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Abstract—Video object segmentation (VOS) is a significant yet
challenging task in computer vision. In VOS, two challenging
problems, including occlusions and distractions, are needed to be
handled especially in multi-object videos. However, most existing
methods have difficulty in efficiently tackling these two factors.
To this end, a new semi-supervised VOS model, called Distance-
Guided Mask Propagation Model (DGMPM), is proposed in this
paper. Specifically, a novel embedding distance module, which
is utilized to generate a soft cue for handling occlusions, is
implemented by calculating distance difference between target
features and the centers of foreground/background features. This
non-parametric module that is based on global contrast between
the target and reference features to detect object regions even if
occlusions still exist, is less sensitive to the feature scale. The prior
knowledge of the previous frame is applied as spatial guidance
in the decoder to reduce the effect of distractions. In addition,
spatial attention blocks are designed to strengthen the network
to focus on the target object and rectify the prediction results.
Extensive experiments demonstrate that the proposed DGMPM
achieves competitive performance on accuracy and runtime in
comparison with state-of-the-art methods.

Index Terms—Video Object Segmentation, Spatial Guidance,
Attention Mechanism, Fully Convolutional Neural Networks

I. INTRODUCTION

Video object segmentation (VOS) aims to segment the
specified object regions from the background throughout a
video sequence. It is a fundamental task in computer vision,
which can serve as an essential step for object tracking [1] and
action detection [2] so as to support other video applications,
such as video processing and editing [3], [4]. The task of VOS
can be mainly divided into two categories: semi-supervised
VOS [5], [6] and unsupervised VOS [7]. In this work, we
mainly focus on the semi-supervised VOS, in which only
the first frame is annotated in a test video. Semi-supervised
VOS is a challenging task due to the frequent occurrence in
videos of the occlusions, background distractions, appearances
changes, etc. In particular, the occlusions and background
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Fig. 1. Examples of video frames with occlusions and distractions. (a) and
(c) exhibit the example of single-object and multi-object segmentation, while
yellow square boxes are shown in (b). It can be seen that objects are more
likely to be occluded in multi-object videos, not only by background but also
by neighboring objects. (d) displays another frame in multi-object videos, and
exists distractions from other similar objects, for example, multiple similar fish
appear in the same frame.

distractions are critically needed to be handled in multi-object
videos. Some examples of video frames with occlusions and
distractions are shown in Fig. 1.

As other tasks in computer vision, many methods based
on deep learning [1], [5], [6], [8]–[21] have been developed
to solve the semi-supervised VOS. In existing deep learning-
based VOS methods, there exist two advanced frameworks
including mask propagation-based framework and matching-
based framework. The former one regards the VOS as a guided
instance segmentation task that takes the previous frame’s
mask as the spatial guidance for segmenting the specific ob-
ject [6], [11]–[16], [19], [20]. The latter one resolves the semi-
supervised VOS by applying the deep embedding learning
and pixel-level matching between the first frame and target
frame [17], [18]. These two frameworks are described below.

1) Mask Propagation-based framework: A glimpse of the
mask propagation-based framework is shown in Fig. 2(a). Due
to temporal coherence, the mask propagated from the previous
frame can provide rough spatial guidance for the segmentation
of the current frame. With the guidance of the previous frame’s
mask, networks are more likely to detect the target object
regions, which is favorable when encountering distractions
from other objects or background. However, the input image
and previous frame’s mask are not aligned on account of the
inaccurate mask and discrepancies between sequential frames
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Fig. 2. Comparison with existing frameworks. (a) mask propagation-based
framework, (b) matching-based framework and (c) the proposed DGMPM.

(e.g. position variations). Consequently, these unreliable masks
may result in drifts or even disappearances when the target
object is occluded. Many existing methods related to mask
propagation [6], [13]–[15] adopt online learning to overcome
occlusions. Online learning learns about the appearance of
target objects by iterative optimization on the annotated first
frame. It is clear that the high time consumption in online
learning inevitably hinders the practical application of the
VOS.

2) Matching-based framework: A draft of the matching-
based framework is shown in Fig. 2(b). The main idea of
matching-based framework maps the reference and target
frame to metric space via a Siamese network, and classify
every pixel in the target frame by pixel-wise matching between
two frames. The matching-based framework can deal with
position variations and occlusions, since it can perform global
pixel-wise matching between the target frame and accurately
annotated frame. Unfortunately, it may lead to mismatching
thereby being difficult to distinguish similar objects, due to
the fact that the embedding vectors extracted by deep networks
may be similar if objects have the same semantics and appear-
ances. Moreover, owing to the high computational complexity
of pixel-wise matching and segmentation network [22], the
efficiency of matching-based methods can be improved further.

To address occlusions and distractions efficiently, in this
paper, a new semi-supervised VOS model is proposed,
called Distance-Guided Mask Propagation Model (DGMPM).
The intention of DGMPM is inspired by both the mask
propagation-based framework and the matching-based frame-
work. The sketch of the proposed DGMPM is depicted in
Fig. 2(c). Different from recently-developed matching-based
methods that adopt pixel-wise matching, DGMPM employs a
novel embedding distance module. The strategy of the embed-
ding distance module is to calculate the distance difference be-
tween target features and the centers of foreground/background
features. This embedding distance module has less sensitivity
to the feature scale, and meanwhile provides a soft cue for

the latter decoder to restrain the effect of occlusions. Inspired
by the mask propagation-based framework, DGMPM also
uses the previous frame’s mask as the spatial guidance to
cope with distractions. Different from [6], [15], the previous
frame’s mask in DGMPM is downsampled and then merged
into the decoder to mitigate the effect of the unreliable
mask. Additionally, spatial attention blocks are designed in the
decoder of DGMPM to extract the high-level semantic features
for guiding the screening of low-level details stage-by-stage,
which strengthens the network to focus on the target regions
and rectify the prediction mask. The proposed DGMPM
works efficiently at test time without online learning and
time-consuming forward propagation process. Experiments on
multiple benchmark datasets show that the proposed DGMPM
has competitive accuracy and runtime in comparison with
state-of-the-art methods. The contributions of this work are
mainly threefold:

• A new Distance-Guided Mask Propagation Model is pro-
posed for efficient semi-supervised VOS with competitive
accuracy and runtime.

• By calculating the distance difference between target fea-
tures and the centers of foreground/background features, a
novel embedding distance module is realized to generate
soft cue to mitigate the effect of occlusions.

• Spatial attention blocks are introduced to focus on the
target regions and rectify prediction results.

II. RELATED WORK

A. Semi-supervised Video Object Segmentation

In this paper, we focus on the semi-supervised VOS aiming
to segment the specified object regions given from the first an-
notated frame. In recently-developed works of semi-supervised
VOS, mask propagation-based and matching-based methods
are relevant to this work.

Mask propagation-based methods [6], [11]–[16], [19], [20],
[23] regard the video object segmentation as a guided in-
stance segmentation. MSK [6] guides the network towards
the target object by feeding in the mask of the previous
frame and adopting online learning. Many works in DAVIS
competition, such as [14], [15], also propagate the mask from
the previous frame and achieve outstanding performance. The
above-mentioned methods rely on online learning, which is
a time-consuming training strategy that also used in other
CNNs-based methods [5], [8], [10]. To promote speed perfor-
mance, many mask propagation-based methods without online
learning [11], [12], [16], [19], [20] are developed recently.
OSMN [16] extracts information from the annotated first frame
and produce a list of parameters, which manipulate layer-wise
feature in the segmentation network. RVOS [11] incorporates
recurrence on spatial and temporal domains, and feeds the
mask of previous frame to the recurrent network for semi-
supervised VOS. These offline methods have a good trade-
off between speed and accuracy, but stills, have suboptimal
performance due to the unreliable prediction mask, when it
exists occlusions problems. In this work, mask propagation
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Fig. 3. The architecture of the proposed DGMPM. Feature extractor extracts the target feature and reference one with the shape of w× h× 64 (w, h is the
width and height of the input frame). Embedding distance module generates embedding distance maps with the shape of w× h× 1. The final convolutional
layers are applied to resize the feature to the output shape of w × h× 2. Best viewed in color.

strategy is also applied to reduce the effect of distractions.
However, we design a module with global contrast between
reference frame and target frame to tackle occlusions rather
than relying on time-consuming online learning.

Matching-based methods [17], [18], [21] calculate pixel-
level matching between the features of the reference and target
frame in videos. PLM [21] consists of encoding and decoding
models and conducts pixel-level object matching to detect the
target object. PML [17] employs the k nearest neighbors to
classify the target pixels in learned feature space. Due to the
point-to-point correspondence strategy, these two methods are
subject to distractions. VideoMatch [18] adopts soft matching
upon the averaged top K similarity score maps to produce
smooth predictions, and applies an outlier removal process to
reduce the effect of distractions. These methods can tackle
occlusions due to global pixel-wise matching. Owing to the
high computational complexity of pixel-wise matching and
segmentation network [22], [24], [25], the efficiency of these
methods can be improved further. In this paper, we design a
new embedding distance module that efficiently handles occlu-
sions without time-consuming forward propagation process.

B. Spatial attention

Recently, attention mechanism is widely used in natural
language processing and computer vision. In video captioning,
Chen et al. [26] adopt channel attention and spatial attention
to provide what and where the attention is. In semi-supervised

VOS, Xu et al. [10] also design an attention module to merge
features and focus on object regions. Li et al. [15] obtain the
attention map by applying a convolutional layer and a softmax
layer to the feature, which aims to reduce the distractions from
the background and become more robust. Inspired by Yu et
al. [27], in this paper, spatial attention blocks are employed to
utilize high-level features to guide the screening of low-level
details, which strengthens the network to focus on the target
regions and rectify prediction results.

III. PROPOSED METHOD

In this work, an efficient Distance-Guided Mask Propaga-
tion Model (DGMPM) is introduced for semi-supervised VOS.
The architecture is shown in Fig. 3. It is composed of three
components, including feature extractor, embedding distance
module and feature integration network. In the following
sections, every component will be discussed in detail.

A. Feature extractor

Feature extractor is developed to map the input frames to
metric space and provides multi-level features. Rather than
utilizing semantic segmentation network [22], [24], [25] as
previous works [6], [18] have done, for the sake of the effi-
ciency, we devise a light-weight one for our method. Feature
extractor is a pair of Siamese network that contains a reference
branch and a target branch. In each branch, an encoder and five
convolutional layers map the input frame into a 64 channels
feature with the same resolution as the input. The encoder



is a trained ResNet [28] in which the last pooling layer and
fully connected layer are removed. Convolutional layers are
utilized to extract multi-level features and unify their numbers
of channels. These convolutional layers with kernel size of
3×3 extract features from the side outputs of conv1, res2, res3,
res4, res5 in ResNet. Then the outputs of these convolutional
layers are up-sampled by bilinear interpolation and merged by
element-wise addition. In this way, features with multi-level
representation are generated by feature extractor, while each
pixel in the input frame corresponds to an embedding vector
in the feature.

B. Embedding distance module

In semi-supervised VOS, the first frame’s mask in the test
video is provided to determine the target objects. It provides an
important cue of visual appearance. To exploit the annotated
first frame efficiently, a novel embedding distance module is
implemented in this work. The module produces embedding
distance maps with the global view of the reference feature,
which can provide spatial guidance for the latter decoder and
is helpful to tackle occlusions.

The details of the embedding distance module are shown
in Fig. 3. Let H ∈ Rw×h×c denote the reference feature, and
T ∈ Rw×h×c denotes the target feature. Embedding vectors
tn ∈ R1×1×c and hn ∈ R1×1×c are obtained from T and
H respectively, while the index n denotes the position of the
pixel. The label of a pixel at position n in reference frame
is mn ∈M , where M ∈ {0, 1}w×h represents the reference
frame’s mask. Then, the foreground feature and background
feature at position n (hn,f and hn,b) are individually defined
as

hn,f = mnhn, (1)

hn,b = |1−mn|hn. (2)

Let hcn,f denotes the c-th channel of hn,f , and hcn,b denotes
the c-th channel of hn,b. Then, the foreground anchor and
background anchor are defined by

acf =

∑
n h

c
n,f∑

nmn
(3)

acb =

∑
n h

c
n,b∑

n |1−mn|
(4)

where acf represents the c-th channel of the foreground anchor
af ∈ R1×1×c, acb denotes the c-th channel of the background
anchor ab ∈ R1×1×c. In this way, the foreground and
background anchor are yielded by calculating the average of
foreground and background vectors, which can be cast as
the cluster centers of the foreground and background. The
embedding distance map is denoted as E ∈ Rw×h×1 and
en ∈ E in position n. The embedding distance map is
calculated by

en = Sigmoid (Dis (tn,ab)− Dis (tn,af )) (5)

where Dis(·, ·) represents Euclidean distance, and the sigmoid
activation function normalizes the range of en to [0,1]. In
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Fig. 4. Some examples of embedding distance maps and spatial attention
maps. The spatial attention maps generated by the multiple spatial attention
blocks in Fig. 3, are shown in columns 3-5 from shallow to deep layers
respectively. Spatial attention maps have been resized for a better view.

this way, the pixel whose embedding vector is near to the
foreground anchor and far from the background anchor will
be highlighted.

The embedding distance module has two advantages: a)
Embedding distance module is based on the global contrast be-
tween target and reference features. The anchors are generated
by feature averaging with a global view of reference frame.
Each pixel in the embedding distance map is determined by
the distance difference between the embedding vector and the
anchors. Thus, the embedding distance module is based on
global contrast between target and reference features, which
is advantageous to detect and highlight the object regions in
the target frame even though the target objects are partially
occluded or reappears after occlusions. b) The embedding
distance module is non-parametric and simple. It conducts the
distance calculation between the target feature and two anchors
in metric space. Therefore, this module has low computation
costs and is less sensitive to the feature scale.

Several examples of embedding distance maps are visu-
alized in the second column of Fig. 4. It can be observed
that the foreground regions are highlighted in these feature
maps. In practice, the embedding distance maps generated
by embedding distance module provide strong guidance for
the latter decoder to handle occlusions. The effectiveness of
embedding distance module will be discussed in Section IV-D.
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C. Feature integration network

There are a variety of distractions from other objects or
background in videos, which have similar semantics or ap-
pearances with the target object. The regions of these objects
or background may be highlighted in the embedding distance
map. As illustrated in the final row of Fig. 4, not only the
regions of the target car but also the regions of another red
car are highlighted simultaneously. Hence, it is incapable
of distinguishing distractors only under the guidance of the
embedding distance map. In contrast to embedding distance
map, the previous frame’s mask can provide spatial guidance,
which leads the network to segment the target regions and
helps to reduce the effect of distractions. Therefore, we devise
a feature integration network to merge the multi-level features
with the guidance of both the previous frame’s mask and
the embedding distance map. This decoder network takes
advantage of two guiding maps and extracts discriminative
features for the specific object to generate final segmentation.

1) The architecture of feature integration network: The
structure of the feature integration network is inspired by a
semantic segmentation network DFN [27]. The details are
shown in Fig. 3. There are two main differences between the
feature integration network and the smooth network of DFN.
Firstly, spatial attention blocks are applied in our network
rather than the channel attention. The channel attention blocks
are introduced in DFN to decrease intra-class inconsistency
for semantic segmentation. However, VOS is an instance
segmentation task, in which there exist multiple instances with
the same semantics. Thus, channel attention is not perfectly
appropriate for VOS. In this work, spatial attention blocks are
developed to focus on the target regions and rectify prediction
results. Secondly, two guiding maps, which are the embedding
distance map and the previous frame’s mask, are concatenated
with side outputs of ResNet to extract multi-level features for
the specific object. These two feature maps are down-sampled
to mitigate the effect of inaccurate guidance. In addition to
the two main differences, residual blocks [28] with output
channels of 128 are employed to extract features for the
specific object and merge multi-level features. An up-sampling
layer and two convolutional layers are utilized to expand the
resolution and decrease the channels of the outputs.

2) Spatial attention block: In the feature integration net-
work, spatial attention blocks are developed to change the
weights of multi-layer features in space. It utilizes high-level
semantic features to guide the screening of shallow details
stage-by-stage. The structure of a spatial attention block is
shown in Fig. 5. The features in shallow and deep layers are
defined as Fl and Fd respectively. The spatial attention map
α is generated by

α = Sigmoid (f (Cat (Up (Fd) ,Fl))) (6)

where Up(·) is the bilinear interpolation, Cat(·) is a concatena-
tion operation, and the sigmoid activation function transforms
the feature into a probability map. The f(·) is formulated as

f(x) =W2 ∗ σ (W1 ∗ x) (7)

where σ(·) indicates the ReLU activation function, * denotes
the convolution operation, and W1, W2 denote the convolu-
tions with the weights of 3× 3× 32 and 3× 3× 1. In this
way, a spatial attention map is extracted from the deep layer
feature Fd and shallow layer feature Fl. Then, the spatial
attention map is regarded as additional spatial weights for Fl,
and the output of spatial attention block Fo is generated by

Fo = Cat (Up (Fd) ,α⊗ Fl) (8)

where ⊗ denotes the element-wise product.
The spatial attention block applies an attention map on the

feature, which represents the spatial feature selection. With
this design, the network is strengthened to focus on the target
regions. As shown in Fig. 4, object regions are highlighted
in these attention maps. Moreover, note that in Fig. 4, the
spatial attention block in shallow layer pays attention to the
object boundary, while the block in deep layer focuses on
the overall regions. It demonstrates that the spatial attention
blocks can fully explore the feature of each layer to rectify the
segmentation. The effectiveness of the spatial attention blocks
will be discussed in Section IV-D.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

To validate the effectiveness of the proposed model, we
validate on three widely-used benchmark sets in VOS, in-
cluding DAVIS2017 [29], DAVIS [30] and SegTracks v2 [31].
DAVIS2017 is a multi-object dataset that has 60 sequences and
4219 annotated frames in the training set, and 30 sequences
and 2023 annotated frames in the valuation set. DAVIS, a
subset of DAVIS2017, is a single-object dataset with 30
training videos and 20 validation videos. SegTracks v2 consists
of 14 videos with 976 annotated frames.

The evaluation metrics used in this paper for DAVIS2017
and DAVIS are defined in [30], including the region similarity
J and contour accuracy F . The region similarity J is the mean
intersection over union between the prediction mask and the
ground truth. The contour accuracy F is calculated by the F-
measure between the contour points of the ground truth and
prediction mask. The average of the mean of J and F (J&F )
is also used to present the overall performance. In terms of the
SegTrack v2 dataset, the mean intersection-over-union (mIOU)
is adopted for performance evaluation.

B. Implement details

1) Training: Considering that the main training set
DAVIS2017 [29] only has a limited amount of sequences and
object classes, the proposed DGMPM is trained with three
stages to avoid the over-fitting problem. In the first stage, we
pre-train on MS COCO [32], a large semantic segmentation
dataset, to avoid the over-fitting problem. To simulate training
samples from this static image dataset, by following the
same practice in [6], the previous frame’s masks are syn-
thesized by using multiple augmentation schemes, including
affine transformation, random scaling and random shifting,
whereas the reference frames are generated by employing



TABLE I
THE QUANTITATIVE EVALUATIONS ON THE VALIDATION SET OF

DAVIS2017. THE OL DENOTES ONLINE LEARNING. J&F IS THE
AVERAGE OF THE MEAN OF J AND F .

Methods OL DAVIS2017
J F J&F

OnAVOS [8]
√

61.6 69.1 65.4
STCNN [10]

√
58.7 64.6 61.7

OSVOS [5]
√

55.1 62.1 58.6
MSK [6]

√
51.2 57.3 54.3

VideoMatch [18] 56.5 68.2 62.4
RVOS [11] 57.6 63.6 60.6
FAVOS [12] 54.6 61.8 58.2

SiamMask [1] 54.3 58.5 56.4
OSMN [16] 52.5 57.1 54.8

DGMPM 61.6 67.8 64.7

lucid data dreaming [14]. In the second stage, we further fine-
tune the model on YouTube VOS [33], a large benchmark
containing 3471 videos, 65 categories and 5945 objects, con-
sequently improving the generalization performance. In the
third stage, we fine-tune our DGMPM on the main training
set DAVIS2017 [29]. During the second and third stages, we
randomly select two frames as the target and reference frames,
and the mask of a frame near the target frame as the previous
frame’s mask (the maximum interval is 3 in our experiment).

The proposed DGMPM is trained using Adam optimizer
to minimize the cross-entropy loss. The learning rates are
set to 10−5, 5 × 10−6, 10−6 in three stages respectively. All
inputs are scaled into 800 × 400 pixels, and then apply data
augmentation containing random scaling, random flipping,
random rotation and normalization. Erosion is also applied
to the previous frame’s mask to imitate prediction masks with
coarse boundary. All experiments in this section are trained
on a single NVIDIA Titan XP.

2) Inference: We set the annotated first frame as the
reference and predict the masks of subsequent frames in a
video. For multi-object videos, we predict the masks frame-
by-frame and run each object independently in the embedding
distance module and feature integration network. The label of
the largest prediction is assigned to the final result.

C. Performance comparison and analysis

The performance of DGMPM is evaluated on the validation
sets of DAVIS2017 [29], DAVIS [30] and SegTrack v2 [31],
and compared with multiple recently-developed CNNs-based
offline methods, including VideoMatch [18], SiamMask [1],
RVOS [11], FAVOS [12], OSMN [16], PML [17], CTN [19],
VPN [20] and PLM [21]. The performance resulted from
multiple online learning methods are also shown including
OSVOS [5], STCNN [10], MSK [6], OnAVOS [8] and MoNet
[9]. The performance comparison among various methods on
DAVIS2017 [29], DAVIS [30] and SegTrack v2 [31] are shown
on Table I, Table II and Table III respectively. Note that the
performance of previous works are available by corresponding
published papers and the DAVIS challenge website.
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TABLE II
THE QUANTITATIVE EVALUATIONS ON THE VALIDATION SET OF DAVIS.

THE SPEED SHOWS THE AVERAGE TEST TIME PER FRAME.

Methods OL Speed(s) DAVIS
J F J&F

OnAVOS [8]
√

13 86.1 84.9 85.5
MoNet [9]

√
14.1 84.7 84.8 84.8

STCNN [10]
√

3.9 83.8 83.8 83.8
OSVOS [5]

√
10 79.8 80.6 80.2

MSK [6]
√

12 79.7 75.4 77.6
SFL [13]

√
7.9 74.8 74.5 74.7

VideoMatch [18] 0.32 81.0 80.8 80.9
PML [17] 0.28 75.5 79.3 77.4

FAVOS [12] 0.6 77.9 76.0 77.0
OSMN [16] 0.14 74.0 72.9 73.5
CTN [19] 30 73.5 69.3 71.4
VPN [20] 0.3 70.0 62.0 66.0
PLM [21] 0.3 70.0 62.0 66.0
DGMPM 0.071 79.0 78.7 78.9

TABLE III
THE QUANTITATIVE EVALUATIONS ON THE SEGTRACK V2. THE METRIC

MIOU IS THE MEAN INTERSECTION OVER UNION BETWEEN THE
PREDICTION AND GROUND TRUTH.

Methods OSVOS [5] MSK [6] MoNet [9] DGMPM
mIOU 65.4 70.3 72.4 73.5

Fig. 7. The qualitative results of DGMPM on the DAVIS2017 validation set.
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The performance of DGMPM and multiple online and
offline methods on the DAVIS2017 validation set are shown
in Table I. One can see that DGMPM method achieves the
higher J , F and J&F among most of the online and offline
methods under comparison, and has competitive J and J&F
in comparison with the OnAVOS [8] and comparable F to
VideoMatch [18]. Moreover, from the accuracy and runtime
comparison shown in Fig. 6, it can be observed that the
runtime of DGMPM is significantly lower than that of all the
online learning methods. This is due to the efficient inference
without online learning and the low computational cost in
the forward propagation process in our proposed DGMPM.
Besides, the qualitative results of DGMPM on DAVIS2017
are shown in Fig. 7. It can be seen that DGMPM is capable
of efficiently dealing with the problems of occlusions and dis-
tractions, and achieve desirable performance results, especially
in the case of the multi-object VOS task.

Table II shows the performance of DGMPM and multiple
online and offline learning methods on the DAVIS dataset.
Likewise, one can see that the performance of J , F and
J&F of DGMPM is better or competitive in comparison with
multiple online and offline methods. Although the performance
results of DGMPM are lower than several online methods,
DGMPM under comparison achieves a faster speed(0.071
seconds per frame). The proposed DGMPM performs a bit
lower than VideoMatch [18] that adopts additional online
updating and outlier removal to achieve higher performance.
Online updating mechanism can be complementary to our
method and need further exploration in our future work.

To evaluate the generalization performance, a cross-dataset
evaluation is performed among the proposed DGMPM and
three methods including OSVOS [5], MSK [6], and MoNet [9].
Specifically, we evaluate it on a SegTrack V2 dataset, a com-
pletely unseen dataset. The corresponding results are shown
in Table III, it can be seen that the best result (i.e., 73.5%
mIOU) yielded by DGMPM is consistently higher than that
of OSVOS [5], MSK [6], and MoNet [9]. This study shows
that DGMPM has better generalization performance.

D. Ablation study

To illustrate the effectiveness of the individual module in our
proposed DGMPM, the ablation experiments are conducted on
the DAVIS2017 validation set. The models of ablation experi-

TABLE IV
ABLATION STUDY. -EDM, -PM AND -SAB INDIVIDUALLY DENOTE

EMBEDDING DISTANCE MODULE, PREVIOUS FRAME’S MASK AND SPATIAL
ATTENTION BLOCKS ARE REMOVED FROM DGMPM, WHEREAS

-SAB+CAB DENOTES THE SPATIAL ATTENTION BLOCKS IN DGMPM ARE
REPLACED BY THE CHANNEL ATTENTION BLOCKS. THE FINAL LINE

DENOTES THE J&F PERFORMANCE CHANGES IN THE ABLATION STUDY.

Metric Proposed -EDM -PM -SAB -SAB+CAB
J 59.1 50.6 44.2 55.0 57.2
F 65.1 53.2 51.5 60.3 62.7

J&F 62.1 51.9 47.9 57.7 60.0
4 - -10.2 -14.2 -4.4 -2.1

ments are trained on the MS COCO [32] and DAVIS2017 [29],
and the corresponding results are shown in Table IV.

From the results, note that the performance degradation of
DGMPM is incurred after disabling the embedding distance
module (-EDM), previous frame’s mask (-PM). The J&F
decrement of 10.2 and 14.2 is incurred after disabling the
embedding distance module and previous frame’s mask re-
spectively. This indicates that the embedding distance map
generated by the embedding distance module provides a strong
cue for DGMPM to handle the occlusions, and the temporal
information from the previous frame’s mask can mitigate the
effect of distractions. Moreover, the ablation experiments with
respect to spatial attention blocks are also conducted in this
work. Besides studying the performance after disabling the
spatial attention blocks (-SAB) in DGMPM, we also explore
the performance after replacing the spatial attention blocks by
channel attention blocks (-SAB+CAB). As shown in Table IV,
the J&F decrement of 4.4 and 2.1 are incurred in the model
-SAB and -SAB+CAB respectively. This result demonstrates
that spatial attention blocks can strengthen the network to
focus on the target regions and rectify the prediction results.

In addition to the quantitative results in Table IV, Fig. 8 also
visualize the results among DGMPM and above-mentioned
ablation schemes. As shown in Fig. 8, similar conclusions
can be demonstrated from the qualitative results. It shows that
DGMPM embedded with embedding distance module and the
previous frame’s mask can effectively mitigate the effect of
occlusions and distractions, while spatial attention blocks in
DGMPM provide better attention on target regions and helps
for more accurate predictions.



V. CONCLUSION

In this paper, a new Distance-Guided Mask Propagation
Model (DGMPM) is proposed for semi-supervised video ob-
ject segmentation to efficiently tackle occlusions and distrac-
tions. An embedding distance module with global contrast
between the target and reference features, has less sensitive
to the feature scale and is helpful to mitigate the effect
of occlusions. The prior knowledge of the previous frame
provides spatial guidance to reduce the effect of distractions.
In addition, spatial attention blocks strengthen the network
to focus on target regions and rectify prediction results.
Extensive experiments demonstrate that DGMPM is capable
of efficiently dealing with occlusions and distractions, as well
as achieves competitive accuracy and runtime in comparison
with state-of-the-art methods.
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