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Abstract—Weakly Supervised Object Localization (WSOL) has
increasingly attracted interests for only using image-level supervi-
sion instead of location annotations. Some common challenges for
existing methods are that they cover only the most discriminative
part of the object. And a substantial amount of noise in training
causes ambiguities for learning in a robust manner. In this paper,
we propose to address these drawbacks by Self-Paced Pyramid
Adversarial Learning(SPAL). Specifically, for suppressing noise,
we use self-paced learning (SPL) to training data from simple to
complex and from coarse to fine. And our network divides two
subnetworks: 1) coarse pyramid network(CPN), 2) fine pyramid
network (FPN). In CPN, we aim to utilize pyramid adversarial
erase mechanism to process the feature maps of different scale.
Consequently, CPN can cover the entire object to generate
initial object proposals. Then CPN builds the relevance score
as pseudo labels of proposals. In FPN, object proposals and
pseudo labels can be trained to locate precise object boundaries.
Finally, We also propose adversarial loss function to fit our
network. Detailed experimental results on the PASCAL VOC
dataset demonstrate that SPAL performs promising against the
state-of-the-art methods.

Index Terms—weakly supervised learning, self-paced learning,
object localization, pyramid adversarial erase, adversarial loss

I. INTRODUCTION

OBJECT localization is a fundamental component of com-
puter vision. It aims to locate all instances of particular

object categories (e.g. person, cat, and dog) in images. Cur-
rently, object localization has made breakthrough progress [1]–
[4] in a fully supervised object detection manner. However,
strong supervision needs many object bounding boxes or seg-
mentation masks annotations, which are time-consuming and
labor-intensive. Besides, imprecise and ambiguous manual an-
notations also cause training instabilities. Try to alleviate these,
recently, weakly supervised object localization (WSOL) has
received widespread attention [5]–[8]. Despite this progress,
WSOL still is a very challenging but promising task.

The gap of WSOL derives from high randomness of object
location due to weakly annotated data. So the most usual
methods for tackling WSOL is to formulate it as multiple
instances learning problems (MIL) [9]–[11]. MIL treats each
training data as a “bag” and iteratively selects high-scored
instances from each bag when learning detectors. Many ob-
ject proposals are chosen by conventional methods such as
selective search [12], edge boxes [13], etc. When training
large-scale datasets, however, MIL remains puzzled by random

inadequate solutions. Especially for MIL’s non-convexity, it
causes MIL’s methods to be sensitive for model initialization
and prone to getting trapped into a local minimum. Although
a series of efforts have been made to alleviate the problem by
seeking better initialization and optimization strategies [14],
[15] or empirically regularizing the learning procedure [16].
The issues of quantifying sub-optimal solutions and principally
reducing localization randomness remain unsolved.

Recently, Class Activation Mappings (CAM) [17] gives
WSOL a new perspective. CAM leverages Convolutional Neu-
ral Networks (CNN) classifier for learning the discriminative
features. The key idea is that the classifier with a reasonable
accuracy should observe the object region to decide the cate-
gory label. In other words, the object region should co-occur
with the discriminative features. Unfortunately, the classifiers
always tend to focus only on the most discriminative features
to decide final classification results. Therefore, the spatial
distribution responses also manage to cover only the most
discriminative part of the object, which leads to localization
errors. For getting the extent of integrated objects, adversarial
erase (AE) [18]–[22] has been proposed. The similarities be-
tween these technologies are that they prevent the model from
relying solely on the most discriminative part for classification,
instead encourages it to learn the less discriminative part as
well.

Instead of MIL, in this paper, we focus on emerging
approaches represented by AE. We investigate that the idea of
adversarial erase only the most discriminative part is practical
to capture the full extent of object. But some drawbacks
can’t be ignored. Firstly, whether it is MIL or AE, existing
schemes always attempt to train object detectors directly from
a large and noisy collection of data. It is challenging to
get correct localization because the dataset contains many
noisy results (e.g., background clutter, object parts). Secondly,
these AE methods always need additional classifier, which
waste substantial computing resources. Finally, previous AE
methods can not build links to multiple object locations and
categories, which makes them difficult to put into practice. So
our key observation is that effective AE methods should use
progressive learning to locate objects and to learn in a robust
manner.

For the status quo, in this paper, we propose a novel
Self-Paced Pyramid Adversarial Learning(SPAL) for weakly
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Fig. 1. Overview of our proposed SPAL methods, from coarse to fine, CPN generates initial object proposals, and FPN refines precise object boundaries

supervised object localization. The key ideas are inspired
by self-paced learning (SPL) [23]–[25] and adversarial erase
(AE) [18]–[22]. In particular, according to SPL strategies, the
training data is divided into several levels from simple to
complex and from coarse to fine (e.g., simple background and
complex background, single object and multiple objects, etc).
As shown in Fig. 1, SPAL trains two subnetworks: 1) Coarse
Pyramid Network(CPN), 2) Fine Pyramid Network (FPN). In
CPN, pyramid adversarial erase mechanism is used to process
the feature maps of different scale. So that CPN can cover
the entire object to generate initial object proposals. Another
critical point is that we introduce adversarial multi-label image
classification loss to train CPN, which can avoid noise as much
as possible. To this end, we explore to score the collection
of object proposals through relevance scores. Afterwards, we
build pseudo labels of proposals by relevance scores. In FPN,
we use selected proposal and pseudo labels to train FPN for
refining more precise boundaries.

The proposed method is brief but efficient. And to validate
the effectiveness of the proposed SPAL, we conduct a series
of object localization experiments using the bounding boxes
inferred from the generated localization maps. Detailed eval-
uations on the PASCAL VOC datasets demonstrate that our
SPAL is as competitive as the state-of-the-art methods.

Briefly, we summarize our main contributions into three-
fold:

• To the best of our knowledge, we first introduce self-
paced learning(SPL) for AE methods, SPL effectively
avoids the influence of noise and improves the robustness
of adversarial erase learning for WSOL.

• We propose a novel pyramid adversarial erase mecha-
nism. Different from previous AE methods, no additional
branches needed, It can efficiently mine different discrim-
inative regions in a weakly supervised manner, which
discover integral target regions of objects for localization.

• Compare to existing methods, experimental results show
strategies of SPAL are crucial for better performance of
WSOL.

II. RELATED WORK

Several recent approaches adopt adversarial erase(AE) to
facilitate learning to find integral objects of interest semantic
with weak supervision. Singh et al. [19] propose Hide-and-
Seek (HaS) to divide the input image into grid-like patches
and randomly selects the patches to erase. While the random
selection is fast and straightforward, it cannot effectively erase
the most discriminative part. Meanwhile, Wei et al. [20] use
adversarial erase (AE) to discover integral object regions by
training additional classification networks on images whose
discriminative object regions have partially been erased. One
shortcoming that can not be ignored in this method is that it
must cost more training time and computing resources to train
several independent networks for obtaining integral object
regions. Consider these issues, Zhang et al. [21] propose a
novel Adversarial Complementary Learning (ACoL) approach
for discovering entire objects of interest via end-to-end weakly
supervised training, which can efficiently conduct end-to-end
training. However, ACoL still needs additional classifiers.
Look for erasing the most discriminative part effectively
and efficiently, Choe et al. [22] propose an Attention-based
Dropout Layer (ADL), a lightweight yet powerful method that
utilizes self-attention mechanism to erase the most discrimi-
native part of the object. Despite the difficulties, these efforts
laid the foundation for our research.

Inspired by the cognitive science, Bengio et al. [26] first
initialized the concept of curriculum learning (CL), in which
a model is learned by gradually including samples into train-
ing from easy to complex. For more explanatory, Kumar et
al. [23] substantially prompted this learning philosophy by
formulating the CL principle as a concise optimization model
named self-paced learning (SPL). Recently, several progressive
and SPL algorithms in computer vision have been proposed.
such as visual tracking [27]–[29], image search [25], object
detection [30], [31]. These methods fully illustrate progressive
methods that can get better performance at various computer
vision tasks through decomposing complex problems into
simpler ones. We note that progressive and self-paced learning
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Fig. 2. Coarse Pyramid Network. Include CONV + GAP + classication+
adversarial branch. We note that CONV as convolution layer, GAP as global
average pooling layer. Input a image, CONV+GAP use pyramid adversarial
erase mechanism (See Fig. 3 for more details) to generate localization maps.
then segment localization maps for initial proposal. proposals genearte a set
of mask-out images to calculate relevance scores for every proposal.

also is of particular importance to the weakly supervised object
localization problem.

III. THE PROPOSED METHOD

In this section, we present details of our proposed method,
Self-Paced Pyramid Adversarial Learning (SPAL). As men-
tioned earlier, SPAL has three parts. In Sec. III-A, we will
introduce details of Coarse Pyramid Network (CPN). In
Sec. III-B. We will present more details about Fine Pyramid
Network (FPN). Finally, in Sec. III-C, Self-Paced Learning
Mechanism will give more training details.

A. Coarse Pyramid Network

The goal of Coarse Pyramid Network (CPN) is to cover
the entire object to generate initial object proposals. We use
ResNet50 [32] as our network architecture and introduce
pyramid adversarial erase mechanism to process the feature
maps of different scales, CPN erases its discovered regions
from different scales of feature maps and fuses them in some
way. Progressive erasing and fusing help network to discover
complete objects from localization maps. Meanwhile, unlike
the problem in simple classification, CPN is trained as the
multi-label image classification network to increase the
specificity of the object categories of interest. In this case,
we present adversarial multi-label classification loss to fit
our task. Finally, we use relevance scores as the pseudo
label to match class-specific proposals, whose ways remove
substantial noise and potential confusion from similar objects.
Then initial proposals and pseudo labels as data are inputted
to fine pyramid network.

Pyramid adversarial erase mechanism. Motivated by
ResNet [32] and FPN [33], a deep ConvNet computes a
feature hierarchy layer by layer. Semantics from low to high
levels build a pyramid shape. Different from previous AE
methods, we propose pyramid adversarial erase. we erase
feature maps from {56 × 56, 28 × 28, 14 × 14, 7 × 7 }
size. There are often many layers producing output maps of
the same size. we say these layers for a AE step. So we say
our pyramid adversarial erase for AE step {1, 2, 3, 4}. As
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Fig. 3. Pyramid adversarial erase architecture. where AE step {1, 2, 3, 4}
erase and fuse progressively. From size {56×56} to {7×7}, pyramid shape
is built. Differnent scales could learn different discriminative object regions
and fuse them through skip connections [32].

shown in Fig. 3, in every AE step, let Mfirst
i denotes the

first layer of AE step i, M last
i denotes the last layer of AE

step i, Note that we normalize both maps to the range [0,1]
and define them as M̃first

i , M̃ last
i , the most discriminative

region is identified as the set of pixels whose value is
larger than the given threshold δ in M̃first

i . Afterwards, we
erase the discriminative regions in M̃first

i through replacing
the pixel values of the identified discriminative regions by
zeros. Finally, we fuse them through max (M̃first

i , M̃ last
i ) as

Mfuse
i .
When testing an image, we get the fused localization maps

and resize them to the same size with the original images by
linear interpolation. For producing object bounding boxes,
we segment the foreground and background by the fixed
threshold. Afterwards, we seek the tight bounding boxes
covering the largest connected area in the foreground pixels,
which can generate initial proposals.

Adversarial multi-label classification loss. Real classification
problems always assume only one single object exists per
image. It is full biased and not objective. In this case, we
describe multiple objects as multi-label image classification
problems. However, conventional multi-label classification
problems usually regard every label as an independent
distribution. It ignores the contact between objects and so
that inaccurate distribution will seriously affect the accuracy.
Unlike traditional loss function. We introduce an adversarial
multi-label classification loss to handle these problems.

We assume dataset has K categories and a collection of
N training images. Training image set can be defined as ` ={
(I(1), L1), ..., (I(N), L(N))

}
, where I is the image data and

L is the corresponding label. Formally, L = [l1, l2, ..., lK ]
T is

the K-dimensional label vector. Each l can be 1 or 0 indicating
whether at least one specific object instance is present in
the image. Adversarial multi-label classification loss can be
described by the following steps.

As shown in Fig. 2, first, a normal fully-connected layer is
added, where label L = [l1, l2, ..., lK ]

T . Beyond that, we add
a new fully-connected layer to K as adversarial branch, a new



label La = [la1 , l
a
2 , ..., l

a
K ]

T , where

lai =

{
1 li = 0

0 li = 1
(i ∈ (1, 2, ...,K)) (1)

Specifically, each L represents whether the image con-
tains the corresponding object. Similarly, each La represents
whether the image does not contain the corresponding object.
Next, we describe how to calculate final Loss. Input Image I ,
we get two K dimensional output P (I) and Pa(I) (adversarial
branch). Computing the probabilities uses sigmoid function, in
P (I), pi(I) represents the probability that the image contains
at least one object instance of i-th category. In Pa(I), pia(I)
shows the probability that the image does not contain objects
of i-th category. We can define Loss of one image for category
i as Lossi,

Lossi = −(lai logpia(I) + lilogp
i(I)) (2)

So the final Loss can be obtained by summing up all the
training samples and losses for all the categories and averaging
them.

Loss =
1

N

N∑
n=1

K∑
i=1

Lossi(I
(n)) (3)

Compared with alternative loss functions(eg., binary logistic
regression loss, and label-wise cross-entropy loss), our
proposed adversarial multi-label classification loss fully
considers the relationship between different objects through
adversarial branch. The network thus can remove substantial
noise and potential confusion from different objects.

Relevance scores. Coarse Pyramid Network (CPN) can
generate initial proposals. These proposals can cover full
extent of objects. But they still can’t ensure precise object
boundaries. class-independent object proposals are difficult to
refine. However, class-specific proposals are easy to improve.
Considering these, in this case, we thus calculate relevance
scores for class-specific proposals. Relevance scores define
how relevant each proposal is to each class. Intuitively, a
proposal has the most significant relevance score concerning
i-th class. The proposal can consider the i-th class as pseudo
label to match a specific proposal. We note that if the
mask-out image by a proposal causes a significant drop in
classification score for the i-th class, the proposal can be
considered essential for the i-th class. So we exploit the
degree of descent to define relevance scores

Formally, we denote relevance scores as K-dimensional vec-
tor S = {s1, s2, ..., sK} (assuming dataset has K categories),
a set of initital proposals as P , input image I . Without loss
of generality, we take p̃ in P as an example. First, Imask as
mask-out image for p̃, I(p̃) as the output of original image
(the network has two output,But I(p̃) shows the probabilities
of containing a object), Imask(p̃) as the output of mask-out
image. Then we can calculate relevance scores for p̃ as

S = SoftMax(
|I(p̃)− Imask(p̃)|

I(p̃)
) (4)
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…
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Fig. 4. Fine Pyramid Network. Input an image and a set of object proposals
(proposals belong to class-specific). MRoI layer processes each proposal to
generate a set of MRoIs (MRoIs reserve proposal’s information but hide
others). MRoIs are processed by pyramid adversarial erase mechanism to
produce localization map for every proposal.

Here, SoftMax function ensures s1 + s2 + ...+ sK = 1, I(p̃)
and I(p̃) all are K-dimensional vector, So All operations are
element-wise.

B. Fine Pyramid Network

The purpose of Coarse Pyramid Network (CPN) is to mine
a set of high confident but coarse class-specific proposals.
Further, Fine Pyramid Network(FPN) can refine more precise
object boundaries. Fig. 4 illustrates the FPN architecture.
Although it adopts the same convolution architecture with
CPN(we use ResNet50), the inputs of FPN are an entire image
and a set of object proposals. These proposals use the largest
relevance score as a pseudo label for training. Afterwards, for
each object proposal, a mask region of interest (MRoI) layer
keeps the proposal unchanged, for other regions MRoI uses
mask-out strategy.

In other words, for each proposal, we reserve the proposal’s
information but hide others, these mask-out images (called
MRoIs) constitute mini-batch data. MRoIs have same size
with input image but only the knowledge of corresponding
proposal. Next, MRoIs are processed by pyramid adversarial
erase mechanism, So FPN will produce localization map for
every proposal. Finally, These localization maps will segment
more precise object boundaries.

C. Self-Paced Learning Mechanism

The key point of self-paced learning mechanism is to
rank our trainval sets from easy to hard. Then the training
process should use progressive pyramid adversarial learning
to learn weakly supervised object localization from easy
object samples as far as possible. Our training images include
ILSVRC 2012 [39] and Pascal VOC 2007 [40] trainval set.
Consider the difference, and we extract ILSVRC 2012 20-
classes corresponding to Pascal VOC classes1 as training

1Note that the ILSVRC↔VOC class mapping is: bicycle↔bicycle,
airplane↔aeroplane, bird↔bird, watercraft↔boat, wine bottle↔bottle,
bus↔bus, tv or monitor↔tvmonitor, sheep↔sheep, sofa↔sofa,
car↔car, domestic cat↔cat, chair↔chair, flower pot↔pottedplant,
train↔train, cattle↔cow, table↔diningtable, dog↔dog, horse↔horse,
motorcycle↔motorbike, person↔person.



Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Avg
LCL [34] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 47.7
WSDDN [6] 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1
TS2C [35] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0
C-WSL [36] 87.5 81.6 65.5 52.2 37.4 83.8 87.9 57.6 50.3 80.8 44.9 44.4 65.6 92.8 14.9 61.2 83.5 68.5 77.6 83.5 66.1
Ranking GAN [37] 85.5 75.0 66.9 47.5 43.6 67.4 83.6 61.7 36.8 75.1 29.8 55.9 70.4 80.6 29.0 52.9 71.0 31.2 66.9 58.1 59.4
SDCN [38] 85.8 83.1 56.2 58.5 44.7 80.2 85.0 77.9 29.6 78.8 53.6 74.2 73.1 88.4 18.2 57.5 74.2 60.8 76.1 79.2 66.8
PAE AMCL FPN SPL
X 60.4 40.0 54.6 26.2 30.8 39.6 56.9 52.8 20.3 52.0 30.5 50.4 45.2 60.6 26.7 36.5 29.2 36.6 45.6 48.0 42.1
X X 62.6 60.4 63.5 36.0 32.0 66.8 64.8 56.9 36.8 66.0 32.2 57.6 42.6 70.3 29.0 39.6 32.8 42.5 52.8 52.3 49.9
X X X 80.6 68.6 64.6 43.6 38.8 72.2 72.6 63.1 43.6 78.1 36.7 63.8 63.7 78.3 30.6 48.2 50.6 52.7 66.8 59.6 58.8
X X X X 83.7 70.6 68.0 56.5 42.6 74.8 76.3 66.7 46.8 80.2 42.8 68.2 66.9 81.5 33.8 50.3 56.8 58.3 70.3 62.6 62.9

TABLE I
COMPARISONS OF SPAL WITH THE STATE-OF-THE-ART IN TERMS OF CORLOC (%) ON THE VOC 2007 TRAINVAL SET. OUR BEST NUMBER IS BOLDED,

THE BEST NUMBER IN ALL METHODS IS MARKED IN RED.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
LCL [34] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
WSDDN [6] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.2
TS2C [35] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
C-WSL [36] 62.9 68.3 52.9 25.8 16.5 71.1 69.5 48.2 26 58.6 44.5 28.2 49.6 66.4 10.2 26.4 55.3 59.9 61.6 62.2 48.2
Ranking GAN [37] 52.4 63.8 41.8 35.1 22.9 72.3 61.1 44.7 13.9 48.6 32.9 46.1 50.7 66.3 18.5 27.0 49.7 56.9 64.8 58.6 46.4
SDCN [38] 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3
PAE AMCL FPN SPL
X 48.8 28.9 36.3 18.2 16.2 45.3 66.6 60.5 18.8 26.7 20.4 47.6 32.4 52.5 13.5 26.5 23.4 19.6 33.8 56.8 34.6
X X 52.4 47.6 43.6 22.8 19.6 52.9 62.2 58.4 21.6 52.2 23.6 36.8 52.3 61.8 16.8 26.2 40.7 16.9 56.3 42.2 40.3
X X X − − − − − − − − − − − − − − − − − − − − 40.3
X X X X 62.6 58.3 50.2 36.8 26.0 68.9 70.2 56.5 28.8 62.4 38.2 36.5 56.3 65.5 20.6 26.4 48.8 30.9 62.6 49.8 47.8

TABLE II
COMPARISONS OF SPAL WITH THE STATE-OF-THE-ART IN TERMS OF AP (%) ON THE VOC 2007 TEST SET. OUR BEST NUMBER IS BOLDED, THE BEST

NUMBER IN ALL METHODS IS MARKED IN RED.

images. For selecting samples from easy to hard, we design a
rank protocol through estimating the difficulty of visual search
in an image.

Accurately, we describe the difficulty of an image using
all kinds of image properties such as irrelevant clutter, their
scale and position, their class type, occlusions and other types
of noise. Without loss of generality, we use same evaluation
criteria in [41], include number of annotated objects; mean
area covered by objects normalized by the image size; number
of different classes; number of objects marked as truncated;
number of objects marked as occluded; number of objects
marked as difficult. These criteria use Kendall’s τ rank corre-
lation coefficient [42]. Kendall’s τ is a correlation measure for
ordinal data based on the discrepancy between the number of
discordant pairs and the number of concordant pairs among
two variables, divided by the total number of pairs. As an
effective measure, it can indeed be consistently measured in
image difficulty. For more details please refer to [41].

Note that ILSVRC 2012 only contains an object, But Pascal
VOC 2007 has multiple objects. So they are ranked separately.
We firstly train ILSVRC 2012 for a single object and then learn
various objects in Pascal VOC 2007. The process always is
progressive.

IV. EXPERIMENTS

A. Experiment setup

Datasets and evaluation metrics. We train the network
of SPAL on ILSVRC 2012 [39] and Pascal VOC 2007 [40]
trainval set(Note that Pascal VOC 2007 trainval set consists
of train and val splits. And ILSVRC 2012 only is chosen
for 20-classes corresponding to Pascal VOC classes). We
evaluate the localization performance on Pascal VOC 2007

dataset. For fair comparison, we apply general metric correct
localization (called CorLoc) for measuring the performance of
WSOL. Corloc calculates the percentage of the images whose
bounding boxes have at least 50% IoU with the ground truth.
Also, Average Precision(AP) in the test set is used to measure
the performance of WSOL. Finally, we also visualize some
state-of-the-arts localization performance on Pascal VOC 2007
test set.

Implementation details. We use ResNet50 [32] as our
base model. Pyramid adversarial learning erases and fuses
feature maps from {56 × 56, 28 × 28, 14 × 14, 7 × 7 }
size. We test erase threshold δ from 0.5 to 0.9(we use 0.6 for
final results). Two subnetworks CPN and FPN use the same
resnet50 architecture. For the details in Sec. III-A, We add
a GAP layer and two fully-connected layers on the top of
the convolutional layers. We randomly crop the input image
for 224 × 224. For the details in Sec. III-C, we train our
train set on progressively.we don’t use any pre-trained weights.
First, we train ranked ILSVRC 2012 trainval set from scratch,
then continue to train on ranked VOC 2007. All training
and evaluation use Tesla P40 GPU with 24GB memory. We
implement all codes using Keras and TensorFlow. The details
of codes will be available soon.

B. Comparisons with the state-of-the-arts

We compare our SPAL with several state-of-the-art methods
for weakly supervised object localization, including LCL [34],
WSDDN [6], TS2C [35], C-WSL [36], Ranking GAN [37],
SDCN [38]. For clear comparison, we use some abbreviations
for representing each step of SPAL:

• PAE: Using pyramid adversarial erase to efficiently mine
different discriminative regions
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Fig. 5. The frequencies of error modes for five cases(include average result), Without PAE and With PAE are tested on the PASCAL VOC 2007 trainval set.

• AMCL: Using adversarial multi-label classification loss
to train network.

• FPN: Using Fine Pyramid Network to refine object lo-
calization

• SPL: Using Self-Paced Learning Mechanism
Table I and Table II show all Comparisons of our SPAL with

the state-of-the-art in terms of CorLoc and AP. our best results
achieve an average of 62.9% CorLoc on VOC 2007 trainval
set. Especially, our method achieve significant improvements
than the state-of-the-arts on “bird”, “person”. Compared to the
most competitive methods [6], [34]–[38], Our average Corloc
is second only to [36] [38]. But it is worth noting that [36] [38]
all use other image-level supervision not only label. [36]
makes use of per-class object count supervision to identify
the correct high-scoring object bounding boxes from a set of
object proposals. [38] adds a segmentation branch, and uses a
dynamic collaboration loop to complement both detection and
segmentation for more accurate predictions. Different from
these, our method only uses limited label information. But
SPAL outperforms most state-of-the-art [6], [34], [37].

As shown in Table II, the average precision (AP) perfor-
mance on the VOC 2007 test set also performs promising
against the state-of-the-art methods. The huge improvement
on ”boat“, ”bottle“, ”car“, ”chair“, ”cow“, ”horse“, ”mbike“,
”person“ shows the effectiveness of SPAL. And the AP for
every category all is close to the most advanced level. The best
mAP of SDCN [38] is 48.3%, which exploits the segmentation
cues. Our mAP arrives 47.8%. But we never use other supervi-
sion information. SPAL learns to detect more complete object
boundaries throgh finite restrictions. the performance of SPAL
has approached or even exceeded most MIL methods [9]–[11].

We also evaluate contributions of each step to the whole.
in term of Corloc, The result of using PAE alone is worse.
Because a substantial amount of noise in training causes ambi-
guities for learning in a robust manner. With the use of AMCL,
the average Corloc gets a huge boost (from 42.1% to 49.9%).
FPN also should be concerned. Object proposals can be refined
to locate more precise coordinate through FPN. The results of

Table I fully illustrate this argument. Corloc increases by 8%
(from 49.9% to 58.8%). SPL has proven to be an effective
learning strategy, we achieve a large improvement from 58.8%
to 62.9% in terms of CorLoc, from 40.3% to 47.8% in terms
of AP. Overall, SPAL significantly improves the performance
of WSOL on CorLoc and AP, benefitting from progressive
pyramid adversarial Learning. However, there are still several
classes on which the performance is hardly improved as shown
in Table I and Table II, e.g.“bottle”, “person”, ”plant“ . A main
reason is the large portion of occluded and overlapped samples
for these classes, which leads to incomplete or connected
responses on the localization map. in addition, It is also
one of the main reasons for the difficulty of localization
that the object is too dense and object scale varies greatly.
There’s no doubt these problems lead to more room for further
improvements.

C. Ablation Study

We also study the influence of pyramid adversarial erase
mechanism(PAE). Specifically, we focus on five types of
localization metrics with PAE and without PAE, which in-
clude: (1) CorLoc(correct localization, whose overlap with the
grouth-truth>=50%); 2) GT in Hypo(the ground-truth com-
pletely inside the hypothesis); (3) Hypo in GT(the hypothesis
completely inside the ground-truth); (4) Low Overlap; (5)No
Overlap.

The PAE’s performance is compared to without PAE in five
cases. As shown in Fig. 5a and 5b, Different frequencies of
five cases are shown. The main errors without PAE lies in the
low overlap between the hypothesis and the ground-truth and
the hypothesis completely inside the ground-truth. Because it
always tend to focus only on the most discriminative features
to decide final classification results. It is inevitable to locate
object parts with real objects frequently. yet, The correspond-
ing result for the PAE increases obviously. Especially for
CorLoc, all classes have varying degrees of improvement. A
typical error mode for the hypothesis inside the ground-truth
decreases and ground-truth inside the hypothesis increases.



It indicate PAE can discover more integral object regions
effectively.

D. Investigation of Hyper-parameters

The influences of Hyper-parameter about PAE are shown in
Fig. 6, we keep other components same. Then we set different
erase threshold δ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and different erase
times, range from 1 ∼ 10 to test. we obtain the best Corloc
when the erase threshold δ = 0.6 and times = 4. The results
show the performance will be worse when the threshhold
is larger and too many erase time will lead to CorLoc to
plummet. We can also conclude too small threshold may
bring background noises and too many erase times may erase
important details. So it is imperative to choose the well-
designed threshold and times in PAE.
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Fig. 6. The curves of the average CorLoc varying with different erase
threshold and times on VOC 2007 trainval set.

V. CONCLUSION

In this paper, we proposed SPAL, a novel self-paced pyra-
mid adversarial learning method to improve the localization
accuracy for WSOL. Our method incorporates progressive
adversarial learning into two subnetworks, including Coarse
Pyramid Network(CPN) and Fine Pyramid Network (FPN).
Combined with Self-Paced Learning Mechanism, They can
progressively improve the localization accuracy. In CPN, pyra-
mid adversarial erase can consistently mine different object
parts and discover integral but coarse object regions. Simul-
taneously, adversarial multi-label classification loss helps the
training more robust. These steps can generate coarse initial
object proposals. In FPN, we develop a mask region of interest
(MRoI) layer to process a set of initial proposals. MRoI
can generate a collection of mask-out images that reserve
proposal’s information but hide others. Finally, every proposal
can be refined more precise object boundaries. Experiments
conducted on PASCAL VOC benchmarks demonstrate the
effectiveness of SPAL.
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