|Mn|

(6)

where the output P after the sigmoid activation function

is transformed into the binary output P ′, with 0.5 as the

threshold. Both Dice and RPD coefficients are large when

models enjoy good performance in segmentation tasks. When

testing the performance of models with different loss func-

tions, all outputs are compared with the whole testing set to

obtain overall results. For example, the segmentation output

of every bone is compared with those from all surgeons in the

testing set in Experiment 1. The average measurement of above

evaluation metrics is then recorded as the testing performance.

Med3D: Med3D is a series of 3D-ResNet pre-trained

models aggregating eight different 3D medical segmentation

datasets [34]. The shared encoder of Med3D can be transferred

on other datasets and tasks, both accelerating the training

convergence speed and improving the performance to different

extent. We used the 3D-ResNet50 pre-trained Med3D as

our encoder stacked by a new decoder in our experiments.

However, there is no noticeable improvement of the fine-

tuned stacked model’s performance compared with that of

representative DCNN models trained from scratch. There are
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Fig. 4. Qualitative comparisons of ground truth surgical results from surgeons and generated outputs by different loss functions in U-net in Experiment 1.

two probable reasons for this issue. First, we define a new

segmentation task where one input image corresponds to

multiple possible outputs, which is heterogeneously transfered

from all aggregated segmentation tasks in Med3D. Second, the

aggregation of multi-domain datasets does not improve the

performance remarkably, either. There is only about 1.96%
improvement in average measured by Dice after Med3D is

trained on eight domains, compared with that trained in the

single domain [34].

A. Experiment 1: Training on Different Bones

The first set of experiments picks 7 surgeries on the same

bone out as the testing set at every time in the 9-fold cross

validation. The goal is to make full use of all segmentation

outputs in the training set and learn to do surgeries on different

bones by DCNN in order to generate the most plausible

surgical regions for new patients. It is a very challenging task

because of the limited size of the CM dataset and the large

variety of bones (Fig. 4 column 1). DCNN models need to

know how to do the surgery on the 9th bone based on surgeries

on 8 bones from different surgeons in the training set. The

large difference of the testing performance on each bone also

implies the large variety of bones in the CM dataset (Table I

and II).

All models with different loss functions are tested by both

Dice and RPD coefficients. The overall results are consistent

with each other measured by two metrics (Table III). The cross

validation details tested by Dice are shown in Table I and

II. WCEL performs the worst in all DCNN models. RPDL

performs better than DL and WCEL dominantly in all models

by 1.4%−18.4% (absolute), measured by both Dice and RPD

on the testing set. The limited size of the training set and the

large diversity of input images impede the good performance

of DCNN models with all loss functions, among which RPDL

performs the best. WCEL performs the worst as there is

TABLE III
OVERALL RESULTS TESTED ON DIFFERENT BONES, EXPERIMENT 1 (UP:

Dice± std; DOWN: RPD ± std).

Training loss WCEL DL RPDL

Dice

U-net 0.556 ± 0.088 0.603 ± 0.076 0.653 ± 0.083
V-net 0.499 ± 0.079 0.538 ± 0.065 0.595 ± 0.074

Isensee17 0.483 ± 0.082 0.555 ± 0.067 0.603 ± 0.079
Myronenko18 0.542 ± 0.090 0.666 ± 0.064 0.680 ± 0.084

RPD

U-net 0.612 ± 0.064 0.675 ± 0.055 0.735 ± 0.063
V-net 0.538 ± 0.057 0.604 ± 0.043 0.661 ± 0.052

Isensee17 0.512 ± 0.059 0.623 ± 0.044 0.671 ± 0.062
Myronenko18 0.590 ± 0.065 0.758 ± 0.045 0.774 ± 0.057

high imbalance between the background (about 96%) and the

foreground (about 4%) of CM images. WCEL is not capable

of addressing the high-imbalance problem. DL outperforms

WCEL in extracting the similarity of non-unique segmentation

outputs corresponding to same input images, in order to predict

the surgery performed on the new bone. However, it is not

enough when the training set is limited and the diversity of

input images is very large. In contrast, RPDL is able to find the

similarity of surgeries from different surgeons by paying more

attention to common surgical regions and penalizing outside

ones. In conclusion, when there are only limited training data

with large diversity of input images, it is necessary to select

RPDL as the loss function for DCNN. RPDL is stronger than

WCEL and DL in finding the commonality among non-unique

segmentation outputs.

Qualitative comparisons of ground truth surgical results

from surgeons and generated results by different loss function

in U-net on three bones are shown in Fig. 4. All outputs

generated by RPDL are graded the highest among all loss

functions, evaluated by expert surgeons following the CM

assessment scale. Generated outputs by RPDL own (1) shapes

that are more similar to those from surgeons; (2) depth



of every surgical part that is closer to that from surgeons;

(3) less deficiency than those by WCEL and DL. RPDL

performs better than other loss functions measured by both

evaluation metrics and experts. In addition, different models

with same loss functions also perform diversely in Experiment

1. Myronenko18 performs the best overall, followed by U-

net, Isensee17, and V-net. There may be several reasons

for it. First, we use same architectures of all models in

their original papers with minor change, which may not be

the best for this task, respectively. Second, we do not do

fine tuning of hyperparameters for every model in order to

obtain their best performance. Instead, most hyperparameters

in four models are the same. In consequence, models perform

well in other tasks may not perform competitively here. For

example, Isensee17 and V-net should not perform worse than

U-net after delicate design of architectures and fine tuning of

hyperparameters. However, the diverse performance of models

with same loss functions is beyond the discussion of this paper.

Our goal is to fairly compare the performance of RPDL with

other loss functions in every representative model with same

architectures and hyperparameters.

B. Experiment 2: Comparison between Models and Surgeons

The second set of experiments picks 9 surgeries performed

by the same surgeon out as baselines at every time in the

7-fold cross validation. There are 6 segmentation annotation

images used for training in Experiment 2. First, we evaluate

the similarity of surgeries performed by surgeons in the testing

set with those in the training set. The overall similarity among

them is 0.698 ± 0.088 measured by Dice± std and 0.780 ±
0.069 measured by RPD ± std, which are regarded as the

overall baseline provided by surgeons. We then train DCNN

models with different loss functions to provide segmentation

outputs similar to all surgeries in the training set. The goal is

to evaluate if DCNN models can provide outputs more similar

to segmentation annotation images than surgeons in the testing

set. DCNN models are trained to summarize the commonality

of all surgeons (6 surgeons) in the training set and provide the

most similar segmentation output to them on every bone.

The overall results are consistent with each other measured

by both Dice and RPD coefficients (Table IV). Both DL and

RPDL performs better than the overall baseline of surgeons in

the testing set while WCEL performs worse than it, evaluated

by both evaluation metrics and expert surgeons. It again proves

that WCEL is not capable of addressing the high-imbalance

problem well. However, the performance of RPDL is very

close to that of DL, with approximately 1% overall difference,

measured by either Dice, or RPD. It does not mean that DL is

definitely better than RPDL in Experiment 2. Actually, RPDL

enhances the ability of DCNN models to find the commonality

among non-unique segmentation outputs and get rid of outside

regions. Models with RPDL pays more attention to common

regions of surgeries provided by more surgeons and pays less

attention to those provided by fewer surgeons. They are even

penalized heavily when models drill out of common regions

of all surgeons. As a result, segmentation outputs provided

TABLE IV
OVERALL RESULTS EVALUATED ON DIFFERENT SURGEONS, EXPERIMENT

2 (UP: Dice± std; DOWN: RPD ± std).

Training loss WCEL DL RPDL

Dice

U-net 0.618 ± 0.109 0.798 ± 0.089 0.781 ± 0.104
V-net 0.639 ± 0.114 0.803 ± 0.089 0.782 ± 0.105

Isensee17 0.638 ± 0.113 0.801 ± 0.087 0.782 ± 0.102
Myronenko18 0.649 ± 0.115 0.761 ± 0.077 0.745 ± 0.093

RPD

U-net 0.7 ± 0.078 0.884 ± 0.068 0.878 ± 0.078
V-net 0.736 ± 0.083 0.888 ± 0.068 0.879 ± 0.079

Isensee17 0.735 ± 0.082 0.887 ± 0.067 0.879 ± 0.077
Myronenko18 0.755 ± 0.084 0.852 ± 0.061 0.845 ± 0.072

by RPDL are slightly different from those provided by DL,

which can be either larger or smaller. Experiment 2 is designed

to evaluate if DCNN models can provide similar surgeries to

those provided by different surgeons in the training set, with

surgeons in the testing set as the overall baseline. It is not

as challenging as Experiment 1 because DCNN models only

need to provide segmentation outputs similar to all surgeons on

same bones in the training set. They are not trained to perform

surgeries on new bones in Experiment 2. Both DL and RPDL

can achieve good performance on extracting the similarity

of surgeries from different surgeons on the same bone. In

conclusion, RPDL is able to enhance the ability of models to

extract the similarity among non-unique segmentation outputs

corresponding to same input images. Both DL and RPDL can

extracting their similarity better than the overall baseline of

new surgeons.

C. Advantages and Disadvantages

There are some pros and cons of RPDL. The main advantage

of RPDL is its excellent performance in the challenging

scenario (Experiment 1). It outperforms WCEL and DL in

all representative DCNN models (Table III). It is able to

enhance the commonality of non-unique segmentation regions

with limited data and large variety. Second, it does not

increase the complexity of model architectures. RPDL is a

new loss function, which can be used in any DCNN model. All

DCNN models with RPDL can converge and outperform those

with other loss functions with the same time in Experiment

1. However, there are also limitations of RPDL. First, the

deviation of outputs provided by RPDL is larger than that

provided by DL. Moreover, RPDL does not outperform DL in

the easy scenario (see Table IV in Experiment 2). The main

reason is that RPDL tends to enhance the commonality of non-

unique segmentation outputs and reward or penalize deviated

regions provided by different surgeons.

VI. CONCLUSIONS

In this paper, we define a new semantic segmentation

problem, where one input image can correspond to multiple

segmentation annotation outputs. We propose the reward-

penalty Dice loss (RPDL) as the loss function for all deep con-

volutional neural networks (DCNN) in non-unique segmenta-

tion tasks. We demonstrate advantages of RPDL over existing



loss functions on our collected cortical mastoidectomy (CM)

dataset. Experimental results show that RPDL can outperform

other loss functions dominantly in the challenging scenario and

surpass surgeons in the easy scenario. We extend the potential

of semantic segmentation in non-unique segmentation tasks.

For future work, we plan to do research on (1) learning the

reward-penalty map (RPMap) intelligently in RPDL and (2)

the stability of training models with RPDL.
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