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Abstract—Knowing exact demographic attributes of users is
crucial for human-computer interaction, intelligent marketing
and automatic advertising. Ubiquitous sensor devices yield mas-
sive volumes of temporal data which hide a lot of valuable
demographic information. In this paper, we bridge the gap
between sensor data and demographic prediction to obtain real
attributes of users from popular sensor devices: pedometer, which
is widely used in mobile devices. We propose a novel model
named Separated Embedding and Correlation Learning (SECL)
for demographic prediction. Specifically, SECL first process the
input data with a separated embedding layer to disentangle task-
specific features for interference eliminating, and then capture
the hidden correlations between different tasks via a correlation
learning layer, finally the refined task-specific features are fed into
a multi-task prediction layer to predict demographic attributes.
Experimental results show impressive performance of our model
on a real-world pedometer dataset, which is made publicly
available on https://github.com/deepdeed/SECL.

Index Terms—demographic prediction, sensor data, sequence
learning

I. INTRODUCTION

Recently, sensing devices are ubiquitous in people’s daily
life. For example, many mobile devices like mobile phone
embed pedometer, gyroscope, accelerometer, vibrometer and
magnetometer. Some popular wearable devices such as Fitbit,
Apple Watch, and Android Wear use pedometer, accelerometer
and heart rate monitor [3]. All these sensing devices generate
trillions of sensor data points per year, including rich signals
such as step count variability, which closely correlate with
users’ daily activities as diverse as walking, exercise, or trip
and indirectly hide the user’s demographic attributes character-
istics. As a result, extracting knowledge and emerging patterns
from sensor data for user attribute prediction is a nontrivial
task.

Obtaining individual demographic attributes is crucial for
the applications of human-computer interaction, intelligent
marketing and automatic advertising. Beyond conventional
applications of user attribute inference, knowing demographic
attributes of users via sensor data has it’s own unique ap-
plications in internet of things. For example, in smart home
system, explicit attribute could be used to enable human-
computer interaction more humanized and friendly. More

specifically, when responding to a human with known gender,
the computer could select a gender-aware response from many
possible candidates to make the user more comfortable, which
significantly enhance the competitiveness of the products [19].
However, it is usually not easy for smart device to obtain exact
users’ attributes.

In this paper, we make effort on the reasonable utilize
of pedometer data (step count sequence) for demographic
prediction. Most of earlier studies on attribute prediction are
primarily involve analysis of the user-generated data derived
from social media, including Facebook [25], Twitters [5],
[26], microblogs [33], telephone conversations [12], YouTube
[11], web search queries [15], social networking chats [24],
and forum posts [9]. In this paper, we extend our sight
to the ubiquitous mobile and sensing device to bridge the
gap between sensor data and users’ demographic attributes.
We attempt to extract knowledge and emerge users’ daily
walking patterns from pedometer data, thereby inferring users’
demographic. To the best of our knowledge, there is only one
existing work that has used sensor data for prediction task in
2018, Ballinger et al. [2] combined step count with heart rate
and proposed a semi-supervised learning method to predict
cardiovascular risk in medical field. Nevertheless, the heart rate
data is hard to obtain and full of privacy sensitivity on personal
health. In this case, we use only step count data but make the
finer granularity of analysis for a more general problem of
demographic prediction.

Previous work on demographic prediction, for example,
Structured Neural Embedding (SNE) [31], usually employ
shared embedding to capture the shared feature of user at-
tribute. The advantages of this model are relatively simple
structure and less parameters, but it ignores the interferences of
multiple tasks. Another method of Embedding Transformation
Network (ETN) [17] address this problem using separated
transform embedding upon the shared embedding to extract
task-specific features. But ETN also have a significant limi-
tation: insufficient ability to learn hidden correlation features
between multi-tasks. Commonly in multi-task learning, opti-
mal correlation features are helpful for model to achieve better
performance, especially in the case of demographic prediction

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



tasks such as gender prediction and work type prediction,
which is complementary to each other.

To tackle the above problem, we present a novel
model named Separated Embedding and Correlation Learn-
ing (SECL) for demographic prediction. In SECL, we first
leverage an separated embedding layer and disentangle the
task-specific features. Attention mechanism is employed in
separated embedding layer to highlight the dominant days in
every week for each task, as we find that weekends are more
important for gender prediction. Then, we design a correlation
learning layer to capture the informative correlations between
different tasks for feature enhancement. Another attention
model is adopted here to distinguish the degree of relevance
between multiple tasks, for example, work is more relevant
to gender than age. Finally, the refined task-specific features
are fed into a multi-task prediction layer for demographic
prediction. In addition, to better learn the patterns and trends
of users for demographic prediction from fallible sensor data,
we carry out a good deal of effective data pre-processing work
for noise tolerance.

In experiments, several state-of-the-art baselines on demo-
graphic prediction are taken into comparison. The experimen-
tal results prove that our model outperforms all these baselines
on the typical tasks such as Partial Label Prediction and
New User Prediction with the popular evaluation metrics of
F1 score. Furthermore, we release our pedometer dataset for
promoting research in related fields. To our best knowledge,
this is the first public sensor data with exact demographic
annotations.

Overall, our contributions are as follows:

• We first extend the sight to the ubiquitous mobile and
sensing device to bridge the gap between sensor data
and users’ demographic attributes. And new dataset of
pedometer record with exact demographic annotation is
released.

• We propose a novel model for demographic prediction,
named Separated Embedding and Correlation Learning
(SECL). It first disentangle task-specific features using
separated embedding and then extract optimal correla-
tions between multi-tasks via correlation learning. This
model is more reasonable and explainable than previous
models.

• Extensive experiments are conducted on a real world
pedometer dataset. Results prove the effectiveness of the
proposed SECL model. Furthermore, effective data re-
sampling are carried out for noise tolerance on pedometer
data.

The rest of this paper is organized as follows. Section II
summarizes the related works. Section III gives the problem
formalization of multi-task demographic prediction. Section
IV introduces some data pre-processing methods used in paper
for data enhancement. Section V discusses our approach in
detail, and section VI presents the experimental results and
analysis. And finally, in section ??, we conclude our work.

II. RELATED WORK

A. Demographic Prediction

Many studies have been devoted to the problem of de-
mographic prediction using various types of data. Schler et
al. [28] learned the differences in writing style and content
between male and female bloggers to determine an unknown
author’s gender on the basis of a blog vocabulary. With the
advent of the big data era, social network and search queries
data are used to infer demographic attributes [4], [8]. Also,
location and mobile application usage data have been used
[21], [34]. And some recent works used purchasing history
for demographic prediction [17], [27], [31].

Demographic Prediction is commonly considered as a multi-
task learning problem. Early work on demographic prediction
often infer each attribute independently but there are features
helpful for each task learned from other tasks. Dong et al. [10]
considered the interrelation between gender and age, and em-
ployed a Double Dependent-Variable Factor Graph model to
predict them simultaneously based on various human-defined
features. Wang et al. [31] concatenated multiple attribute
labels and generated a single structured label to leverage the
potential correlations for multi-task learning based on a shared
embedding. Raehyun et al. [17] proposed an Embedding
Transformation Network (ETN) model that leveraged a em-
bedding transformation layer to capture task-specific features
but ignore the informative correlations between multi-tasks.
Here, we go a step further to adding a correlation learning
layer after embedding transformation layer to retain optimal
correlation features for multi-tasks.

B. Knowledge Discovery from Sensor Data

Wide-area sensor infrastructures, remote sensors, and wire-
less sensor networks yield massive volumes of disparate, dy-
namic, and chronologically distributed data. Given the unique
characteristics of sensor data, particularly its spatiotemporal
nature and presence of constraints associated with the data
collection, there have been many research efforts to analyze
the sensor data which build upon the general research in the
data mining community [6], [23].

Sashank et al. [22] inferred vehicular users’ location and
traveled routes using gyroscope, accelerometer, and magne-
tometer information without any users’ knowledge by mod-
eling the problem as a maximum likelihood route identifica-
tion on a graph generated from the OpenStreetMap publicly
available database of roads. Ballinger et al. [2] presented two
semi-supervised training methods, semi-supervised sequence
learning and heuristic pre-training for the task of cardiovascu-
lar risk prediction using users’ heart rate and step count data
derived from wearable devices. In this paper, we pay attention
to a more general problem of demographic prediction using
sensor data.

C. Sequence Learning

A large amount of work show the effectiveness of Re-
current Neural Networks (RNNs) to learn hidden properties
of sequential data. In 1997, M. Hochreiter [13] introduced



an efficient, gradient based method called long short-term
memory (LSTM), which has been widely applied for reducing
the vanishing and exploding gradient problems and learning
longer term dependencies. In attribute inference, Ballinger et
al. [2] presented a semi-supervised sequence learning method
using LSTM to predict the risk of cardiovascular.

Attention mechanism has been proven to be significant in
many tasks. Attention mechanism can selectively focus on
more informative data, and it was first presented to capture the
most relevant information at each step in machine translation
task [1]. Then, other natural language processing tasks such
as text classification [32] also used it. In other domains
such as recommendation and computer vision also adopted
attention mechanism [7], [20], which can not only improve
performance, but also make models more interpretable. Given
the representation ability of RNN, we use it to learn separated
attribute representations, and adopt attention mechanism to se-
lectively learn correlation features for demographic prediction.

III. PROBLEM FORMALIZATION

Following previous work, we formalize demographic pre-
diction as a multi-task prediction problem. Let D =
[{x1, y1}, ..., {xN , yN}] be a list of all data samples, where
N is the number of samples. As each sample corresponds
to an individual user, xn and yn are all pedometer record
and demographic attributes of the n-th user, respectively. yn
can be viewed as a list of labels for each task [y1n, ..., y

M
n ].

The number of possible classes for m-th attribute is Cm. The
pedometer record xn = [x1n, ..., x

L
n)] can be an ordered list

of daily step counts depending on data sets, where L is the
number of days. In a real world scenario, we might have full or
partial demographic attributes of users. Our goal is to predict
all the missing attributes in the dataset or predict the attributes
for new users. We follow two types of problem used in [17],
[31]:

• Partial Label Prediction is for the situation that users
gave some part of their demographic attributes, so that
we want to know the remain unknown attributes. Let
X = [x1, ..., xN ] be a set of users’ pedometer records and
Yob = [ȳ1, ..., ȳN ] be the users’ demographic attribute
that are partially observed. Given X with Yob, the objec-
tive is to learn a function to predict the unknown attributes
Yun = [ÿ1, ..., ÿN ]. Note that ȳn ∪ ÿn = [y1n, ..., y

M
n ] =

yn.
• New User Prediction is to predict demographic attributes

for new users. Given Xob with partially/fully observed
attributes Yob the objective is to learn a function to
predict demographic attributes for new users. New users’
pedometer record are Xun and corresponding labels are
Yun. Note that unlike partial label prediction where X
is used as the input for both training and test sets, X is
split into Xob for the training set and Xun for the test set,
which implies Xob ∩ Xun = ∅.

IV. DATA PRE-PROCESSING

In this section, we talk about data pre-processing to enhance
the fallible sensor data for noise tolerance. Due to the slightly
difference in sensitivity and the sensors themselves may have
arbitrary errors, data derived from sensors may have different
levels of noise, and low-quality sensors can even produce ab-
normal data. To address this problem, we design a resampling
method to transform the raw data into partition intervals for
noise tolerance.

Specifically in our application, the pedometer profile of n-th
user is represented as a sequence of daily walking step counts,
the raw step counts sequence could be presented as follow:

xn : [x1n, ..., x
L
n ]

where L is the number of days.
Commonly, the process of the vanilla interval resampling

is: first get the global [min,max] of daily step counts by
considering all users profiles; next calculate the (k + 1)-
dimensional partition vector based on a naive method such as
uniform partition; then use this partition vector for sequence
quantization. The (k+1)-dimensional partition vector p could
be presented as:

p = [0,
1

k
,

2

k
, ...,

(k − 1)

k
, 1] ∗ (max−min)

obviously, the proposed resampling can also be easily extended
to other sequence-based applications.

Note that directly using the global [min,max] will lead
to a serious sparsity problem. For example, an occasional
extremely large global max value will cause a large number of
data points cluster near the global min value (see Figure 1). To
address this issue, we redefine the naive global [min,max] by
global mean value (denoted as mean) and standard deviation
(denoted as std):

[minre,maxre] = [mean− std,mean+ std]

Fig. 1. The sparsity problem is well solved by using the [minre,maxre]
with proposed non-linear partition method. In this figure, the white dots
represent the relatively larger values. The first image is the original data
of 100 users where each row represents 200 days step count sequences.
Here we set the intervals number k = 64. The second image is the data
distributions produced by naive [min,max], the third image is produced by
[minre,maxre] with uniform partition, the fourth image is produced by
[minre,maxre] with non-linear partition (µ = 0, σ2 = 0.2), and the last
image is produced by [minre,maxre] with non-linear partition (µ = 0,
σ2 = 0.3).

Although the problem of sparsity has been partially solved,
a large number of data points are near the mean value when we
use the uniform partition (see Figure 1). In this situation, we
design a non-linear function based on Gaussian distribution to



transform the linear partition into non-linear. This non-linear
function is presented as:

g(z) = (
1√
2πσ

e
−(z−µ)2

2σ2 )−1

f(z) =

∫ z
0
g(z)dz∫ 1

0
g(z)dz

where x is the integration variable limited in range [0, 1], µ and
σ2 are the mean value and variance of Gaussian distribution.
A simple example of the proposed non-liner function is
illustrated in Figure 2, and the positive effect of using non-
linear partition with is presented in Figure 1.

Fig. 2. The visualization of non-linear function. The µ is set to be 0, and
σ2 are set to be 0.2 and 0.3. The dotted lines are the reciprocal of Gaussian
distributions g(z), and the solid lines are the proposed non-linear functions
f(z) based on the discrete integration of dotted lines. Note that a large σ2

will make the non-linear partition tend to be linear.

Based on aforementioned resampling method, all pedometer
records of users could be quantified as a regular value with
limited noise. Specifically, each element of input sequence will
be reset to the minimum of its located interval, which could
be presented as:

x̃in = pj if xin ∈ [pj , pj+1]

where pj denotes the j-th element of aforementioned partition
vector, x̃in is the processed step count value on i-th day. Then
the processed step count sequence could be presented as:

x̃n : [x̃1n, ..., x̃
L
n ]

V. OUR APPROACH

In this section, we present the details of the proposed SECL
model. An overview of SECL is illustrated in Figure 3. Differ-
ent from previous work typically using shared embedding, we
build a separated embedding layer to disentangle task-specific
features. In addition, a correlation learning layer is used to
learn the optimal correlations between different tasks. Finally,
the multi-task prediction layer make the predictions of all tasks
simultaneously.

Multi-Task Prediction
Layer

Correlation Learning
Layer

Data

Stacked
Bidirect ional

RNN

Stacked
Bidirect ional

RNN

Age

Gender

Bilinear
Model

Mult i-Class  
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Predict ion

Bilinear
Model

Attent ion

Attent ion

T ransformat ion

T ransformat ion

. . . . . . . . .

Fig. 3. The architecture of SECL. First, the separated embedding layer outputs
the task-specific representations. Then, the correlation learning layer learns the
hidden correlations between different tasks. Finally, the multi-task prediction
layer simultaneously infers multiple attributes.

A. Separated Embedding Layer

We use separated embedding branches for learning task-
specific features. Different from shared embedding mapping
user profiles to a shared features that ignores the interfer-
ences among multiple tasks, the separated embedding branches
eliminate these interferences and produce a relatively pure
task-specific representations directly. We have to admit that
shared embedding may retain informative correlations among
multiple attributes, and separated embedding method seems to
ignore these correlations. Nevertheless, this shared embedding
lacks explanations for correlation extraction. In the next sec-
tion, we will introduce correlation learning layer to learn these
correlations in an more interpretable way.

Considering that the sensor data has a strong temporality, we
adopt the most popular sequence learning model of LSTM [13]
as the backbone of each embedding branches. In this paper, we
assume that the contexts from both past and future are useful
and complementary to each other. Therefore we combine
forward (left to right) and backward (right to left) recurrent
to build a bidirectional LSTM (Bi-LSTM) [29]. Moreover, the
stacked recurrent layers are used to build a deep RNN model to
enhance the representation ability of the separated embedding
layer. Here, we use same stacked bidirectional LSTM branches
to respectively learn task-specific features.

Note that the different days in a week play a diverse role in
each tasks. For example, the step count of weekday is more im-
portant than the weekend for occupation inference, intuitively.
From this point of view, we adopt attention mechanism [1] to
give the relative significant time periods higher weight. Finally
the separated embedding branches could be presented as:

wi = softmax(tanh(vix̃ + bi))

Ti = Bθi(wix̃)



where B is the trainable model of Bi-LSTM, θi is the trainable
parameters of embedding branches for i-th task, x̃ is the
input sequence, and Ti is the output task-specific feature
for i-th task. Moreover, vi and bi are trainable parameters
of the attention model in i-th branch, wi is the attention
weights describe the importance assigned to each element of
the input. When we neglect the difference of importance in
every elements and abandon the attention mechanism, all the
attention weights would be 1.

B. Correlation Learning Layer

The separated embedding layer eliminate the interferences
among multiple tasks, but the informative correlations between
different tasks also have been ignored. Thus, we design a
correlation learning layer to learn these hidden correlation
features. The key components of this correlation learning layer
are the transformation network and the bilinear mixer.

The transformation network is designed as a full connection
network with attention mechanism. Full connection network
is widely used in hidden feature learning on account of their
excellent learning ability and desirable scalability. Commonly,
in multi-task prediction application, some tasks are more
strongly associated with a certain task. For example, gender
and work type are more relevant than gender and age in
walking scenario. Therefore, we adopt attention mechanism to
assist the full connection layer for extracting the optimal cor-
relation features by assigning the important hidden elements
the relatively large weights. Then the correlation feature for
i-th task could be presented as:

w′i = softmax(tanh(v′iT̄i + b′i))

Ci = Fφi(w′iT̄i)

where F is the trainable model of full connection network, φt
is the trainable parameters, Ci represents correlation feature
for i-th task, T̄i is the concatenation of other task-specific
features. Moreover, v′i and b′i are trainable parameters of the
attention model. Attention weights w′i describe the importance
assigned to each hidden elements of the input. When we
neglect the difference of importance in every elements and
abandon the attention mechanism, all the attention weights
would be 1.

We combine the i-th task-specific feature and the captured
correlation feature in a bilinear mixer. Bilinear mixer is a two-
factor model with the mathematical property of separability:
their outputs are linear in either factor when the others held
constant, which has been demonstrated that the influences of
two factors can be efficiently separated and combined in a
flexible representation [30]. The combination function can be
formulated as:

Mi = TiWiCi

where Wi is the trainable parameters of bilinear model, Ti
is task-specific feature of i-th task , and Ci is the correlation
feature extracted for i-th task.

C. Multi-Task Prediction Layer

With the separation representation and correlation repre-
sentation obtained by the previous two layers, we obtain the
prediction probability for the demographic attribute of a given
user by:

q(yi|x̃) = softmax(OiMi)

where Mi is the refined task-specific feature, Oi is the
trainable parameter that is responsible for converting the
refined task-specific feature into predictions through linear
transformation.

The goal of demographic prediction is to infer all demo-
graphic attributes of users from their pedometer profiles. For
i-th task, we minimize the sum of the negative log-likelihoods
defined as:

Lossi = −
N∑
j=1

logq(yi,j |x̃j)

where N is the total number of users. x̃j and yi,j are the input
of j-th user’s resampled daily walking step count sequence and
he/her inferred attribute class of i-th task.

Combined with all these task-specific losses, the full multi-
task loss function is:

Loss =

t∑
i=1

λiLossi

where the hyper-parameter λ controls the trade-off between all
of t task-specific losses. Considering that all tasks are equal
important in our experiments, we set all λ to be 1.

VI. EXPERIMENTS

In this section, we present the details of the experiments
and analyze the effectiveness of SECL.

A. Dataset

We build a real world pedometer dataset came from WeChat
(https://weixin.qq.com/), a popular mobile application with
over one billion active users. Nowadays, most mobile phones
have embedded pedometers, so WeChat has the chance to
develop a subfunction called WeChat Sport that collects and
ranks users’ as well as their net friends’ daily walking step
counts online. Everyone register in WeChat can see their
and their friends’ daily walking step counts on the ranking
list provided by WeChat Sport. It is easy for the WeChat
provider to get these data, but it’s difficult for researchers
to obtain such a high quality pedometer data. To get this
data, we launched 168 volunteers and spent nearly one year to
record their and their friends’ daily step count through WeChat
platform based on the pedometer embedded in smartphone.
Then we spent a lot of time cleaning the data and asking these
volunteers to annotate the data. Our dataset contains 39,246
users’ 300-days walking step counts during the period from
2018.6.11 to 2019.4.6. All of the users are annotated with
their demographic attributes: gender, age, and work type. To
guarantee the reliability of the data, we have already removed
those unsuitable users who have more than 150 days of zero



records. We make the dataset publicly available 1, and all the
users in the dataset has been anonymized for the privacy issue.
The detailed distribution of users’ attributes are listed in Table
I.

As we described in Section Problem Formalization, we
conduct experiments in two different problem settings. For
the partial label prediction problem setting, we randomly set
certain attributes as observed. Each attribute of a user has
a 50% chance to be observed and used in training. The
remaining unknown attributes are used in the evaluation. For
experiments on new user prediction, we split our dataset into
non overlapping sets. We choose 8:1:1 as training, validation
and testing split ratio. Following previous work [17], to
minimize noise due to randomness, we create 10 different
splits, and then average the results of 10 datasets and report
them in this paper.

TABLE I
DISTRIBUTION OF USERS’ ATTRIBUTES.

Attributes Value Users Distribution

Gender
male 22134 56%

female 17112 44%

Age

young 8635 22%
adult 19230 49%

middle age 7064 18%
old 4317 11%

Work Type
physical 14128 36%
mental 17660 45%
other 7458 19%

B. Evaluation Metrics

Following previous work [17], [31], we employ F-measure
such as macro F1 score (denoted mF1) and weighted F1
score (denoted wF1) to evaluate our model. F-measure is a
widely used measure method in multi-task learning, and it
is also the most popular evaluation metrics for demographic
prediction. F1 score is calculated as the harmonic mean of
precision (denoted mP or wP) and recall (denoted mR or
wR). Macro F1 calculate metrics for each label, and find their
unweighted mean. This does not take label imbalance into
account. Weighted F1 calculates metrics for each label, and
find their average weighted by support (the number of true
instances for each label). This alters macro F1 to account for
label imbalance.

C. Baseline Models

We compare our models with several state-of-the-art base-
line models on demographic prediction. The description of
these baselines are listed below:
• POP is a naive method that always predicts the given

sample as the majority classes in training set. It is a
popular baseline that ignores characteristics of users to
verify the prediction performance of proposed dataset
without any machine learning in previous work [17], [31].

1https://github.com/deepdeed/SECL

• SVD, Singular Value Decomposition, is widely used in
demographic prediction [14], [34]. It employs an effective
matrix decomposition method to obtain low dimensional
representations of users. Logistic models are trained for
each demographic attribute separately.

• JNE, Joint Neural Embedding [31], maps users’ all day
walking histories into latent vectors. These vectors are
processed by average pooling and then fed into a linear
prediction layer for each task.

• SNE, Structured Neural Embedding [31], has similar
structure with JNE. The only difference between SNE
and JNE is that the loss of SNE is computed via a log-
bilinear model with structured prediction.

• ETN, Embedding Transformation Network [17], adopt a
shared embedding just as SNE. The shared embedding
is fed into an embedding transformation layer to obtain
the transformed representation. Then the transformed
representation is directly fed into the prediction layer.

• ETNA, Embedding Transformation Network with Atten-
tion [17], is an improved version of ETN. The trans-
formed representation produced by embedding trans-
formed layer is fed to a task-specific attention layer to
take into account the importance of each element in user
profile.

D. Experimental Settings

When compared with the above baseline models, we adopt
the most simple architectures for our proposed model. Specif-
ically, we use only one layer of bidirectional RNN with 128
LSTM units in each separated embedding branch. And the
full connection networks in correlation learning layer is set
to be the shallow architectures using only one hidden layer
with 128 sigmoid units. We use random values drawn from the
Gaussian distribution with 0 mean and 0.01 standard deviation
to initialize the weight matrices in LSTM, full connected layer,
and prediction layer. Learning from [16], the forget gate bias
are initialized to be 5 to let the forget gate close to 1, namely
no forgetting. Thus, long-range dependencies can be better
learned at the beginning of training. All other bias, the cell as
well as hidden states of LSTMs in our work are initialized at 0.
Adam [18] is used as the optimization algorithm and the mini-
batch size is 128. The learning rate is set to be 1e−5. After
each epoch, we shuffle the training data to make different mini-
batches. In our experiments, all the input data is pre-processed
by the non-linear resampling (µ = 0, σ2 = 0.3) with k = 64,
except for specifically explained.

E. Performance Comparison

Table II shows the experimental results on new user pre-
diction task and partial label prediction task. Based on these
results, we have the following findings:

(1) As POP using the most simple strategy of always
predicting the given sample as the majority classes in training
set, all other learning models outperform this naive method. It
means that machine learning can extract valuable information
for demographic attributes from pedometer record, which



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS.

Model Partial Label New User
Name mP mR mF1 wP wR wF1 mP mR mF1 wP wR wF1

POP [17] 0.079 0.152 0.104 0.276 0.505 0.357 0.015 0.059 0.024 0.081 0.282 0.126
SVD [14] 0.262 0.215 0.236 0.481 0.547 0.512 0.121 0.106 0.113 0.268 0.337 0.299
JNE [31] 0.316 0.221 0.260 0.509 0.551 0.529 0.175 0.109 0.134 0.313 0.335 0.324
SNE [31] 0.319 0.227 0.265 0.512 0.554 0.532 0.179 0.117 0.142 0.315 0.343 0.328
ETN [17] 0.341 0.255 0.292 0.532 0.560 0.546 0.188 0.139 0.160 0.318 0.361 0.338

ETNA [17] 0.355 0.274 0.309 0.548 0.573 0.560 0.211 0.147 0.173 0.327 0.373 0.348
SECL a 0.367 0.285 0.321 0.561 0.582 0.571 0.226 0.158 0.186 0.339 0.387 0.361
SECL b 0.393 0.307 0.345 0.585 0.607 0.596 0.238 0.171 0.199 0.353 0.402 0.376
SECL c 0.387 0.301 0.339 0.573 0.597 0.585 0.236 0.169 0.197 0.348 0.399 0.372
SECL 0.410 0.329 0.365 0.597 0.612 0.604 0.253 0.188 0.216 0.363 0.417 0.388

aabandon all attention mechanisms in both separated embedding layer and correlation learning layer.
babandon attention mechanism in separated embedding layer.
cabandon attention mechanism in correlation learning layer.

further proves the significant prospect for the research of data
mining on widely existed sensor data.

(2) As we emphasized in this paper, the ability to dis-
entangle task-specific features and learn optimal correlations
between different tasks are significant for demographic pre-
diction with multi-task learning. The baseline models such
as JNE, SNE, ETN and ETAN use the shared embedding
that implicitly leverage these correlations, but they ignore
the interferences among multiple tasks. We first adopt the
separated embedding to avoid such interference, and then
employ the correlation learning to obtain the correlations.
Although we use the most simple architectures and abandon
all attention mechanism of our model (SECLa) for compari-
son with baselines, it still outperform all the state-of-the-art
baseline models, whether the general baseline model (SVD)
or the special models for demographic prediction (ETN et al.).
In following Section Effectiveness Verification, we verify the
effectiveness of separated embedding and correlation learning
more carefully.

(3) The attention mechanism is helpful for demographic
prediction on pedometer data. As shown in table II, our model
employing attention in correlation learning layer (SECLb) or
in separated embedding layer (SECLc) is better than which
abandon all attention mechanism (SECLa). This founding is
similar to the previous work [17], where ETNA is better than
ETN on transaction history, as well as here on pedometer
records. In following Section Visualization of Attention, we
will analyze this phenomenon in more detail.

F. Visualization of Attention

To further analyze the impact of attention mechanism in
our model, we provide visualization of weights calculated by
attention mechanism. We picked example that provide insights
for users’ pedometer records from Sunday to Saturday during
20 weeks with the average attention scores in each task. Based
on the attention weights from our model, we draw heatmap in
Figure 4.

First thing to notice in this example is that Saturday and
Sunday obtain highest attention in gender prediction task.
Usually, women prefer to go shopping on the weekends,
and most women work like men on weekdays. The fact
that weekend get relatively higher score and weekday get
relatively lower score in gender prediction task, which fit the
gap between male and female in Figure 5.1, and it also accords
with our intuition.

In age prediction, our model give relatively higher attention
scores to weekdays but lower scores to weekends. Intuitively,
young people are more energetic and active, and adults tend
to stay at their desks. But on the weekends, parents and
children may go out to play together. Figure 5.2 empirically
demonstrates this from a statistical point of view, as the gap
between adult and young is relatively large on weekdays but
small on the weekends.

Sun. Mon. Tues. Wed. Thur. Fri. Sat .

Gender

Age

Work

Fig. 4. Comparison of attention weights calculated by separated embedding
layer.

Fig. 5. Mean value (y-axis) of pedometer records from Sunday to Saturday
(x-axis).

Similar to age prediction, we find that the attention scores
given to weekdays are also larger then weekends in work type
prediction. It is easy to understand that during the weekdays,



mental workers use their brains more than manual workers do
with their hands and feet. The statistics of pedometer records
in Figure 5.3 support this view.

In addition to observing attention weight in separated
embedding layer, we also made the visualization analysis
of attention weight in correlation learning layer. Figure 6
illustrate the heatmap of average attention scores between
different tasks.

In gender prediction, we find that the attention scores of
gender to work is larger than gender to age. This is in line
with our view that the degrees of relevance between multiple
tasks are different. Intuitively speaking, men are more likely
to engage in physical work than women, and gender should
be relatively more balanced in all age groups. This view is
accords to the statistic results in Figure 7.1 and 7.2.

In age prediction, the attention scores of age to work is
larger than age to gender. It is not hard to understand that
middle-aged people tend to give up physical work due to
physical capability decline, and energetic adults are more
likely to be competent to do physical work. This view is
supported by Figure 7.2 and 7.3.

In work type prediction, the attention scores of work to
gender is larger than work to age. One of the reason is that the
complementarity between gender to work is more significant
than age to work. Figure 7.1 and 7.3 prove this view.

Note that the attention scores of gender to work is similar
with work to gender. And this symmetry also exists between
gender and age, as well as between age and work. This
symmetry indicates that the complementarity between a pair
of tasks is not directional but symmetrical. It indicates that we
can go a further step to simplify our model by using shared
attention in correlation learning layer. We will try this in future
work.

Gender

Age

Work

Gender Age Work

Fig. 6. Comparison of attention weights calculated by correlation learning
layer.

Fig. 7. Ratio (y-axis) of different attributes distributed to other attributes
(x-axis).

G. Effectiveness of Correlation Learning
To verify the effectiveness of our model more carefully,

we include the experiments of ETNA and SECL with vari-

ant structures in Table III. ETNACL is a model of ETNA
integrating correlation learning layer. SE is a model of SECL
abandoning correlation learning layer.

TABLE III
PERFORMANCE TEST FOR CORRELATION LEARNING.

Model Partial Label New User
Name mF1 wF1 mF1 wF1

ETNA 0.309 0.560 0.173 0.348
ETNACL 0.337 0.582 0.192 0.367

SE 0.315 0.566 0.181 0.353
SECL 0.365 0.604 0.216 0.388

ETNA first capture the correlation information with shared
embedding in a implicate way, and then it get the task-specific
feature via attention-based feature transformation. Contrary to
ETNA, our SECL first capture the task-specific feature directly
using attention-based separated embedding, and then obtain
the optimal correlation feature in attention-based correlation
learning layer. Obviously, our method is more reasonable and
explainable.

SECL outperform SE in both tasks of partial label prediction
and new user prediction. This directly prove the superior of
correlation learning. Furthermore, ETNACL also outperform
ETNA,which demonstrate that the correlation learning have
strong generalization ability.

H. Impact of Network Depth

Another advantage of SECL is it can be more easily ex-
tended into a deep structure. This is because that SECL employ
recurrent neural network (Bi-LSTM) and full connection (FC)
as the backbone in separated embedding layer and correlation
learning layer. Commonly, a deep structure could obtain better
representation ability than a shallow one. Table IV presents the
experimental results of SECL with different network depth.

TABLE IV
RESULTS OF SECL WITH DIFFERENT NETWORK DEPTH.

Network Partial Label New User
Architecture mF1 wF1 mF1 wF1

[128]− [128] 0.365 0.604 0.216 0.388
[128, 256]− [128] 0.368 0.605 0.220 0.391

[128, 256, 512]− [128] 0.369 0.605 0.223 0.392
[128, 256, 512]− [128, 256] 0.375 0.610 0.232 0.397

[128, 256, 512]− [128, 256, 512] 0.381 0.615 0.240 0.403

The model architectures could be represented by a general
form as:

[L1, ..., LA]− [F1, ..., FB ]

where Li is the dimension for the hidden states of i-th Bi-
LSTM in separated embedding layer, and Fj is the dimension
for the hidden states of j-th FC in correlation learning layer.

According to the experimental results, we find that stacking
more layers of Bi-LSTM can indeed improve all evaluated
metrics. However, the improvements are not significant and
the benefits will also vanish when more layers been stacked,



in that the recurrent units maintain activation for each time-
step which have already make the network to be extremely
deep. Therefore, stacking more recurrent layers in separated
embedding layer will not bring too much additional discrimi-
nation ability to the model.

Nevertheless, stacking more FC in correlation learning layer
could bring more improvement, for the deeper FC network has
stronger representation ability to learn the hidden correlations
between multi-tasks. But it should be noted that adding the
depth of FC network will lead to a sharp increase in the
number of trainable parameters. In future work, we will try
more network structures to avoid parameter inflation.

I. Hyper-parameters Tuning

The hyper-parameters of resampling in data pre-processing
(see Section Data Pre-Processing) are significant for noise
tolerance on fallible sensor data.

We test SECL with different k from 8 to 1024 with step
8. We find SECL perform stably with little fluctuation when
k is limited in 32 to 128, and the best k is 64. we also
find that SECL suffers from performance degradation in some
extremely cases such as k = 1024 and k = 8. It is because
an extremely large k weakens the noise tolerance, while an
extremely small k treats most of the information as noise.

We also test our model with different σ2 from 0.01 to
0.99 with step 0.01. We find SECL perform well when σ2 is
limited in 0.26 to 0.37, and the best σ2 is 0.30. When σ2 get
much bigger, the non-linear function tend to be linear, which
cause many data points aggregating toward the mean value.
Contrarily, an extremely small σ2 makes many data points
far away from mean value. Both of these situations lead to a
problem of data sparsity.

Based on the above experiments, we suggest that the appro-
priate interval should be set for the hyper-parameters to avoid
too large or too small values. Visualization analysis similar to
Figure 1 can be performed for verifying the effectiveness of
the hyper-parameter setting.

J. Experiments on Transaction Data

We also conduct experiments on transaction dataset used
in [17]. This dataset is the first public dataset containing both
transaction records and demographic information. It consists of
purchasing histories of 56,028 users and contains the gender,
age, and marital status of all the users. Table V reports the
experimental results.

Results show that SECL also outperforms all baseline mod-
els with impressive improvement on transaction data, which
prove the strong generalization ability of our model. According
to the observation of separated embedding layer, we find that
cosmetics and perfumes obtain higher attention score in gender
prediction, it is because females purchase are actively in duty
free stores as they are generally more interested in those
items, which is already proved in previous work [17]. Beside,
in correlation learning layer, we also discover the attention
weights given to correlation of age and marital status are
relatively higher. It accords with our intuition of gender should

TABLE V
RESULTS ON TRANSACTION DATA.

Model Partial Label New User
Name mF1 wF1 mF1 wF1

POP 0.108 0.370 0.028 0.134
SVD 0.247 0.524 0.118 0.306
JNE 0.269 0.539 0.139 0.334
SNE 0.271 0.542 0.137 0.321
ETN 0.300 0.557 0.165 0.336

ETNA 0.317 0.569 0.182 0.360
SECL 0.379 0.617 0.246 0.419

be more balanced in all age groups whether married or not.
The statistics results on transaction data also prove this view.

VII. CONCLUSION

In this paper, we extend the sight to the ubiquitous mobile
and sensor device to bridge the gap between sensor data and
users’ demographic attributes. We release a new dataset with
pedomoter records and demographic annotations. Furthermore,
we proposed a Separated Embedding and Correlation Learning
(SECL) model, which first disentangle task-specific features
and then learn the correlation features between multiple tasks.
Compared with previous models, our model is more reasonable
and explainable.
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