
Multitask Adversarial Learning for Chinese Font
Style Transfer

1st Lei Wu
School of software

Shandong University
Jinan, China

i lily@sdu.edu.cn

2nd Xi Chen
School of software

Shandong University
Jinan, China

343232674@qq.com

3rd Lei Meng�
NExT++

National University of Singapore
Singapore

lmeng@nus.edu.sg

4th Xiangxu Meng
School of software

Shandong University
Jinan, China

mxx@sdu.edu.cn

Abstract—Style transfer between Chinese fonts is challenging
due to both the complexity of Chinese characters and the
significant difference between fonts. Existing algorithms for this
task typically learn a mapping between the reference and target
fonts for each character. Subsequently, this mapping is used to
generate the characters that do not exist in the target font.
However, the characters available for training are unlikely to
cover all fine-grained parts of the missing characters, leading to
the overfitting problem. As a result, the generated characters of
the target font may suffer problems of incomplete or even radicals
and dirty dots. To address this problem, this paper presents a
multi-task adversarial learning approach, termed MTfontGAN,
to generate more vivid Chinese characters. MTfontGAN learns to
transfer a reference font to multiple target ones simultaneously.
An alignment is imposed on the encoders of different tasks
to make them focus on the important parts of the characters
in general style transfer. Such cross-task interactions at the
feature level effectively improve the generalization capability
of MTfontGAN. The performance of MTfontGAN is evaluated
on three Chinese font datasets. Experimental results show that
MTfontGAN outperforms the state-of-the-art algorithms in a
single-task setting. More importantly, increasing the number of
tasks leads to better performance in all of them.

Index Terms—style transfer, font generation, multitask, GAN

I. INTRODUCTION

Chinese characters represent the culture and civilization of
China. They play an important role in communication. The
number of Chinese font has increased rapidly in the past 20
years, but the existing fonts still cannot meet the diversified
and personalized needs of the digital age. People are more
eager to build a personalized font library. Chinese characters
are complicated and diverse. The Chinese official character set
GB2312 consists of 6763 commonly used Chinese characters.
The total number is larger than 80,000. Manual font creation is
time-consuming and requires professional skills. Due to that,
it is necessary to present a method to automatically generate
Chinese font libraries. Thus, artists only need to design a small
subset of the font to generate the whole Chinese font libraries,
which save time and cost.

Existing methods of this task generally follow two direc-
tions: the computer graphics-based methods and deep learning
based methods. Traditional computer graphics-based methods
[1]–[4] usually build Chinese characters through assembling
strokes. The results of the generated Chinese characters are

Fig. 1. Example of Chinese font style transfer. The eight Chinese characters
in HeiTi style are transfered to JinHei style while maintaining the consistency
of the contents. (HeiTi, JingHei are two types of Chinese fonts).

always limited by the effect of stroke extraction. Some process
of decomposing and adjusting strokes should be finished by
the staff. Existing deep learning based methods [5]–[8] usually
follow adversarial learning or neural style transfer to generate
Chinese font, which generally implemented as a single-task
process. Figure 1 shows an example of Chinese font style
transfer. Some characters in HeiTi style are transferred to
JinHei style while maintaining the consistency of the con-
tents. These methods usually have weak generalization ability
and some a little more complex strokes cannot be learned
completely because of the complex and various structures of
Chinese characters.

This paper aims to handle the challenging task of automatic
generation of large-scale Chinese font libraries. We propose a
multitask adversarial learning approach, termed MTfontGAN,
for Chinese font style transfer. The model consists of one
generator with multiple subnets, i.e. multi-task. The refer-
ence character is transferred into multiple high-level feature
representations by using encoder parts. The multiple tasks’
encoder layers share information with each other to achieve a
more vivid character generation. MTfontGAN contains mul-
tiple discriminators for the multiple font styles generation.
The discriminator is used to distinguish each style of the
generated characters with their ground truth correspondingly.
Thus, different font style results can be generated by the
same MTfontGAN training model, as shown in Figure 2.
Comparing with existing algorithms, MTfontGAN model has
three unique characteristics, including 1) It completes the
style transfer from a reference font to multiple target ones at
the same time and achieves better performance in all tasks;
2) The multitask training strategy enables the feature-level

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2. An overview of our method, i.e. MTfontGAN, for Chinese font
transfer. It learns to attend to the important style characteristics of the
reference font, i.e. HeiTi, by imposing a multitask framework. This makes
the U-Net encoder encode the generalized style features required to generate
different fonts.(HeiTi, JingHei, LiShu and YaoTi are the English names for
the four types of Chinese fonts)

interactions across tasks, making the image encoders to focus
on the important parts of characters in general style transfer;
and 3) Existing algorithms typically require to be pretrained
on a large external dataset of more than 20 fonts to enhance
their generalization ability. In contrast, MTfontGAN does not
require this procedure by taking advantage of the multitask
learning paradigm. We conducted experiments on style transfer
among four Chinese fonts to demonstrate the effective of our
method.

In summary, this paper has two main contributions:
1) We propose a multitask adversarial learning approach

that learns the mappings among multiple Chinese fonts using
only a single generator and multiple discriminators, generating
multiple Chinese font libraries simultaneously.

2) We propose an effective architecture to make MTfont-
GAN achieve stable training of multiple tasks in a unified
framework. Experimental results show that MTfontGAN scal-
able to more than three tasks.

The rest of the paper is organized as follows. Section II
briefly summarizes the related work. Section III describes the
details of the multitask adversarial learning approach. Section
IV describes these experiments on style transfer among four
Chinese fonts. Finally, we draw conclusions in Section V.

II. RELATED WORK

Automatic generation of Chinese font library in a certain
style is now still a challenging and ongoing problem. Some
methods have been explored to generate font automatically.
CG-based methods and deep learning based methods are main
approaches to this task.

The traditional CG-based methods [1]–[4], [9] have to
extract strokes from characters, then synthesize the strokes
into target characters. Tomo et al. [10] proposed a method
to extract the strokes from character images and construct
characters by deploying the appropriate strokes onto skeletons
that are generated automatically. Lian et al. [4] proposed a
system to synthesize handwriting font libraries. Lin et al. [11]
synthesizes Chinese characters with extracted components,
by placing them properly according to their position and
size information. They need to track every stroke, recognize
and extract components from the user’s handwritings first.
Nevertheless, the results of the generated characters are limited

by the effect of stroke extraction. Also, this kind of method
only focusses on the local representation of Chinese characters
rather than the overall style. Therefore, some attributes, like
the size and location of the generated Chinese characters need
to be adjusted manually.

In the last decade, deep neural networks [12] have been
widely adopted in order to handle many challenging tasks
in many areas. Deep learning based font generation methods
are generally classified into two types: methods adapted from
style transfer [13]–[16] and image-to-image transformation
methods [6], [7], [17]. Atarsaikhan et al. [18] proposed an
approach to generation fonts by using neural style transfer.
Tian proposed ‘rewrite’1method to transfer a given character
from the standard font style to a target style. However, this
kind of method usually has high computational complexity
and the strokes of generated characters are incomplete.

Generative adversarial networks [19] are the most common
methods. This kind of method usually optimizes a forward
generative model through adversarial game between generator
and discriminator and then transfer the reference font to the
target one. The method ‘pix2pix’ [6] used a conditional GAN
to predict image pixels from pixels. Jun-Yan Zhu et al. [17]
proposed the ‘BicycleGAN’ to learn a multi-modal mapping
between two image domains and the method ‘CycleGAN’ [7]
solved the problem of using pairwise training dataset.

With the help of generative adversarial networks, some font
generation methods based on them have been put forward.
The paper [20], [21] proposed methods of English characters
generation. Learning to generate English letters or numbers
is relatively easy because there are just 26 letters in English,
while generating Chinese fonts library is a tough job. The
project ‘zi2zi’2 exploited a conditional GAN-based model
which is an extension of ‘pix2pix’ to generate characters.
Sometimes the strokes it generated are not learned completely.
Jie Chang et al. [8] proposed a Hierarchical Generative Ad-
versarial Network (HGAN) for typeface style transformation.
Lyu et al. [22] proposed an auto-encoder guided GAN network
(AEGN) which can synthesize calligraphy images with a
specified style from standard Chinese font images. It requires
6000 paired characters as training sets, which is a weakness
of this method. Bo Chang et al. [5] proposed an improved
Cyclegan to transfer font styles. It replaces ResNet blocks
with DenseNet blocks. Jiang Yue et al. proposed a method
[23] to generate Chinese font, which first extracts strokes of
characters. The SkelNet predict the skeleton stream of target
characters and the StyleNet render their style.

Yue Jiang et al. [24] and Yexun Zhang et al. [25] used two
separate networks to extract the content and style of characters
separately. Sun et al. [26] proposed a SA-VAE framework,
which incorporates the prior knowledge of Chinese characters
into the network framework. However, ghosting and blurred
strokes are common problems.

1Rewrite. https://github.com/kaonashi-tyc/Rewrite
2zi2zi. https://github.com/kaonashi-tyc/zi2zi

To solve the problems of generating characters mentioned
above, such as incomplete strokes, images with noise, etc. And
based on the inspiration of contributions in multi-task [27],
we propose our MTfontGAN model that shares information
among tasks, and accordingly generate more reasonable re-
sults.

III. METHOD DESCRIPTION

As mentioned above, our goal is to address the problem
of automatic generation Chinese font. To obtain better per-
formance for this task, we specifically design the network
architecture and loss functions. It can transfer the reference
font into multiple styles of target fonts simultaneously. It
contains multiple tasks, each task is a kind of style trans-
formation. MTfontGAN includes one generator and multiple
discriminators, and the quantity of discriminators depends on
the number of generation fonts simultaneously. The generator
is used to generate multiple characters with different style
and discriminators are served to distinguish the generated
characters from the ground truth. A soft alignment is imposed
on the encoding of the reference font for different targets. This
promotes the extraction of target-independent font features to
improve MTfontGAN’s generalization capability and reduces
the risk of over-fitting. We will explicitly discuss the model
in this section.

A. Problem Formulation

We formulate the multitask font style transfer process as a
mapping from a reference Chinese character xrs to multiple
target characters simultaneously. xrs → {xts1 ,xts2 , ...,xtsn},
where n is the number of the target fonts. Reference character
images are binary glyph images in a standard font style con-
taining little style information, for example HeiTi or DengXian
font.

The paper presents MTfontGAN, which is achieved by the
proposed continual multitask learning approach, learning to
encode shared style features to generate multiple target fonts
simultaneously. MTfontGAN adopts encoder Ep(.) to extract
visual features of reference characters. It is a generative model
that learns a mapping from reference character xi

rs to output
generated character x̂

tsp
i , xi

rs → x̂
tsp
i ,where p ∈ {1,2,...n}

and i is the i-th input character. The multitask training strategy
enables the feature-level interactions across tasks.

B. Base Model

The conditional adversarial networks are a promising ap-
proach for image-to-image translation tasks. At first, a base
model is used to generate one styled target font from the
reference font. We select pix2pix [6] model as the base
model due to its successful applications in image-to-image
translation tasks. The generator G is trained to produce target
characters that cannot be distinguished from “real” images by
an adversarially trained discriminator, D, which is trained to
do as well as possible at detecting the generator’s “fakes”.

C. MTfontGAN Network Achitectures

Characters generated by the base model usually have noise
and the images are blurry. Also, if we wish to generate another
font, we need to retrain the network. Therefore, we propose
our multi-task adversarial learning model (MTfontGAN) based
on the base model, which can generate multiple types of
fonts with higher quality at the same time. As shown in
Figure 3, MTfontGAN model consists of one generator and
n discriminators, where n is the number of fonts we want
to generate. They are used to distinguish each style of the
generated characters with their ground truth correspondingly.

1) Multitask Generator: The generator contains multiple
subnets, namely, multiple tasks. Each task has the encoder part
and decoder part. The “U-Net”-based architecture is used for
each task generator [28]. The reference character is transferred
into multiple high-level feature representations by using en-
coder parts, and decoder parts are used to reconstruct multiple
target images progressively using the feature representations
calculated by encoder layers.

Encoder Network: What’s more, the corresponding en-
coder layers of these multiple tasks are connected with each
other to share information, which is conducive to generating
more vivid characters.

Encoder part of G consists of a series of Convolution-
InstanceNorm-LeakyReLu blocks to encode the input image
into high dimension feature. The input of encoder layers
is the reference font. After passing through encoder layers,
the reference character is transferred into high-level feature
representation of the target style.

An alignment is imposed on the encoders of different tasks
to make them focus on the important parts of the characters
in general style transfer. We try to make the parameters
included in corresponding layers of encoder parts as close as
possible. As the generator needs to produce different styles of
fonts, similar parameters increase the difficulty of the training
network. Thus, the generator will have a stronger learning
ability to generate more realistic images. To do this, we add
losses between corresponding layers of encoder parts. So tasks
can be connected to share information as well as have enough
independent parameters to learn multiple styles of fonts at
the same time. In this way, the generator has a stronger
generative ability and the network is more robust. MTfontGAN
has better generalization ability by learning multiple tasks
simultaneously and it can reduce the risk of over-fitting.

Decoder Network: The decoder consists of a series of
upsampling layers, which contain a 4×4 stride 2 deconvolution,
Instance Normalization and Relu except for the last one. The
last layer which only contains the deconvolution layer. The
outputs are transformed into [0,1] by the sigmoid function.
The decoder can reconstruct the target image with specific size
and channels progressively using the feature representation
calculated by encoder layers.

Given that each input character and its target one have the
same contents but different styles, they should have similar
structures. So we add skip connection between corresponding

Fig. 3. Network architecture. MTfontGAN learns a mapping from one reference font to multiple styles of target fonts simultaneously. The generation module
employs multiple U-Net for different font generation tasks. It uses a soft-sharing strategy for the image encoders in different channels to extract the common
features of the reference font. The discrimination module adopts adversarial learning strategy to control the quality of the generated target fonts.

layers of the encoder and decoder to make full use of infor-
mation on different levels.

2) Discriminator: The MTFontGAN consists of multiple
independent discriminator modules. D= {D1,D2, ...,Dn} ,
where n is the number of target fonts. They are used to
distinguish each style of the generated characters with their
ground truth correspondingly.

Each discriminator module composes of a series of
Convolution-InstanceNorm-LeakyReLu blocks. And we use
discriminator that concentrates its attention on local image
patches other than the whole graphic. It is more accurate
to judge the authenticity of the image using this structure.
Meanwhile, it can also improve the generation ability of the
generator.

D. Objective Function

The objective function of our model consists of three terms:
adversarial loss, L1 loss and soft alignment loss.

G∗ = argmin
G

max
D

λ0LGAN (G,D)+

λ1LL1
(G) + λ2LLalign(G)

(1)

where λ0, λ1, and λ2 are the weights of the three losses
correspondingly.

Adversarial Loss: we impose a standard adversarial game
to train the generator G and discriminators D of every single
task model.

LGAN (G,D) = Exi
rs,xi

ts [logD(xi
rs,xi

ts)]

+Exi
rs [log(1−D(xi

rs, G(xi
rs)))]

(2)

The adversarial loss of the multitask model is the sum of every
single task.

LGAN (G,D) =

n∑
p=1

LGANp(G,D) (3)

L1 Loss: to make the generated characters sharper and add
more details, we use L1 loss in our objective function.

LL1(G) = Exi
rs,xi

ts [||xi
ts −G(xi

rs)||1] (4)

where xi
rs and xi

ts represent the i-th reference character and
ground truth correspondingly. The L1 loss of the multitask
model is the sum of every single task.

LGAN (G,D) =

n∑
p=1

LGANp(G,D) (5)

The objective of every single generation task contains two
parts: adversarial loss and L1, which can be expressed as:

G∗ = argmin
G

max
D

λ0LGAN (G,D) + λ1LL1(G) (6)

where λ0 and λ1 are the weights of the two losses corre-
spondingly.

Soft Alignment Loss: A soft alignment is imposed on the
encoding of the reference font for different targets. As L2 is
concise and more sensitive to outliers, in the connection parts,
we use L2 to achieve it. The L2 can be expressed by the
following formula:

LL2(G) =
2

n(n− 1) · k

K∑
k=1

∑
p,q=1,2,...,n

p 6=q

||T (k)
p − T (k)

q ||2 (7)

where n refers to the amount of tasks and Tp and Tq are the p-
th and q-th tasks correspondingly. And K represents the total
layers in one encoder part.

Fig. 4. Examples of content reference font images on the Chinese datasets.

The total objective of our network contains three parts: the
adversarial loss loss,the L1 loss and the soft alignment loss,
which can be expressed as:

G∗ = argmin
G

max
D

λ0LGAN (G,D)+

λ1LL1(G) + λ2LL2(G)
(8)

where λ0, λ1, and λ2 are the weights of the three losses
correspondingly.

E. Training Process

MTfontGAN model is optimized using three loss terms:
adversarial loss, L1 loss and soft alignment loss. The specific
training strategy has the following two steps:

1) Independently training base models first: Before training
MTfontGAN, we first train the base model for each style of
fonts that we want to generate simultaneously in MTfontGAN.
The base model is optimized using two loss terms: LGAN and
LL1. The pre-trained parameters are used to initialize every
task of MTfontGAN.

2) Training MTfontGAN model: After the base model has
been trained well, we train the MTfontGAN model. Given
the set of images {xi

rs,xi
ts1 ,xi

ts2 ,xi
tsn}, where i ∈

{1,2,...m} and m is the number of training characters, n is
the number of tasks. We load the optimal parameter sets of
each font firstly. Then we train the MTfontGAN model. We
need to adjust the weight of LL2 loss.

After the MTfontGAN network is trained fully, we can use
the rest of the reference characters to generate the whole target
font libraries.

IV. EXPERIMENTS

In this section, we first introduce the datasets and model
details. Then, we analyze sensitivity of MTfontGAN to hy-
perparameters. Finally, we compare the proposed method with
baselines and state-of-the-art font style transfer algorithms to
verify the effectiveness of our method.

A. Experimental Settings

1) Datasets: To evaluate the proposed MTfontGAN model
with Chinese font generation tasks, we construct a dataset
which contains four Chinese fonts: HeiTi, JingHei, LiShu
and YaoTi. Each font has 5000 Chinese characters selected
randomly. The data split includes 4000 images for training,
800 for validation, and 200 for testing. To prepare the input
datasets, we downloaded the source files of the four fonts

from the network, transferred them into 256*256 images.
Finally, the training sets got converted to .npy files for better
performance of MTfontGAN.

We adopt HeiTi as the input content reference font. HeiTi
is part of the commonly used fonts in printing. As shown in
Figure 4, it has the advantages of concise strokes and rigorous
structures. As the experimental MTfontGAN contains three
tasks and it can generate three styles of fonts at the same
time, we choose JingHei, LiShu and YaoTi fonts as our target
fonts. For time efficiency, We randomly picked 400 characters
subset in each style of fonts as our training sets. We give
the experiment result on the whole 5000 dataset in the later
section.

2) Implementation Details: The multiple tasks of MTfont-
GAN have the same network layers in every single model. The
encoder has 8 stacked Convolution-InstanceNorm-LeakyReLu
blocks. The output channels of each convolutional layer are
64, 128, 256, 512, 512, 512, 512 and 512 respectively.
The decoder has 7 stacked Deconvolution-InstanceNorm-ReLu
blocks and a final Deconvolution layer. Output channels of
each deconvolutional layer are 512, 512, 512, 512, 256, 128
and 64 respectively. The size of convolution kernels is 4*4 and
the stride is 2*2. The method was implemented in Pytorch. In
our experiment, We set batch size to 16 and set λ0 10, λ1 1,
λ2 25. We choose initial rate of 0.001 and train the proposed
model end-to-end with Adam optimizer.

3) Evaluation metrics: For quantitative evaluation, we
adopt four commonly-used metrics in many image generation
tasks:

L1: the L1 of corresponding pixels between the generated
image and ground truth;

RMSE (Root Mean Square Error): the RMSE loss of
corresponding pixels between the generated image and ground
truth;

PDAR (Pixel Disagreement Ratio): the ratio of the same
pixels to the total number of pixels between the generated
image and ground truth;

IOU (Intersection Over Union): the ratio of intersection of
pixels to union of pixels between generated image and ground
truth.

The formulas are described as follows (the L1 is mentioned
in equation (2):

RMSE =

√
1

n

∑
j

(x̂tsi,j − xi,j ts)2 (9)

PDAR =

∑
j(x̂

ts
i,j ∧ xi,j

ts)∑
j xi,j ts

(10)

IOU =

∑
j(x̂

ts
i,j ∧ xi,j

ts)∑
j(x̂

ts
i,j ∨ xi,j ts)

(11)

where x̂tsi,j is the j-th element of the generated charac-
ter x̂ts

i and xi,j
ts is the j-th element of the ground truth

xi
tscorrespondingly, p ∧ q = min(p, q) is the fuzzy and

operator, p ∨ q = max(p, q) is the fuzzy and operator.

Fig. 5. Performance comparison in font transfer between base model performing single task font transfer and MTfontGAN performing multitask font transfer
for the three target fonts simultaneously.

Fig. 6. Performance comparison between MTfontGAN using different align-
ment strategies for image encoders.

B. Effectiveness of Multi-Task style encoding

As shown in Figure 5, we compare the results of our
MTfontGAN with the base model. It can be seen that the
results generated by base model do have serious strokes
missing problems, such as the vertical stroke of the character
”Xiao” (the first character in the first row) and the left-falling
stroke of the character ”chi” (the fourth character in the first
row). And the strokes of generated characters are incomplete,
such as the horizontal stroke of the character ’kou’ (the left
part of the fifth character in the first row), the rising stroke of
the character ’Qiao’ (the seventh character in the first row).
Also, there are some unreasonable connection between strokes,
for instance, the triple-dots of the generated character ’mang’
(the third character in the first row). And the character ’yi’
(the fifth character in the first row) has redundancy in the
right-falling stroke. What’s more, the characters generated by
the base model have noise, such as the character ’fo’ (the
ninth character in the first row) and the character ’fu’ (the
tenth character in the first row). While our model performs
better in all these aspects mentioned above. It demonstrates
the significance of multi-task style encoding. Our model can
not only generate multiple styles of fonts without retraining but
also generate images with clearer and more complete strokes
that are consistent with the style of the target font.

C. Effects of different losses on network sharing

To find a better way to connect between multiple tasks, we
tried different methods, like L2, JS loss, Gram loss, and L1.
As shown in Figure 6, we show the generated results using
different losses. Although the styles of characters generated
by these methods are consistent with the target font, all
methods except L2 have the same problem. That is, strokes of
generated characters are incomplete. Also, the method using
L1 generates images with noise. This figure indicates that L2
is more appropriate.

D. Comparison with the State of the Art

In this section, we compare the performance of our model
with other existing methods. We compare the results of our
method with other four recently proposed approaches: zi2zi,
BicycleGAN [17], CycleGAN [7], DenseNet CycleGAN [5].
We train a model for every above mentioned methods as well
as our method on the same dataset. For time efficiency, We
randomly picked 400 characters subset in each style of fonts
as our training sets.

1) Visual comparison: As shown in Figure 7, the char-
acters generated by BicycleGAN, CycleGAN and DenseNet
CycleGAN have a serious problem of missing strokes. And
strokes produced by zi2zi method are incomplete. The styles of
characters generated by CycleGAN and DenseNet CycleGAN
are quite different from the target font. From comparisons
among these methods, we can see that our MTfontGAN model
is a better one for generating stylized fonts.

2) Qantitative evaluation: Although the visual appearance
is much more intuitive to reflect the quality of style transfer re-
sults in the font generation task, quantitative evaluation metrics
can give a higher-level indication of performance on the whole
dataset. Table 1 shows the quantitative comparison of our
method and other four approaches. Our method can achieve the
lowest L1, RMSE, PDAR and the highest IOU. These accurate
values demonstrate that the MTfontGAN model is superior to
other methods.

Fig. 7. Performance comparison between MTfontGAN in and existing methods in terms of font transfer from HeiTi to JingHei, LiShu, and YaoTi.

TABLE I
QUANTITATIVE COMPARISON OF MTFONTGAN AND OTHER FIVE EXISTING METHODS. (DENSENET REPRESENTS DENSENET CYCLEGAN.)

Method JingHei LiShu YaoTi
L1 RMSE PDAR IOU L1 RMSE PDAR IOU L1 RMSE PDAR IOU

Base model 0.2526 0.6688 0.3901 0.4312 0.1502 0.4949 0.3296 0.5045 0.1493 0.4776 0.3967 0.4208
zi2zi 0.2233 0.6202 0.3867 0.4406 0.1555 0.4906 0.2688 0.5773 0.1715 0.5086 0.3963 0.4348

BicycleGAN 0.3246 0.7233 0.8088 0.1101 0.2673 0.5147 0.8929 0.0597 0.1698 0.4758 0.8207 0.1036
CycleGAN 0.4694 0.9004 0.9435 0.0292 0.3786 0.8393 0.3650 0.4655 0.4728 0.9106 0.6649 0.2023
DensenNet 0.5189 0.9546 0.6992 0.1788 0.3559 0.8139 0.3374 0.4959 0.4734 0.9027 0.8427 0.0854

MTfontGAN 0.2219 0.6176 0.3839 0.4458 0.1485 0.4877 0.2602 0.5876 0.1463 0.4741 0.3852 0.4450

Fig. 8. The influence of the size of datasets. We compare the MTfonGAN
models that trained by 400 and 4000 data correspondingly.

E. Influence of training data size to font generation

In this part, we evaluate the effect of the size of datasets
on the font generation. We perform an additional experiment
with datasets that contain 4000 characters in each style of
fonts. Except for the size of the datasets, all the experimental
conditions are the same as those mentioned at the beginning
of section 4. As shown in Figure 8, it can be seen that with the
increase of datasets, the effect of generated characters has been
significantly improved. The characters have more complete
strokes and less noise and the style is more consistent with
the target fonts. Therefore, the larger the datasets, the better
the results.

V. CONCLUSION

In this paper, we propose a multi-task generative adversarial
network, termed MTfontGAN, to learn the generalized font
patterns for Chinese font style transfer. A network sharing
strategy is designed to maximize the propagation of positive
feature-level information across tasks and retain the task-
specific features into their own network channels. This enables
the stable training of MTfontGAN. Our method can produce
multiple types of fonts at one time without retraining. Ex-
perimental results demonstrated that our method can be used
to automatically generate high-quality Chinese font libraries.
Characters generated using our model have more complete
structures and are closer to the ground truth.

Despite the achievements of MTfontGAN, future work
can be further explored in two directions. First, we will do
more experiments using various fonts to verify MTfontGAN’s
robustness on more Chinese fonts. Second, we will investigate
its scalability on four or more tasks.

ACKNOWLEDGMENT

Our work is supported by the National Key R&D Program
of China under grant No.2017YFB0203000; and in part, by
the National Research Foundation, Prime Minister’s Office,
Singapore under its IRC@SG Funding Initiative.

REFERENCES

[1] S. Xu, T. Jin, H. Jiang, and F. C. M. Lau, “Automatic generation of
personal chinese handwriting by capturing the characteristics of personal
handwriting,” in Proceedings of the Twenty-First Innovative Applications
of Artificial Intelligence Conference, 2009, pp. 191–196.

[2] B. Zhou, Weihong Wang, and Zhanghui Chen, “Easy generation of
personal chinese handwritten fonts,” in IEEE International Conference
on Multimedia and Expo, 2011, pp. 1–6.

[3] A. Zong and Y. Zhu, “Strokebank: automating personalized chinese
handwriting generation,” in Proceedings of the National Conference On
Artificial Intelligence, 2014, pp. 3024–3029.

[4] Z. Lian, B. Zhao, and J. Xiao, “Automatic generation of large-scale
handwriting fonts via style learning,” in SIGGRAPH Asia, 2016, pp.
1–4.

[5] B. Chang, Q. Zhang, S. Pan, and L. Meng, “Generating handwritten
chinese characters using cyclegan,” in IEEE Winter Conference on
Applications of Computer Vision, 2018, pp. 199–207.

[6] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 5967–5976.

[7] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in IEEE Inter-
national Conference on Computer Vision (ICCV), 2017, pp. 2242–2251.

[8] J. Chang, Y. Gu, Y. Zhang, and Y. Wang, “Chinese handwriting imitation
with hierarchical generative adversarial network,” in the British Machine
Vision Conference, 2018, pp. 1–12.

[9] T. Miyazaki, T. Tsuchiya, Y. Sugaya, S. Omachi, M. Iwamura, S. Uchida,
and K. Kise, “Automatic generation of typographic font from small font
subset,” IEEE Computer Graphics and Applications, vol. 40, no. 1, pp.
99–111, Jan 2020.

[10] M. Tomo, T. Tatsunori, S. Yoshihiro, O. Shinichiro, I. Masakazu,
U. Seiichi, and K. Koichi, “Automatic generation of typographic font
from small font subset,” IEEE Computer Graphics and Applications,
vol. 40, no. 1, pp. 99–111, Jan 2020.

[11] J. W. Lin, C. Y. Hong, R. Chang, Y. C. Wang, S. Y. Lin, and
J. M. Ho, “Complete font generation of chinese characters in personal
handwriting style,” in IEEE 34th International Performance Computing
and Communications Conference (IPCCC), 2015, pp. 1–9.

[12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[13] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2414–2423.

[14] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in IEEE International Conference on
Computer Vision, 2017, pp. 1510–1519.

[15] T. Q. Chen and M. W. Schmidt, “Fast patch-based style transfer of ar-
bitrary style,” in the 30th Conference on Neural Information Processing
Systems, 2016, pp. 1–5.

[16] D. Chen, L.Yuan, J. Liao, N.Yu, and G. Hua, “Stylebank: An explicit
representation for neural image style transfer,” in In Pro- ceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1–10.

[17] J. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and
E. Shechtman, “Toward multimodal image-to-image translation,” in
Conference on Neural Information Processing Systems (NIPS), 2017,
pp. 465–476.

[18] G. Atarsaikhan, B. K. Iwana, A. Narusawa, K. Yanai, and S. Uchida,
“Neural font style transfer,” in 14th IAPR International Conference on
Document Analysis and Recognition, 2017, pp. 51–56.

[19] I. J. Goodfellow, J. Pougetabadie, M. Mirza, B. Xu, D. Wardefarley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Conference on Neural Information Processing Systems, 2014, pp.
2672–2680.

[20] S. Azadi, M. Fisher, V. Kim, ZhaowenWang, E. Shechtman, and
T. Darrell, “Multi-content gan for few-shot font style transfer,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’18),
2018, pp. 7564–7573.

[21] S. U. Hideaki Hayashi, Kohtaro Abe, “Glyphgan: Style-consistent font
generation based on generative adversarial networks,” Knowledge-Based
Systems, vol. 186, 2019.

[22] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu, “Auto-
encoder guided gan for chinese calligraphy synthesis,” in the 14th IAPR
International Conference on Document Analysis and Recognition, 2017,
pp. 1095–1100.

[23] J. Yue, L. Zhouhui, T. Yingmin, and X. Jianguo, “Scfont: Structure-
guided chinese font generation via deep stacked networks,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2019, pp. 4015–
4022.

[24] Y. Jiang, Z. Lian, Y. Tang, and J. Xiao, “Dcfont: an end-to-end deep
chinese font generation system,” in SIGGRAPH Asia, 2017, pp. 1–4.

[25] Y. Zhang, Y. Zhang, and W. Cai, “Separating style and content for
generalized style transfer,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8447–8455.

[26] D. Sun, T. Ren, C. Li, H. Su, and J. Zhu, “Learning to write stylized
chinese characters by reading a handful of examples,” in the 27th
International Joint Conference on Artificial Intelligence, 2018, pp. 920–
927.

[27] S. Ruder, “An overview of multi-task learning in deep neural
networks,” CoRR, vol. abs/1706.05098, 2017. [Online]. Available:
http://arxiv.org/abs/1706.05098

[28] P. F. O. Ronneberger and T. Brox, “U-net: Convolu- tional networks for
biomedical image segmentation,” in MIC-CAI, 2015, p. 234–241.

