Lightweight Action Recognition with
Sequence-Specific Global Context

I°* Yao Chen, Hefei Ling, Jiazhong Chen, Lei Wu, Yuxuan Shi
School of Computer Science and Technology
Huazhong University of Science and Technology
Wuhan, China
{cy423, lhefei, jzchen, leiwu, shiyx}@hust.edu.cn

Abstract—With the emergence of a large number of video
resources, video action recognition is attracting much atten-
tion. Recently, realizing the outstanding performance of three-
dimensional (3D) convolutional neural networks (CNNs), many
works have began to apply them for action recognition and
obtained satisfactory results. However, high computational over-
heads greatly reduce the efficiency of 3D CNNs. To make up for
the shortcoming, in this paper, we first propose two innovations
— the Xwise Separable Convolution and the SS block, both
of which are lightweight. Then we build an efficient 3D CNN
called the XwiseNet based on our innovations. Our work aims
to make 3D CNNs lightweight without reducing the recognition
accuracy. The key idea of the Xwise Separable Convolution is
extremely decoupling the 3D convolution in channel, spatial,
and temporal dimensions. The SS block can capture temporal
long-range dependencies via aggregating sequence-specific global
context to each sequence feature. Experiments have verified that
our XwiseNet achieves competitive performance with the least
computational overhead.

Index Terms—Action recognition, Three-dimensional convo-
lutional neural networks, Lightweight, Sequence-specific global
context

I. INTRODUCTION

Action recognition is attracting more and more attention in
the field of computer vision. Due to the spatiotemporal char-
acteristics of videos, spatiotemporal convolutions which we
call three-dimensional (3D) convolutions do better than spatial
convolutions, and the latter is called two-dimensional (2D)
convolutions. C3D is the first model to use 3D convolutions
in action recognition [16], which is called 3D convolutional
neural network (CNN). Later many variants emerge which
dramatically improve the accuracy of action recognition.

3D CNNs are outstanding in action recognition, but with
huge computational overheads. 3D CNNs have many parame-
ters, which leads to the need for more computing resources and
training data for optimizing. For example, a 2D convolution of
size 3 has 9 parameters (we assume that the number of input
channels is 1), while a 3D convolution of the same size has 27
parameters. When using a convolution of size 3 to convolve an
input of size S, the FLOPs (floating-point operations) of 2D
convolution are S2 x 32, while for 3D convolution are S x 33.
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It can be intuitively seen that 3D CNNs have much more
parameters and computational requirements when the input
and convolution are the same size compared with 2D CNNs.
Now important issues follow that we need lots of computing
resources and samples to train 3D CNNs. It is an inevitable
trend that 3D CNNs are of strong demand for lightweight
design. Although decomposed 3D convolutions [17] [19] [23],
group convolutions [2], and dual-channel architectures [4] are
proposed to construct lightweight 3D CNNs, most of them
still remains inefficient in resource-hungry action recognition
scenarios.

Let’s turn attention to lightweight 2D CNNs where Depth-
wise Separable Convolution plays an important role in state-of-
the-art lightweight image classification networks [7]. Depth-
wise Separable Convolution contains the depthwise convolu-
tion and the pointwise convolution. Different from standard
convolution which both filters and combines inputs into a new
series of outputs in one step, in Depthwise Separable Convolu-
tion, the depthwise convolution first filters each input channel
independently, then the pointwise convolution combines the
output of the depthwise convolution by filtering with a 1 x 1
convolution. Essentially, Depthwise Separable Convolution is
the factorized convolution. There is a hypothesis behind 2D
Depthwise Separable Convolution: channel correlation and
spatial correlation can be decoupled. We all know that, in 2D
features, each channel represents a class of spatial features.
Promoting to 3D features, each channel represents a class of
spatiotemporal features. So the idea of Depthwise Separable
Convolution can be naturally adapted to 3D convolutions.
By adding a temporal dimension, we build a 3D Depthwise
Separable Convolution in Fig. 4(a), whose main difference
with 2D structure reflects in the convolution dimension — 3D
convolution has extra temporal dimension, i.e., 3D convolution
extracts spatiotemporal features at the same time. Inspired
by Depthwise Separable Convolution’s idea of division, can
we continue to divide the 3D convolution into a 2D spatial
convolution and a 1D temporal convolution? What can we
reap from such a decomposition? The first advantage is
that 3D CNNs can load the currently trained 2D CNNs’
parameters as the initial value of spatial feature extraction,
which is equal to providing 3D convolution with a mature
prior knowledge. The second potential benefit is from the
additional nonlinear mapping between 2D and 1D convolution,



Input |

l

1x1x1 ‘
Conv

Input
Channels

3D Depthwise l BN RELU
Spatial Convolution
(3D DSConv)
BN RELU Xwise
Separable
Convolution

BN RELU
Concat

®

Channel Shuffle Unit

Output ‘

m‘ 3D Pointwise

Convolution
(3D PConv)
Output

|

|

|

|

|

|

|

|

|

|

|

|

|

3D Depthwise |
Tempori\ Convolution }
(3D DTConv) |
BN RELU |
|

Channels }

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

(a) Xwise Separable Convolution (b)Same Unit

Input

] Ix1x1 |

- =

Xwise
Separable
Convolution

Conv_1
MaxPool
(7)3’)(3' (3x3x3)
—
Down- Stage
sample 1
Unit
—
Down- Stage
sample 2
Unit
—
Down- Stage
sample 3
Unit
Down- Stage
sample 4
Unit
Conv_2 R Conv_3
(1x1x1, (1x1x1,
2048 class_num)

(d) XwiseNet Architecture

BN RELU

BN RELU

@

Channel Shuffle Unit

Output

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
[
|
[
[
[
|
|
|
|

(c)Downsample Unit

Fig. 1. Xwise Separable Convolution, Same Unit, Downsample Unit, and XwiseNet architecture. 3D Depthwise Spatial Convolution and 3D Depthwise
Temporal Convolution in the Xwise Separable Convolution mean 3D depthwise convolution that extracts spatial and temporal features. The dimension of
convolutions is represented as {7T" X S X S} on behalf of the temporal and spatial domain. Same Unit and Downsample Unit are based on the Xwise Separable
Convolution. In (d), (* Unit X Num) means the superposition of * Unit. The dimension of convolutions is represented as {7 x S x S, C} on behalf of

the temporal, spatial and channel domain.
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Fig. 2. SS Block. (C,T, H,W) means (channel, frames, height, width), r in Feature Transform is set to 8.

which significantly doubles the nonlinear function with fewer
parameters, and allows the model to represent more complex
mappings compared with the traditional 3D convolution. The
third benefit shown in Fig. 6 is that decomposition facilitates
optimization, resulting in lower training losses and test losses
in the experiment. In other words, we find that the decomposed
3D convolution which independently extracts channel, spatial
and temporal features is easier to optimize than the traditional
3D convolution with joint optimization characteristic.

Based on the above mentioned, we propose the Xwise
Separable Convolution as shown in Fig. 1(a), which contains
the idea of extremely splitting three dimensions. Experiments
have shown that the Xwise Separable Convolution achieves
higher accuracy on the Part-Kinetics benchmark [1] while
more computationally efficient compared with traditional 3D
convolution.

Another area of concern is the video action recognition
has a high requirement for the overall understanding of the
scene. However, convolutional kernels can only handle local
features due to their physical design, and the global features
modeling relies on the superposition of convolutions. So only
the upper layers of CNNs can get the global understanding,

which would result in ineffective modeling of global context.
Besides, distinguishing discriminative frames is also a key
point in action recognition, which needs models to focus
on the temporal correlation. To address the above issue, we
design a lightweight block as shown in Fig. 2 to capture
sequence-specific global context which we call the SS block.
The SS Block can be plugged into each layer to handle global
features without too much computational burden thanks to its
lightweight characteristic. Now we will prove the effectiveness
of the SS block based on similarity. We denote T; as the
feature vector for frame i, the average cosine similarity can
be expressed as

N N

1
avg_cos_sim = N2 Z Z cos(T;, T}) (D
=1 j=1

where N is the number of input frames. The result are shown
in Table I where ’input’, ’SS context’ and ’output’ mean the
input, the sequence-specific global context and the output of
the SS block. The cosine similarity of the output frames is
lower than the input, which indicates that the output can be
discriminated across different frames more effectively.



TABLE I
AVERAGE COSINE SIMILARITY
input SS context output
0.2826 0.2499 0.2102

The Xwise Separable Convolution and the SS block lead
to the design of a new 3D CNN named the XwiseNet.
As shown in Table IV and Table V, on the most suitable
dataset we can reach, the XwiseNet achieves the competitive
accuracy with the lowest computation cost, which shows that
our model can efficiently identify action instances. It is worth
mentioning that our SS block outperforms other mainstream
global context module, e.g. CBAM [34], SE block [28] and
GC block [36], showing that the SS block and the Xwise
Separable Convolution are complementary effectively in action
recognition.

II. RELATED WORK
A. Action recognition

At present, one of the most effective ways of action recog-
nition is two-stream CNNs. Simonyan [15] first proposed the
two-stream method whose input is RGB frames and optical
flow. In addition to the above input, Wang [18] also tried other
inputs — RGB difference and warped optical flow, and RGB
+ optical flow + warped optical flow has been experimentally
proven to be most effective. The two-stream method is limited
in practical applications due to the time overhead required to
get the optical flow in advance.

Another important way in action recognition is 3D CNNss.
Du [16] first built a 3D network using 3D convolutions and
3D poolings, which they call C3D. However, due to the
relatively simple network structure, C3D’s accuracy is not
competitive with two-stream programs. Joao [1] eliminated
the shortcomings of C3D by building 3D CNN5 upon state-of-
the-art image classification architecture, which they call I13D.
Following the idea of I3D to expand 2D CNNs, Diba [3]
also proposed Temporal Transition Layer to capture different
temporal depths and built a novel model named T3D. Inspired
by the human retinal mechanism, Feichtenhofer [4] used a
slow high-resolution CNN (Slow Channel) to analyze static
content in the video while using a fast low-resolution CNN
(Fast Channel) to analyze dynamic content in the video. Dif-
ferent from the accuracy-focused models above, our XwiseNet
is a new type of 3D CNN capable of both lightweight and
accuracy.

B. Lightweight CNNs

In recent years, deep CNNs have performed well on many
tasks. In addition to accuracy, model efficiency is also a factor
worthy of attention because it determines whether the model
can be applied in the actual scene.

In 2D CNNs, the Depthwise Separable Convolution [14]
plays an important role which is firs used by MobileNet [7].
In pursuit of the goal of practical efficiency, ShuffleNet V2
[11] designs a new network structure based on the Depthwise

Separable Convolution, while introducing channel shuffle to
promote information exchange, which doesn’t need extra pa-
rameters.

In 3D CNNs, Chen [2] proposed Multi-Fiber Unit drawing
on group convolutions to reduce the model size. MiCT [21]
integrates 2D CNNs with 3D CNNs to reduce complexity of
spatiotemporal networks. Besides modification of the network
structure, researchers also focus on innovation of 3D convo-
lutions. S3D [19], R(2+1)D [17] and P3D [23] all use one
1 x 3 x 3 spatial convolution and another 3 x 1 x 1 temporal
convolution to approximate the spatiotemporal convolution.
Based on the above splitting, Yang [24] further splits 1 x 3 x 3
convolution into 1 x 1 x 3 and 1 x 3 x 1. From the perspec-
tive of image transmission frequency, Chen [22] proposed a
novel Octave Convolution to store and process low-frequency
and high-frequency features separately to improve the model
efficiency and reduce spatial redundancy.

Based on the succession and innovation of the previous
research, we build a new type of 3D convolution, which greatly
reduces parameters and computation cost in the extreme de-
coupling state while ensuring the stability of performance. In
Table IV and Table V, we extensively compare the XwiseNet
with earlier state-of-the-art methods and the XwiseNet shows
a competitive result on the challenging benchmarks with an
extremely lightweight design.

C. Global Context Modeling

Recently, in the field of images, global context modeling
has been studied in SENet [28], GENet [29] and PSANet [30],
which all focus on recalibrating the channel dependency with
global context. In addition to channel dependency, CBAM [34]
also explores the dependency among spatial positions. How-
ever, for feature fusion, the above methods all apply rescaling
which is proved not the most effective way for global context
modeling [36]. In videos, making better use of temporal global
context helps to improve the effectiveness of action recogni-
tion. In [31]-[33], temporal dependency modeling is applied
in the motion stream. However, their temporal modeling just
focuses on the optical flow information rather than the direct
relation among different frames. Moreover, the optical flow
information needs extra extraction in advance, which increases
resource consumption in the method implementation. An end-
to-end spatiotemporal global context modeling is proposed
in [35], but additional skeleton data is needed. Reference
[37] proposed a Non-local network (NLNet) which models
spatiotemporal pixel-level pairwise dependency. Regrettably,
the NLNet computes query-independent dependency for each
query position, which is proved redundant. Reference [36]
removes redundancy from NLNet and they design the Global
Context (GC) block to effectively model channel-wise global
context via addition fusion as NLNet [37], with the lightweight
property as SENet [28]. However, GCblock models sequence-
independent global context. In other words, GCblock can’t
identify the most relevant frames from an input video. As an
improved version of the GC block, we introduce a sequence-
specific global context modeling block, which can localize



discriminative frames and doesn’t require additional motion
stream.

III. METHOD

In this section, we first define a novel 3D convolution
as shown in Fig. 1(a). The 3D convolution is split into
3D Depthwise Spatial Convolution, 3D Depthwise Temporal
Convolution, and 3D Pointwise Convolution. We follow the
hypothesis: channel correlation, spatial correlation and tempo-
ral correlation mapping in feature maps of 3D CNNs can be
completely decoupled. Because this assumption is a stronger
version of the hypothesis behind the Depthwise Separable
Convolution, we named our proposed 3D convolution as Xwise
Separable Convolution, which means “Extremewise Separable
Convolution”. Besides, to make up for the bottom-up local
operators in CNNs which can’t capture long-range contextual
interactions, we design the SS block to aggregate contextual
information for each sequence adaptively and specifically.
Finally, we build an extremely efficient network based on the
Xwise Separable Convolutions and the SS blocks, which we
call the XwiseNet.

A. Xwise Separable Convolution

Given a video clip, using 3D convolution is the most general
way to extract spatiotemporal information [13] [16]. The 3D
convolution can construct temporal connections across frames
while extracting spatial information. For simplicity, we repre-
sent a traditional 3D convolution as (N, C, d, k, k), where C' is
the number of input channels, d and k are temporal and spatial
size of the convolution, N is the number of filters or output
channels. As shown in Fig. 1(a), using the idea of Depthwise
Separable Convolution extremely, a 3D d x k x k convolution
can be naturally decoupled into a 1 X k X k convolution acting
in the spatial domain and a d x 1 X 1 convolution acting in
the temporal domain, both of which are depthwise. Then we
fuse channel information through N C x 13 convolutions. The
number of parameters and FLOPs of the Xwise Separable
Convolution are about 1/dk? of the traditional 3D convolution.
The extremely decoupled 3D convolution not only signifi-
cantly reduces parameters and FLOPs but also pre-trains 2D
convolutions from image data, giving the Xwise Separable
Convolution the ability to take more advantage of scene and
object knowledge. At the same time, non-linear operations can
be added after each convolution, which greatly increases the
expressive power of the network. Besides, from the perspective
of network optimization, it is easier to optimize in the channel,
spatial and temporal dimensions independently.

Comparison with other decomposed 3D convolutions.
We notice that there have been some works focusing on
spatiotemporal factorization of 3D convolutions, e.g. P3D [23],
R(2+1)D [17] and S3D [19]. P3D proposed three different
blocks according to the order of spatial convolutions and
temporal convolutions, which all contain bottlenecks. Our
Xwise Separable Convolution only adapts one order with-
out bottlenecks. R(2+1)D and S3D take a similar order to
factorize 3D convolutions as us. However, R(2+1)D contains
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hourglasses (opposite of bottlenecks) and S3D omits activation
and batch normalization operations. As can be seen from
the following, the way we build the network with the above
methods is also very different. Specifically, our network is
based on the extremely efficient ShuffleNet V2-50 [11], which
further improves the efficiency of the model.

B. Sequence-specific Block

Here we propose the SS Block inspired by the global context
(GC) block. The main difference between the SS block and the
GC block is that the SS block can capture temporal long-range
dependencies via aggregating sequence-specific global context
to each sequence feature. Experiments in Table IV prove that
the sequence-specific feature makes the SS block better than
the GC block in video action recognition. As stated in the GC
work, Global Context Modeling Framework can be abstracted
into three stages: (1) global context modeling which extracts
global context from the input; (2) feature transform which
captures temporal-wise dependencies; (3) feature aggregation
which aggregates sequence-specific global context to the time
dimension of the input. Because of the superiority of the GC
block in various tasks, we keep (2) (3) stages and propose a
new structure for (1). Above abstraction can be defined as

N
yi = Fzi, A wjay)) )
j=1

where (1) Zjvzl w;x; expresses the context modeling module
which adopts weighted averaging with weight w; to aggregates
the features on some dimensions to get the context features
(temporal context features in the SS block and channel-wise
context features in the GC block); (2) A(.) expresses the
feature transform to model relations between channels; (3)



F(.,.) represents the fusion process to fuse the context futures
to the original features on a dimension (temporal dimension in
the SS block and channel dimension in the GC block). Further,
we explore three ways of context modeling: (a) channel-wise
pooling; (b) temporal-wise pooling; (c) channel-temporal-wise
pooling. Their specific structures are shown in Fig. 3. Results
in Table III (a) show the superiority of (a) compared to (b) and
(c), so we adopt (a) in the SS block. The detailed SS block is
shown in Fig. 2, formulated as

N
y; = x4+ Co % RELU(LN(Cy % Y ————
; SN eCaa

where C, represents the weight for context modeling, C, *
RELU(LN(C}y * (.))) represents the bottleneck transform,
broadcast element-wise addition is the fusion way.

Since the context feature modeling by our SS block is
C x T x 1 x 1 which is sequence-specific, it can capture
temporal relations and localize discriminative frames. On the
other hand, the SS block is flexible and lightweight, which
meets our criteria for building lightweight action recognition,
so it can be added to multiple layers of the network to
better capture the long-term information with acceptable extra
computation cost.

C. XwiseNet

In this section, we use the Xwise Separable Convolution and
the SS block to design a network called the XwiseNet based
on the extremely efficient ShuffleNet V2-50 [11]. The network
we design can further verify the generalization ability of the
Xwise Separable Convolution and model temporal long-range
global context.

We design the Same Unit and Downsample Unit as shown
in Fig. 1(b)(c). Same Unit keeps the input and output the
same size. Downsample Unit is used to double the number
of channels and halve the size of the feature map. Channel
Shuffle Unit in both blocks is the key idea of ShuffleNet V2,
which can achieve the purpose of information sharing between
channels without increasing parameters. To make the SS block
fit perfectly into above units, we investigate three positions
of the SS block: (a) after Channel Shuffle Unit; (b) before
Channel Shuffle Unit; (c) after the last 1 x 1 x 1 convolution
in the branch (right branch for Downsample Unit); Results in
Tabel III (b) show that (b) performs best. Hence we adopt (b)
in the XwiseNet. The complete network structure is shown in
Fig. 1(d).

eCa*zj

zj)) (3)

IV. EXPERIMENTS
A. Datasets

a) KTH: The KTH dataset [27] covers six human ac-
tions: walking, running, jogging, boxing, clapping and waving.
Each action is performed several times by 25 subjects in four
different scenes: outdoors, outdoors with different clothes,
outdoors with scale variation and indoors. In total, KTH
contains 2391 video samples. Due to data requirements for
network training, we divide the samples into a training set (16
subjects) and a test set (9 subjects).

b) Part-Kinetics: Limited by computation and time re-
sources, as well as for more efficient experimental compar-
isons, we built a small dataset — Part-Kinetics, which is a
10-classes subset randomly selected from Kinetics [1]. In the
training set, Part-Kinetics contains about 500 samples each
class, which is larger than some current mainstream datasets
like UCF-101 and HMDB-51, so it can avoid overfitting. Part-
Kinetics contains 5498 training videos and 459 testing videos.
Using Part-Kinetics can obtain more efficient and accurate
performance comparison among models.

B. Training

We take the same sampling method of video frames as [5].
First, we select a starting temporal position in the video by
uniform sampling to generate a 16-consecutive-frames clip.
If the video is shorter than 16 frames, it is populated with
existing frames. Next, we randomly select a target location
from the center or 4 corners. In addition to the above en-
hancements, we also perform multi-scale cropping. The scale
is selected from [1,%,%,%,%]. Note that the aspect ratio
of our samples is 1, ?md thze4 scale 1 indicates that the edge
length of the sample is the same as the short edge length of
the original video frame, and the scale 0.5 indicates that the
sample is half of the short edge length of the frame. After
the sample is cropped based on position and scale, we adjust
its spatial size to 112 x 112. The size of each sample is
3 channels x 16 frames x 112 pizels x 112 pizels,
and each sample flips at 50% probability. Mean subtraction
and normalization are also performed.

We optimize all models by backpropagating the gradients of
cross-entropy loss from scratch. All models are trained using
Adam with a weight decay of 0.001. The learning rate is
initialized to 0.001 and decays by a factor of 0.1 according to
the accuracy of the validation set.

C. Recognition

We use sliding windows to generate input clips (i.e. each
video is divided into non-overlapped 16-frame clips), each of
which is spatially cropped at scale 1 in the center. We then
use the trained model to predict scores of various classes of
each clip. A class with the highest score represents the label
for the video, which is averaged on all clips of the video.

D. Results and Analysis

In this section, we first present a comparison of the Xwise
Separable Convolution with other forms of 3D convolutions
in the accuracy and computation cost for action recognition.
Then we conduct ablation experiments to determine a better
structure for the SS block. Finally, we show the performance
of the XwiseNet compared with state-of-the-art works.

1) Effect of the Xwise Separable Convolution: The Xwise
Separable Convolution is primarily proposed to enhance 3D
CNNs. To show the effectiveness of the Xwise Separable Con-
volution, we compare it with other forms of 3D convolutions.
The experimental idea is to fix the base network architecture
to be the same throughout all the experiments and compare
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Fig. 4. 3D Depthwise Separable Convolution, ST-Conv The input is video
clips and the dimension of convolutions is represented as {T' x S x S} on
behalf of the temporal and spatial domain.

the performance of CNNs with different 3D convolutions.
Different 3D convolutions in experiments include Traditional-
Conv, ST-Conv, X-Conv, and DW-Conv. Traditional-Conv is
the abbreviation of traditional 3D convolutions. ST-Conv is
3D convolutions that are split in time and space dimensions.
X-Conv is our proposed the Xwise Separable Convolution.
DW-Conv is 3D Depthwise Separable Convolution. DW-Conv
and ST-Conv are shown in Fig. 4(a), (b).

In this work, we use deep residual networks (ResNets) [6]
as our backbone owing to their good performance and ease
of refactoring. Table II reports the performance of different
convolutions on Part-Kinetics. It is worth mentioning that X-
Conv has the fewest parameters. A more intuitive display can
be seen in Fig. 5. X-Conv beats Traditional-Conv in accuracy
and efficiency by absolute advantage. Combined with data,
the Xwise Separable Convolution can reduce FLOPs by 31%
with a loss of less than 1% accuracy compared with ST-Conv.
Similarly, compared with DW-Conv, the Xwise Separable
Convolution only needs to pay no more than 5% FLOPs to
improve the accuracy by 1.74%. This shows that the proposed
the Xwise Separable Convolution can achieve a better balance
between accuracy and efficiency. From the loss curve in Fig. 6,
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Fig. 5. Tradeoff comparison between networks based on different 3D
convolutions. The area of each point is proportional to the total parameter
number of the model. Circle represents the network whose backbone is
Rensnet18, triangle represents the network whose backbone is Rensnet34 and
Pentagram represents the network whose backbone is Rensnet50.

3D-ResNet-18 | 3D-ResNet-34 | 3D-ResNet-50
Accuracy 78 % 78.65% 79.08 %
ST-Conv FLOPs(G) 5.55 7.51 7.62
Params(M) 14.13 27.62 27.36
Accuracy 74.51% 75.82% 77.34%
DW-Conv FLOPs(G) 3.75 4.12 5.66
Params(M) 1.58 2.82 13.64
Accuracy 72.33% 75.16% 76.25%
Traditional-Conv | FLOPs(G) 8.32 12.71 10.10
Params(M) 33.21 63.52 46.22
Accuracy 77.12% 77.56% 78.21%
X-Conv(Ours) | FLOPs(G) 3.91 4.43 5.85
Params(M) 1.53 2.72 13.59
| \&\ﬁ" 3D-ResNet-18 with
Q \\Nﬂ Traditional 3D convolutions
3 :
g Ml i v Ve T
,2_ 3D-ResNet-18 with Xwise
g Separable Convolutions

Traiﬁ Step

Fig. 6. 3D-ResNet-18 training Loss. The training loss on 3D-ResNet-18
with the Xwise Separable Convolutions falls faster than 3D-ResNet-18 with
traditional 3D Convolutions, as well as converges to a lower value.

we can also find that the Xwise Separable Convolution can be
quickly optimized to a better level.

2) Ablation Study for SS Blcok: The ablation study is
shown in Table III. Context modeling: To model sequence-
specific global context efficiently, we compare three methods
for context modeling. It shows that channel-wise pooling
significantly outperforms the other two methods with a similar
number of parameters and FLOPs. This indicates that temporal
information is more discriminative in action recognition than
channel information, which can’t be pooled. Moreover, the
above conclusion also verifies the necessity of constructing
the sequence-specific block. Positions: We investigate three
positions of the SS block and inserting the SS block before
channel shuffle yields the highest performance. So we adopt
before channel shuffle as the default. Stages: We compare the
results when the SS blocks are inserted at different stages. In
the case where the consumption difference is negligible, all
stages benefit from the SS block. Inserting the SS block to all
stages achieves higher accuracy than inserting to other single
stage.

3) Comparison with state-of-the-art methods: In Table IV
and Table V, we show the comparison with state-of-the-art
methods using only RGB inputs for a fair comparison, i.e.
no optical flow. It can be observed that on Part-Kinetics,
our XwiseNet without any global context modeling blocks
(we call it the Simple-XwiseNet) outperforms most methods
except R(2+1)D and I3D. In the previous works, the basic



TABLE III
ABLATION STUDY

(a) Context modeling

Accuracy | Params(M) | FLOPs(G)
channel-wise pooling 82.35% 3.51 1.80
temporal-wise pooling 81.26% 3.50 1.80
channel-temporal-wise pooling 79.74% 3.51 1.80
(b) Positions
baseline 78.21% 2.90 1.22
after channel shuffle 82.35% 3.51 1.80
before channel shuffle 83.01% 3.51 1.80
after 3D PConv 79.52% 3.05 1.80
(c) Stages
baseline 78.21% 2.90 1.22
stagel 79.52% 3.51 1.80
stage2 79.96% 3.51 1.80
stage3 80.61% 3.51 1.80
stage4 78.65% 3.51 1.80
all stages 83.01% 3.51 1.80
TABLE IV
ACTION RECOGNITION PERFORMANCE ON PART-KINETICS TEST SETS.
Model Accuracy | Params(M) | FLOPs(G)
C3D [16] 70.80% 63.36 38.58
3D-ResNet-18 [5] 72.33% 33.21 8.32
3D-ResNet-34 [5] 75.16% 63.52 12.71
MFNet [2] 76.03% 7.70 2.93
3D-ResNet-50 [5] 76.25% 46.22 10.10
P3D [23] 76.47% 24.95 8.14
ARTNet [26] 77.12% 20.16 14.02
fast-S3D [19] 77.56% 8.28 2.79
13D [25] 79.30% 12.29 27.82
R(2+1)D [17] 80.17% 63.54 20.7
Backbone(Ours) Block
XwiseNet - 78.21% 2.90 1.22
XwiseNet CBAM [34] 78.21% 3.20 7.15
XwiseNet SE [28] 78.43% 3.20 1.80
XwiseNet GC [36] 81.05% 3.50 1.80
XwiseNet SS(Ours) 83.01% 3.51 1.80

convolution used by 3D-ResNet-18/34/50, C3D, I3D and
ArtNet is all Traditional-Conv, that used by P3D, R(2+1)D
and fast-S3D is ST-Conv. In addition, MFNet used the idea
of Group Convolution and DW-Conv can be considered as
Group Convolution’s special version. From Table II, we can
know that in terms of accuracy, our proposed X-Conv is
better than DW-Conv and slightly lower than ST-Conv. So
it’s not surprising that R(2+1)D is better than our Simple-
XwiseNet in accuracy. But it is worth mentioning that due to
the superiority of our network structure design, our Simple-
XwiseNet outperforms P3D and fast-S3D by 1.74% and 0.65%
with only 15% and 44% FLOPs. It is also not a surprise
that the accuracy of the Simple-XwiseNet is still lower than
I3D whose input is 16 224 x 224 frames’ clip. In contrast,
we take 16 112 x 112 frames’ clip as the input of the
Simple-XwiseNet which contains less spatial information but

TABLE V
ACTION RECOGNITION PERFORMANCE ON KTH TEST SETS. 16/9 IS THE
NUMBER OF SUBJECTS IN TRAINING AND TEST SET. THE INPUT IS
16 frames X 224 pizels x 224 pizels.

Method cross-validation | Accuracy | Params(M) | FLOPs(G)
TCCA [38] Leave-one-out | 95.33% - -
pLSA-ISM [39] | Leave-one-out | 91.60% - -
Dollar et al. [40] | Leave-one-out | 80.00% - -
Klaser et al. [41] | Leave-one-out | 91.40% - -
Ikizler et al. [8] 16/9 94.00% - -
Jhuang et al. [10] 16/9 91.70% - -
Niebles et al. [20] 16/9 81.50% - -
Schuldt et al. [27] 16/9 71.72% - -
P3D 16/9 91.54% 24.95 15.95
ARTNet 16/9 94.09% 20.16 56.09
fast-S3D 16/9 95.37% 8.28 11.26
MFNet 16/9 95.71% 7.70 11.16
13D 16/9 95.78% 12.29 27.82
XwiseNet(Ours) 16/9 94.79% 3.51 7.11
0.84
&wiseNet
AO.SZ
%0.80 Rl2+1)D
E 13D
50,78 é‘mgséévavBENE: @
il et -ResNet-50
§0'76 g 3. 3D-ResNet-34
So.74
hel
> #3D-ResNet-18
0.72
C3D
0.70 0 5 10 20 30 35 40
FLOPs(G)

Fig. 7. Tradeoff comparison between different 3D CNNs on Part-Kinetics.
The area of each circle is proportional to the total parameter number of the
model.

take up less computational overhead, making our model more
efficiency. Regarding computation and parameter efficiency, it
can be seens intuitively from Fig. 7 that our proposed Simple-
XwiseNet is with the fewest FLOPs and parameters, yet
achieves 78.21% Top-1 accuracy. Based on Table II, we think
that it is mainly due to the Xwise Separable Convolutions’s
competitiveness in the trade-offs of lightweight and accuracy
in action recognition. With the SS block, our XwiseNet yields
the best performance among all networks and global context
modeling blocks. We also observe that the XwiseNet costs the
lowest GPU memory for both training and testing benefiting
from the Xwise Separable Convolution. On the KTH dataset
as shown in Table V, in the 16/9-based cross-validation, the
training set and test set of each model are the same except
for Jhuang [10], whose subjects are randomly selected. The
XwiseNet achieves 94.79% accuracy which is comparable
with the sate-of-the-arts, and it is more resource friendly. For
example, the XwiseNet can reduce FLOPs by 74% with a loss
of 1% accuracy compared with I3D. Even compared with the
methods that using Leave-one-out, our XwiseNet still better
than most except TCCA.



V. CONCLUSION

In this work, we focus on lightweight action recognition. We
first propose the Xwise Separable Convolution, which beats
the traditional 3D convolution in lightweight and performance.
Then we build a lightweight SS block modeling sequence-
specific global context to further improve the performance of
3D CNN. Our XwiseNet is based on the Xwise Separable
Convolutions and the SS blocks, which significantly achieves
competitive performance with the least computation cost on
two benchmarks. Although our experiments are based on video
action recognition, we can extend this idea to other similar
video tasks, such as object detection, object tracking to achieve
the goal of balancing lightweight and accuracy.
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