Orthrus: A Bimodal Learning Architecture for
Malware Classification

Daniel Gibert
Dept. of Computer Science
University of Lleida
daniel.gibert@diei.udl.cat

Abstract—Malware detection and classification is a challenging
problem and an active area of research. Traditional machine
learning methods depend almost entirely on the ability to extract
a set of discriminative features into which characterize malware.
However, this feature engineering process is very time consuming.
On the contrary, deep learning methods replace manual feature
engineering by a system that performs both feature extraction
and classification from raw data at once. Despite that, a major
shortfall of these methods is their inhability to consider multiple
disparate sources of information when performing classification,
leading them to perform poorly when compared to multimodal
approaches. In this work, we introduce Orthrus, a new bimodal
approach to categorize malware into families based on deep
learning. Orthrus combines two modalities of data: (1) the byte
sequence representing the malware’s binary content, and (2)
the assembly language instructions extracted from the assembly
language source code of malware, and performs automatic
feature learning and classification with a convolutional neural
network. The idea is to benefit from multiple feature types to
reflect malware’s characteristics. The experiments carried on the
Microsoft Malware Classification Challenge dataset show that
our proposed solution achieves higher classification performance
than deep learning approaches in the literature and n-gram based
methods.

Index Terms—Malware Classification, Convolutional Neural
Networks, Deep Learning, Multimodal Learning

I. INTRODUCTION

The detection of malware, malignant computer software
designed to infiltrate or damage a computer system without
consent of the owner, is an important and challenging problem
in cybersecurity. The global malware industry is estimated to
be worth millions and grows year after year, with an under-
ground services market which provides malicious software,
cybercapabilities, and products to criminals, gangs, and even
nation states. Recently, we have seen malware campaigns
affecting our daily lives, influencing major elections, and
crippling businesses overnight. The most notorious cyberespi-
onage campaign affected the Democratic National Committee
computer network and ended up with the release of private and
confidential information from party members. In addition, the
awareness of the danger of cyber threats increased due to the
harm posed by major cyberattacks like WannaCry and Petya

This research has been partially funded by the Spanish MICINN Projects
TIN2015-71799-C2-2-P, ENE2015-64117-C5-1-R, and is supported by the
University of Lleida.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Carles Mateu
Dept. of Computer Science
University of Lleida
carlesm@diei.udl.cat

Jordi Planes
Dept. of Computer Science
University of Lleida
jordi.planes@diei.udl.cat

campaigns, among others, which held computer systems from
all over the globe to ransom.

To limit the impact of cyberattacks it is necessary to improve
computer systems’ defenses. One essential layer is endpoint
protection, specially anti-malware scanners, which is the last
layer of defense against malware by preventing, detecting, and
removing malicious software. Traditional anti-virus engines
use a signature-based approach, where a signature is a set
of manually defined rules that can identify a concrete piece of
malware or a group with similar characteristics. However, this
rules are generally specific, sensitive to small changes, and
cannot usually recognize new malware. In consequence, the
need for new methods to detect unknown malware is appealing
for signature-less machine learning approaches due to their
ability to summarize complex relationships and later decision
making.

Traditional machine learning solutions perform feature en-
gineering to manually extract a set of features that provide
an abstract representation of malware. These features can be
obtained from the static and dynamic analysis of malware.
On the one hand, static analysis consists of examining the
code or structure of a computer program without executing it.
On the other hand, dynamic analysis monitors the execution
of the program on the system. Indistinctly of the type of
analysis, feature-based approaches depend almost entirely on
the set of discriminative features used to represent malware.
Contrarily, deep learning approaches obviate the need for
manual feature engineering by automating the feature learning
and classification procedure. Deep learning shifts the burden
of feature engineering to an underlying system, typically
consisting of a neural network with multiple layers, that jointly
perform both feature learning and classification. For instance,
E. Raff et al. [1] and D. Gibert et al. [2] trained a neural
model by feeding it, as input, a sequence of bytes and a
sequence of opcodes (machine language instruction), respec-
tively. Nonetheless, both approaches lack the information from
multiple sources of information that is combined before classi-
fication in traditional machine learning approaches. Thus, deep
learning approaches for malware detection tend to perform
poorly in comparison with multimodal approaches.

The primary contribution of this work is the development
of the first, to our knowledge, bimodal deep learning architec-
ture for malware classification. Orthrus automatically learns

features from two sources of information, (1) the hexadecimal
representation of malware’s binary content, and (2) the assem-
bly language instructions representing the assembly language
source code of malware. The idea is to learn from multiple
sources of information to maximize the benefits of multiple
features types to reflect the characteristics of malware and,
to compensate for the weaknesses inherent in unimodal rep-
resentations. The generalization performance of our bimodal
learning approach has been evaluated on the dataset provided
by Microsoft for the Big Data Innovators Gathering Anti-
Malware Prediction Challenge [3]. Furthermore, we present
a comparison with deep learning methods in the literature.
Experiments show that our model successfully takes advantage
of both modalities of information to perform significantly
better than unimodal deep learning methods.

The rest of the paper is organized as follows. Firstly,
we introduce the state-of-the-art approaches to address the
problem of malware detection and classification. Afterwards,
we describe the bimodal architecture followed by the results
of the experimentation. Lastly, we summarize the concluding
remarks of our research and proposes some future lines of
research.

II. RELATED WORK

Traditional machine learning solutions rely on a set of hand-
designed features that provide an abstract representation of
the program that is later used for classification. The most
common features are byte and opcode n-grams [4], [5]. Byte
n-grams are extracted from the hexadecimal representation
of malware’s binary content whereas opcode n-grams are
extracted from the assembly language source code of malware.

To detect the presence of compressed and encrypted seg-
ments hidden beneath the executable, security researchers use
entropy analysis, as compressed and encrypted segments tend
to have higher entropy in comparison with native code [6].
However, simple entropy statistics is not enough to detect
sophisticated malware, as packed and encrypted code is often
concealed in a way that pass through entropy filters. Thus,
researchers started analyzing the structural entropy of executa-
bles [7]. The structural entropy consists of a stream of entropy
values, where each value describes the amount of entropy over
a chunk of code in a specific location of the executable.

A distinct way to represent an executable is to visualize
its byte code as a grayscale image [8], where every byte is
interpreted as one pixel in the image. Afterwards, features
describing the texture of the grayscale image can be extracted
such as GIST [8], Haralick [9], Local Binary Patterns [9] and
PCA features [10].

In addition, the usage of system functions and libraries is
a good indicator of the behavior of malware as they offer
information about services and resources provided by the
OS [11].

The need for manual feature engineering can be obviated
by automated feature learning. Deep learning replaces the
feature engineering process by an underlying system which
typically consists of a neural network with multiple layers,

that performs both feature learning and classification. With
deep learning, one can start with raw data as features will be
automatically created by the neural network when it learns.
The main distinction between deep learning approaches for
malware detection and classification lean on what they used
as raw data.

D. Gibert et al. [2] and N. McLaughlin et al. [12] feed
convolutional networks with the opcode sequences extracted
from disassembled Portable Executables (PEs) and Android
APKs, to classify malicious software targeting the Windows
and the Android operative systems, respectively. The shallow
layers of the convolutional networks allow to extract N-gram
like features without consuming the exploding amount of
computational resources required to extract N-grams for a long
N. Alternatively, D. Gibert et al. [13] take advantage of the
hierarchical structure of Portable Executable files to build a
hierarchical convolutional network that extracts features at the
mnemonics-level and at the function-level.

On the contrary, E. Raff et al. [1] presented a detection
system trained on raw byte sequences. In their work, each byte
of the input sequence is embedded into a fixed length feature
vector to avoid representing each byte by its value, as it would
imply that certain byte values are closer to each other than
other byte values, which is false, as the byte value depends
on its context. Afterwards, they combined convolution layer
with global max-pooling to obtain the activations regardless of
the location of the detected features. This shallow architecture
applied filters of width equals to 500 bytes followed by an
stride of 500, which allowed to identify interpretable subre-
gions of the binary, mostly from the PE header. Furthermore,
M. Kil et al. [14] presented a deeper architecture consisting
of 11 layers: the embedding layer, four convolutional and two
pooling layers, followed by 4 fully-connected layers.

As the length of the bytes sequence might be up to various
million time steps, other works preprocessed the sequence
to reduce its size and compress its information. D. Gibert
et al. [15] feed a convolutional neural network with the
structural entropy representation of malware. Hence, the size
of the sequence was diminished from millions to thousands
or hundreds, depending on the chunk size. Alternatively, D.
Gibert et al. [16] generated an encoded representation of
contiguous, non-overlapping chunks using a denoising autoen-
coder. Afterwards, a residual network extracts features from
the compressed sequence and performs classification. Q. Le et
al. [17] scaled the file byte code to a fixed target size using
a generic image scaling algorithm. After scaling, a malware
sample corresponds to one sequence of 10000 values. For
classification purposes, they applied recurrent neural network
layers on top of the convolutional layers.

D. Gibert et al. [18] takes advantage of the representation
of malware as a grayscale image [8] to build a convolutional
neural network classifier that automatically extracts discrimi-
nant features from the image. Moreover, R. Khan et al. [19]
analyzed the performance of the ResNet and GoogleNet ar-
chitectures for the task at hand.

A further way to represent malware is as an ordered

sequence of API functions invoked during its execution. To
capture the long-term dependencies in the API function traces,
B. Athiwaratkun et al. [20] examined recurrent neural network
architectures. In the first stage, a LSTM or GRU constructs
the features associated to a particular API trace and later,
a single fully-connected layer or logistic regression with
sofmax perform classification.In addition, B. Kolosnjaji [21]
constructed a neural network classifier based on convolutional
and recurrent layers that combines convolution of n-grams
with sequential modeling provided by the recurrent layers.

III. CLASSIFICATION OF MALWARE USING A BIMODAL
ARCHITECTURE

The main focus of this research is the classification into
families of malware targeting the Windows operating system
(0S). The most common executable file extension for Win-
dows systems is the Portable Executable (PE) file format.
In particular, this file format is used for executables, object
code, DLLs, FON Font files, and others in 32-bit and 64-bit
versions of the Windows OS. To this end, the method has been
evaluated on the Microsoft Malware Classification Challenge
dataset [3].

A. N-gram approaches

Static machine learning solutions for malware detection
and classification extract features from either the hexadecimal
representation of malware’s binary content or its assembly
language source code counterpart. The hexadecimal represen-
tation is a simple way to represent the binary’s content of a PE
file. Using this representation the binary content is represented
as a sequence of bytes (base-16 number representation with
digits [0 — 9] and [A — F]). See Figure 1 for an hex view of
a PE file. The main advantage of representing malware as a

00401000 56 8D 44 24 68 50 8B F1 E8 1C 1B 00 00 C7 06 08
00401010 BB 42 00 8B C6 5E C2 ©4 00 CC CC CC CC CC CC CC
00401620 C7 61 08 BB 42 00 E9 26 1C 80 06 CC CC CC CC CC
00401030 56 8B F1 C7 06 08 BB 42 00 E8 13 1C 00 00 F6 44
00401040 24 08 01 74 09 56 E8 6C 1E 00 00 83 C4 04 8B (6
00401650 5E C2 84 60 CC CC CC CC CC C€C CC CC CC CC CC CC
00401060 8B 44 24 08 8A 08 8B 54 24 ©4 88 OA C3 CC CC CC
00401070 8B 44 24 04 8D 50 01 8A 08 40 84 C9 75 F9 2B C2
06461686 (€3 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
00401090 |88 44 24 16 8B 4C 24 OC 8B 54 24 08 56 8B 74 24
004010A0 |@8 50 51 52 56 E8 18 1E 00 00 83 C4 10 8B C6 5E
064601686 |€C3 CC CC CC C€C CC CC €CC CC CC CC CC CC CC CC CC
004010C0 |8B 44 24 16 8B 4C 24 OC 8B 54 24 08 56 8B 74 24
00401000 |88 50 51 52 56 E8 65 1E 00 00 83 C4 10 8B C6 5E
004016E6 |C3 CC CC CC C€C CC CC €CC CC CC CC CC CC CC CC CC
004010F0 '33—€0—€2-10-00-CC-CE-EE-EE-CE-EE-EE-EE-EE-Ee—€E
00401100 B8 08 00 00 00 C2 04 @0 CC CC CC CC CC CC CC CC
06401116 B8 63 06 60 00 C3 CC CC CC CC CC CC CC CC CC CC
00401120 B8 68 00 06 60 C3 CC CC CC CC CC CC CC CC CC CC
00401130 8B 44 24 04 A3 AC 49 52 00 B8 FE FF FF FF C2 04
064011406 00 CC CC CC €C CC CC €CC CC C€C CC CC CC CC CC CC
00401150 A1 AC 49 52 00 85 CO 74 16 8B 4C 24 08 8B 54 24
00401160 ©4 51 52 FF D@ C7 05 AC 49 52 00 00 00 00 00 B8
00401170 FB FF FF FF C2 08 @8 CC CC CC CC CC CC CC CC CC
00401180 6A 04 68 00 10 00 00 68 68 BE 1C 00 6A 00 FF 15
00401190 9C 63 52 00 50 FF 15 C8 63 52 00 8B 4C 24 04 6A

Fig. 1. Hexadecimal view of a PE file.

sequence of bytes is that it is OS resilient, i.e., it could be
used to represent malware indistinctively of the target OS and
hardware. Alternatively, the assembly language source code
contains the symbolic machine code of the executable as well
as metadata information such as rudimentary function calls,
memory allocation and variable information. See Figure 2 for
the assembly view of the grayed area in Figure 1.

.text:00401081 CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC align 16h

.text:00401090 8B 44 24 10 mov eax, [esp+10h]
.text:00401094 8B 4C 24 0C mov ecx, [esp+0Ch]
.text:00401098 8B 54 24 08 mov edx, [esp+8]
.text:0040109C 56 push esi
.text:0040109D 8B 74 24 08 mov esi, [esp+8]
.text:004010A1 50 push x
.text:004010A2 51 push ecx
.text:004010A3 52 push edx
.text:004010A4 56 push esi
.text:004010A5 E8 18 1E 00 00 call _memcpy_s
.text:004010AA 83 C4 10 add esp, 10h
.text:004010AD 8B C6 mov eax, esi
.text:004010AF SE pop esi
.text:00401080 C3 retn

.text:004010B0
.text:004010B1 CC CC CC CC CC CC CC CC CC €C CC CC CC CC CC
.text:004010C0 8B 44 24 10

“align 16h
mov eax, [esp+16h]

.text:004010C4 8B 4C 24 OC mov ecx, [esp+6Ch]
.text:004010C8 8B 54 24 08 mov edx, [esp+8]
.text:004010CC 56 push esi
.text:004010CD 8B 74 24 08 mov esi, [esp+8]
.text:004010D1 50 push eax

. text:00401002 51 push ecx
.text:004010D3 52 push edx
.text:004010D4 56 push esi
.text:004010D5 E8 65 1E 00 00 call menmove_s
.text:004010DA 83 C4 10 add esp, 16h
.text:004010DD 8B C6 mov eax, esi
.text:004010DF SE pop esi
.text:004010E0 C3 retn

.text:004010E0 HE R AR E L R e LR R
-text:004010E1 CC €C CC CC CC CC CC CC CC €C CC CC CC CC CC align 16h
.text:004010F0 33 CO xor eax, eax
.text:004010F2 C2 10 00 retn 10h

. text:004010F2

Fig. 2. Assembly view of the grayed part in Figure 1. The first column
represents the address, the second column the byte sequence and the third
column the mnemonics sequence.

The most common type of features are n-grams. An n-gram
is a contiguous sequence of n items from a given sequence
of text. N-grams can be extracted from the bytes sequence
representing malware’s binary content and from the instruction
statements extracted from the assembly language source code.
By treating a file as a sequence of bytes, byte n-grams are
extracted by looking at the unique combination of every n
consecutive bytes as an individual feature. On the other hand,
n-grams from the assembly language source code refer to the
unique combination of every n consecutive opcodes, e.g. the
instructions ADD, MUL, POP.

N-gram based methods construct a feature vector representa-
tion of malware where each element in the vector indicates the
number of appearances of a particular n-gram in the instruction
sequence. Thus, the length of the feature vector depends on
the number of unique n-grams, which increases exponentially
with n. As an example, considering the extraction of bytes
n-grams with n = 3, the number of possible n-grams is
2563 = 16,777,216. Although malware n-grams tend to
follow a Zipfian distribution [22], the resulting feature vector
is still too large to keep in memory, and even if it is not, you
still have to optimize a function with too many input variables,
a.k.a. the curse of dimensionality. N-gram based approaches in
the literature have reduced this high dimensional input space
using feature selection techniques [5], [23] or the hashing
trick [24], [25]. On the one hand, feature selection techniques
select a subset of relevant features from the initial input space.
On the other hand, feature hashing, a.k.a. the hashing trick,
is a method for handling sparse, high-dimensional features
by using a hash function to determine the feature’s location
in a vector of lower dimension. It can be seen as a random
projection of the the input space A € R™ to a low dimensional
space B € R™, where m < n. In our case, an array of size
N that counts the number of times each n-gram occurred, and
a hash function map each n-gram to a location in a lower
dimensional array, which will be later used for training a
classification algorithm.

In spite of the technique, both feature selection and feature

hashing require to exhaustively enumerate a large number of
n-grams during training. To overcome this limitation, D. Gibert
et al. [2] explored the application of convolutional networks
to malware classification by the assembly language language
instructions as a text to be analyzed. This approach has the
advantage that the features are automatically inferred from
raw data and hence, it removes the feature extraction and
selection steps. Similarly, E. Raff et al. [1] and M. Krl et
al. [14] presented convolutional neural network architectures to
detect malware from raw byte sequences. The main drawback
of the aforementioned deep learning approaches is that they
focus on only one source of information, either the opcode
or the bytes sequence representation, and malware authors
can exploit this information to easily bypass detectors [26].
As a result, the most accurate Machine Learning systems for
malware detection and classification are still those that are
able to extract and combine subsets of features from various
sources of information [27].

B. Network Architecture

To overcome the current limitations of deep learning sys-
tems in this paper we present Orthrus, a baseline learning sys-
tem to categorize malware into families that involves various
modalities of data. The main idea is to learn from various
sources of information to maximize the benefits of multiple
feature types to reflect the characteristics of malware. To
obviate manual feature engineering, a neural network is used
to perform both feature learning and classification. As a result,
the network receives as input (1) the sequence of hexadecimal
values representing malware’s binary content and (2) the
sequence of assembly language instructions from the assembly
language source code. The automatic feature learning process
is carried through a convolutional layer that extracts N-gram
like features from both input sequences. Afterwards, the most
discriminative features learnt by the filters are combined to
produce a final decision, whether the given executable belongs
to one family or another. The process of merging intermediate
features from the modalities of information is known as
intermediate fusion. The overall architecture is presented in
Figure 3. It comprises the following layers:

« Bytes input layer. Instead of taking as input an executable
represented as a bytes sequence, bytes were grouped
into subsequences representing the bytes content of its
assembly language source code counterpart. For instance,
taking the assembly view in Figure 2 as example, bytes
were grouped as: [8B, 44, 24, 10], [8B, 4C, 24, 0C],
[8B, 54, 24, 08], [56], [8B, 74, 24, 08], and so on. The
maximum sequence length is 16. All subsequences with
lesser length were filled with PAD tokens. Initially we
considered to use one of the aforementioned architec-
tures [1], [14] but they performed poorly due to the size
of the filters and the limited number of samples regarding
some families. See Figures 7 and 8. Thus, by grouping
the bytes into subsequences and by reducing the size
of the kernels we facilitated the learning of simpler and
discriminant features.

e Mnemonics input layer. This layer takes as input an
executable represented as a sequence of mnemonics. A
mnemonic is simply the name of the assembly language
instruction. In other words, the parameters of the instruc-
tion are removed. For example, the instruction mov eax,
[esp + 10h] is reduced to mov. The maximum number
of mnemonics per executable is determined by N, which
is set to 10000.

o Embedding layers. As the network cannot be fed with
just text strings, each token (either byte or mnemonic)
is represented as a low-dimensional vector of real val-
ues, also known as word embedding, of size E. In our
experiments E has been set to 4. We tried various values
[4, 8, 16, 32] for the embedding size and we saw that
increasing E does not lead to an increase in accuracy. In
addition, increasing the embedding size also increases the
memory requirements and in the case of the hexadecimal
sequence, it is prohibitive in terms of resources and
computational time.

« Bytes convolutional layer. This layer is responsible for
convolving various filters over the bytes input and learn
filters that activate when a particular feature is found. The
size of each filter is h x 16 x E where h € {3,5,7}. Thus,
filters are applied to encompass 3, 5 and 7 subsequences
at once.

e Mnemonics convolutional layer. This layer convolves
various filters over the mnemonics sequence to extract
N-gram like features from it. The size of each filter is
hx E, where h € {3,5,7}. As a result, filters are applied
to sequences of 3 to 7 mnemonics. The aim behind having
filters of various sizes is to allow the network to detect
discriminant subsequences that have variations in size.

o Global max-pooling layer. Global max-pooling is applied
to extract the maximum activation of each of the feature
map activations passed from the convolutional layer.

o Softmax layer. Lastly, the softmax layer combines the
features learned and applies the softmax function to
output the probability distribution over malware families.

In our experiments we observed that taking both modali-
ties of information as input is suboptimal, since it leads to
overfitting one subset of features belonging to one modality
and underfitting the features belonging to the other. To ad-
dress this issue we separately pretrain each subnetwork and
optimize their hyperparameters for each subtask. Afterwards,
the learned weights of each subnetwork are used to initialize
the bimodal network and thus, the knowledge learned by each
model is transferred into the bimodal network to save training
time and help the network converge faster. Furthermore, to
make the network less sensitive to a particular modality it
is applied modality dropout, which randomly drops one data
modality during training. In addition, dropout has been applied
in the softmax layer with a dropout rate equal to 0.5. The
nonlinearity function adopted is the Exponential Linear Unit
(ELU) [28].

Bytes-based Component

N x 16

N x 16 x 4 Bytes Embedding
100 Conv 3 (stride 1) 100 Conv 5 (stride 1) 100 Conv 7 (stride 1)
100| Global Max Pooling 100 Global Max Pooling 100 Global Max Pooling

300 | Feature Concatenation

Softmax

Opcode-based Component

Raw Mnemonics

N x 4| Opcodes Embedding
100 Conv 3 (stride 1) 100 Conv 5 (stride 1) 100 Conv 7 (stride 1)
100 Global Max Pooling 100 Global Max Pooling 100 Global Max Pooling

Feature Concatenation

Fig. 3. Bimodal architecture. The letters and the figures at the left side of the layers represent their sizes.

IV. EVALUATION

The method has been evaluated on the Microsoft Malware
Classification Challenge dataset [3], a standard benchmark for
research.

A. Microsoft Malware Classification Challenge

In comparison with other relevant tasks such as image clas-
sification, speech recognition, text classification, etc, much of
the previous work on malware detection use data not available
to public. In consequence, it is not possible to meaningfully
compare performance across works as different datasets use
different labeling procedures. To simplify comparison and
reproducibility we decided to evaluate the performance of our
approach on the Microsoft Malware Classification Challenge
dataset [3], a standard benchmark for malware research. The
dataset is publicly available on Kaggle'. It contains the hex-
adecimal representation of the malware’s binary content and
its disassembly counterpart. The set of samples represent 9
different families. Cf. Table I. One particularity of the dataset
is that the distribution of samples per family is not balanced,
i.e., there are some classes with a considerably greater num-
ber of samples in comparison with others. Additionally, the
average number of bytes and opcodes differs greatly for each
class. See Figures 4 and 5. You can observe that those classes
with greater number of opcodes do not necessarily coincide
with those with the greater number of bytes. This is because
the bytes representation includes information of several PE
sections, e.g. .data, .edata, .idata.

B. Experimental Setup

The experiments were run on a computer with the following
hardware specifications: Intel i7-7700K, 32 GB RAM, 2xN-
vidia GTX 1080Ti. This allowed us to take advantage of the
multi-GPU setup during training to distribute some parts of the
model to different GPU instances. That is, each subcomponent
of the network was distributed on a different GPU instance.

The generalization performance of our approach has been
estimated using 10-fold cross validation. However, instead of

Uhttps://www.kaggle.com/c/malware-classification/

TABLE I
CLASS DISTRIBUTION IN THE MICROSOFT DATASET
Family #Instances | Type
Ramnit 1541 | Worm
Lollipop 2478 | Adware
Kelihos_ver3 2942 | Backdoor
Vundo 475 | Trojan
Simda 42 | Backdoor
Tracur 751 | TrojanDownloader
Kelihos_verl 398 | Backdoor
Obfuscator. ACY 1228 | Obfuscated malware
Gatak 1013 | Backdoor

4000000 +

3500000 4

3000000

2500000 -

"
£ 2000000
S
1500000 - 8 g
o
1000000 | 8 8
-]
500000
o 2 Q ° =
oA T == e < L
: . . : . . . : :
& A
F & S ¥ ¥ 3 & o F
& & ¥ 5 & & < I F
T S ’ o A /)
LS) & & &
& < &
&

Malware Family

Fig. 4. Distribution of bytes per class.

evaluating the model with accuracy alone, we selected the best
model according to the Fl-score. This is because accuracy can
be a misleading measure in datasets were there exist a large
class imbalance. For instance, a model can correctly predict
the value of the majority class for all predictions and achieve
a high classification accuracy while making mistakes on the
minority and critical classes. In our case, a model can achieve
a very high accuracy on the Microsoft dataset by correctly
classifying the majority classes and misclassifying samples
belong to the Simda family. The Fl-score metric penalizes

500000 4

400000 4
1)
o
o
9
=3
g 200000 4

100000 A

g
2
<
'?"0;,,,1_— {j—_—mnm oo ® 00
(o]
oo
0 © o
(e

04 = a 2 -8 é s
.
& A
§ o X & IS o & O
5 § L e
§ & &£
& & 6?

Malware Family

Fig. 5. Distribution of opcodes per class.

this kind of behavior and best meet the requirements of the
dataset. Alternatively, we unsuccessfully tried the balanced
cross-entropy loss. The results obtained were slightly worse.

C. Comparison with the State-of-the-Art

The 10-fold cross validation confusion matrix is presented
in Figure 6. Notice that the percentage of errors in the minority
classes does not differ from the number of errors on the
majority classes. All classes are classified with more than
97% of accuracy with the exception of the Simda family
which failed to classify 3 of the 42 samples during 10-fold
cross validation. On the other hand, the major contributor
to misclassifications is the Obfuscator.ACY family, which
according to Microsoft, is malware that uses a combination of
obfuscation techniques such as encryption, compression, anti-
debugging, anti-emulation, etc, to hide its purpose, and thus,
are way harsher to classify correctly.

Confusion matrix, without normalization
mRamnit4EE4l 0 1 0 o0 1 0o B8 0

Lollipop | 3 0 2 0 0 1 1 0
Kelihos_ver3 0 0 4 0 0 o o0 0

vundo] © 0 © 474 0 1 0 0 0

2500

2000

o
=}
- smda{® 0 0 0 3% 0 2 o0 1 1500
1)
=]
= Tracur{ 2 1 ©0 3 0 745 0 0 0O
1000
kelihos verr{ @ 1 © 5 0 0 382 0 0

8 1 0 7 0 3 2 119 1 500

Obfuscator

1l 0 o 0

Gatak

0 1 0 0 1011
T T T 0

T
& O N & $
& fK & & &8 & 10 @
; : 3
q@@ a\\&’ ,,‘) S 9@ P & \){_}, &
¥E G d&
& &

Predicted label

Fig. 6. Orthrus confusion matrix

To evaluate the performance of our bimodal approach,
we compared our model with state-of-the-art methods in the

literature that have evaluated their model on the Microsoft
Malware Classification Challenge dataset. The results are
shown in Table II. Existing deep learning approaches for
malware classification can be categorized into various groups
depending on their corresponding input. With the exception
of M. Mays et al. [30], these approaches take as input a
single modality of information and perform feature extraction
and classification altogether. D. Gibert et al. [18] and J. Kim
et al. [29] take as input the grayscale representation of the
malware’s binary content. D. Gibert et al. [15] represents the
content of a malicious program as an entropy stream, where
each value describes the amount of entropy of a small chunk of
code in a specific location of the file. E. Raff et al. [1] and M.
Krl et al. [14] treat each byte as a unit in a sequence and thus,
presented architectures to process raw byte sequence of over a
few million steps. On the contrary, D. Gibert et al. [16] and Q.
Le et al. [17] preprocessed the byte sequence and reduced the
size of the input with autoencoders and data compression tech-
niques, respectively. Furthermore, N. McLaughlin et al. [12]
and D. Gibert et al. [13] extract N-gram like features from
the assembly language instructions of the assembly language
content using one or various convolutional layers. Lastly, M.
Mays et al. [30] learn two distinct models, one taking as input
a grayscale representation of the malware’s binary content
and the second taking as input a feature vector indicating
the presence of particular opcode N-grams. Afterwards, an
ensemble classifier returns the final prediction. In addition,
we implemented various n-gram classification systems using
the hashing trick as baselines. The classification algorithms
implemented are logistic regression (LR) and feed-forward
neural networks (NN) with one or two hidden layers. The
number of hidden neurons is [256] and [256,128] for the
neural networks with one and two hidden layers, respectively.
The non-linearity applied is the ReLU function. Furthemore,
dropout was applied between layers. With the exception of the
unigram models, the 2-gram and 3-gram based classification
systems apply the hashing trick to map every n-gram into a
lower dimensional vector of size 500. The hashing trick has
been indispensable to reduce the high dimensionality of the
input space. Cf. Table III. As it can be observed in Table II,
the bimodal approach outperforms by some margin the existing
deep learning methods. Notice that each subnetwork achieves
higher accuracy and F1-score than those methods that take as
input either the grayscale image representation of malware,
its structural entropy or the raw byte sequence. Moreover,
the intermediate fusion of features from both the opcode and
byte sequences achieve better performance than opcode-based
methods. This is because there are some malware instances in
the dataset that have been obfuscated with compression and
encryption techniques and have very few instructions or none.
Thus, the features from the byte sequence provide helpful
information and boost the classifier. Additionally, the bytes
subnetwork overcome methods [1], [14] for various reasons.
First, they have higher complexity (more layers, bigger filter
sizes) which make their architectures not suitable for small-
size datasets. Second, the 2-dimensional representation of the

TABLE 11

STATE-OF-THE-ART COMPARISON OF DEEP LEARNING METHODS FOR MALWARE CLASSIFICATION.

Method Input Accuracy | Fl-score
LR Byte 1-Gram 0.8785 0.7549
NN 1H Byte 1-Gram 0.9718 0.9503
LR Opcode 1-Gram 0.9911 0.9867
NN 1H Opcode 1-Gram 0.9932 0.9833
NN 2H Opcode 1-Gram 0.9865 0.9764
LR Opcode 2-Gram 0.9729 0.9518
NN 1H Opcode 2-Gram 0.9857 0.9761
NN 2H Opcode 2-Gram 0.9871 0.9782
LR Opcode 3-Gram 0.9545 0.9075
NN 1H Opcode 3-Gram 0.9758 0.9530
NN 2H Opcode 3-Gram 0.9650 0.9415
D. Gibert et al. [18] Grayscale images 0.9750 0.9400
J. Kim et al. [29] Grayscale images 0.9639 -

D. Gibert et al. [15] Structural Entropy 0.9828 0.9314
E. Raff et al. [1] Bytes sequence 0.9641 0.8902
M. Kil et al. [14] Bytes sequence 0.9756 0.9071
Q. Le et al. [17] Bytes sequence 0.9820 0.9605
D. Gibert et al. [16] Bytes sequence 0.9828 0.9636
N. McLaughlin et al. [12] | Opcodes sequence 0.9903 -

D. Gibert et al. [13] Opcodes sequence 0.9913 0.9830
M. Mays et al. [30] Grayscale images + Opcode N-grams | 0.9770 -
Mnemonics subnetwork Opcodes sequence 0.9893 0.9802
Bytes subnetwork Bytes sequence 0.9885 0.9774
Bimodal network Opcodes+Bytes sequences 0.9924 0.9872

TABLE III
NUMBER OF UNIQUE N-GRAMS IN THE MICROSOFT MALWARE
CLASSIFICATION CHALLENGE DATASET.

Bytes Opcodes
I-gram | 256 400
2-gram | 65536 21036
3-gram | 16777216 | 197442

byte sequence presented in this work allows to group some of
the bytes per default, and provides some insights about their
function to the network.

V. CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this research is the first
application of multimodal deep learning for PE malware
classification that uses intermediate fusion to merge features
from various modalities of information. The multimodal ap-
proach combines two sources of information through a simple
architecture, (1) the byte sequence representing malware’s
binary content and (2) the mnemonic sequence representing
malware’s assembly language source code. This architecture
extracts n-gram like features from both input sequences to
build a robust classifier than existing deep learning approaches.
Experiments demonstrate that our model takes advantage of
both modalities of information to perform significantly better
than state-of-the-art methods on a standard benchmark, the
Microsoft Malware Classification Challenge dataset.

A future line of research might be to explore more modal-
ities of data to build a stronger malware classifier. More
specifically, research on the combination of wide and deep
models [31] to combine the strength of both approaches, mem-
orization (wide models) and generalization (deep models).

[1]

[2]

[3]

[4]

Ramnit 4 5 4 2 0 5 0 25 3
Lollipop { 3 3 11 1 4 4 11 7 2500
Kelihos vers{ 4 3 7 0 5 2 3 1
2000
= wndo4 0 5 2 460 0 2 1 4 1
(1)
0
m Smdad @ 1 1 5 10 2 1 10 3 1500
L]
=]
= Tacrd12 3 1 7 o0 707 7 13 1
1000
Kelihos verti4 1 2 0 11 0 6 376 2 0
Obfuscator {22 12 3 21 1 9 3 1105 8 500
Gatak{1© 11 1 o o0 4 3 1 983

3 30 2 &S
& &GP & 58 B
X
& Y S & &
& ;
5 &
@ N

Predicted label

Fig. 7. E. Raff et al. [1] confusion matrix.

REFERENCES

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro,
and C. K. Nicholas, “Malware detection by eating a whole
EXE” in The Workshops of the The Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana,
USA, February 2-7, 2018., 2018, pp. 268-276. [Online]. Available:
https://aaai.org/ocs/index.php/WS/AAAIW 18/paper/view/16422

D. Gibert, J. Béjar, C. Mateu, J. Planes, D. Solis, and R. Vicens,
“Convolutional neural networks for classification of malware assembly
code,” in Recent Advances in Artificial Intelligence Research and
Development - Proceedings of the 20th International Conference of
the Catalan Association for Artificial Intelligence, Deltebre, Terres
de I’Ebre, Spain, October 25-27, 2017, 2017, pp. 221-226. [Online].
Available: https://doi.org/10.3233/978-1-61499-806-8-221

R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi,
“Microsoft Malware Classification Challenge,” ArXiv e-prints, Feb.
2018.

S. Jain and Y. K. Meena, “Byte level n—gram analysis for malware
detection,” in Computer Networks and Intelligent Computing, K. R.

[5

=

[6]

[7

—

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Rampnit o] 0 0 3 2 3 5] 1
Lollipop { 1 2 3 0 2 5 7 5 2500
Kelihos_vers{ 0 O 3 0o o0 4 3 0
2000
- vundo { © 3 1 454 1 6 3 7 0
w
=}
= simda{ 8 5 0 5 16 0 1 6 1 1500
o
=
= Tracur4 © 4 0 3 6 (713 1 16 2
1000
Kelihos ver1{ © 2 3 9 0 1 376 4 3
Obfuscator { 21 10 4 12 3 14 6 1152 © 500
Gatak4{ 3 3 1 0 0 4 5 7 9%
— T T — —— 0
N O a0 2> & P
& & LOF @ & LS
§ : #
& ST L
VS T
@ &<

Predicted label

Fig. 8. M. Krl et al. [14] confusion matrix.

Venugopal and L. M. Patnaik, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 51-59.

I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, vol. 231, pp.
64-82, 2013, data Mining for Information Security. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025511004336

R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security Privacy, vol. 5, no. 2, pp. 40—45, March
2007.

1. Sorokin, “Comparing files using structural entropy,” Journal in Com-
puter Virology, vol. 7, no. 4, p. 259, Jun 2011.

L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: Visualization and automatic classification,” in Proceedings of
the 8th International Symposium on Visualization for Cyber Security,
ser. VizSec '11. New York, NY, USA: ACM, 2011, pp. 4:1-4:7.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, ser. CODASPY "16. New
York, NY, USA: ACM, 2016, pp. 183-194.

B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede, “Perfor-
mance analysis of machine learning and pattern recognition algorithms
for malware classification,” in 2016 IEEE National Aerospace and
Electronics Conference (NAECON) and Ohio Innovation Summit (OIS),
July 2016, pp. 338-342.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining api calls,” in
Proceedings of the 2010 ACM Symposium on Applied Computing,
ser. SAC ’10. New York, NY, USA: ACM, 2010, pp. 1020-1025.
[Online]. Available: http://doi.acm.org/10.1145/1774088.1774303

N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, and G. Joon Ahn,
“Deep android malware detection,” in Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy, ser.
CODASPY ’17. New York, NY, USA: ACM, 2017, pp. 301-308.

D. Gibert, C. Mateu, and J. Planes, “A hierarchical convolutional
neural network for malware classification,” in 2019 International Joint
Conference on Neural Networks (IJCNN), 2019.

M. Krl, O. vec, M. Blek, and O. Jaek, “Deep convolutional malware clas-
sifiers can learn from raw executables and labels only,” in Workshop in
the Sixth International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=HkHrmM1PM

D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Classification of
malware by using structural entropy on convolutional neural networks,”
in The Thirtieth AAAI Conference on Innovative Applications
of Artificial Intelligence (IAAI-18), 2018. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16133

D. Gibert, C. Mateu, and J. Planes, “An end-to-end deep learning
architecture for classification ofmalware’s binary content,” in Artificial

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

Neural Networks and Machine Learning — ICANN 2018, V. Kirkova,
Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis, Eds.
Cham: Springer International Publishing, 2018, pp. 383-391.

Q. Le, O. Boydell, B. M. Namee, and M. Scanlon, “Deep learning at
the shallow end: Malware classification for non-domain experts,” Digital
Investigation, vol. 26, pp. S118 — S126, 2018.

D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional
neural networks for classification of malware represented as images,”
Journal of Computer Virology and Hacking Techniques, Aug 2018.
[Online]. Available: https://doi.org/10.1007/s11416-018-0323-0

R. U. Khan, X. Zhang, and R. Kumar, “Analysis of resnet and googlenet
models for malware detection,” Journal of Computer Virology and
Hacking Techniques, Aug 2018.

B. Athiwaratkun and J. W. Stokes, “Malware classification with Istm
and gru language models and a character-level cnn,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 2482-2486.

B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Al 2016: Advances
in Artificial Intelligence, B. H. Kang and Q. Bai, Eds. Cham: Springer
International Publishing, 2016, pp. 137-149.

E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, “An investigation of byte n-gram features
for malware classification,” Journal of Computer Virology and Hacking
Techniques, vol. 14, no. 1, pp. 1-20, Feb 2018. [Online]. Available:
https://doi.org/10.1007/s11416-016-0283-1

R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici, “Un-
known malcode detection via text categorization and the imbalance
problem,” in 2008 IEEE International Conference on Intelligence and
Security Informatics, June 2008, pp. 156-161.

E. Raff and C. Nicholas, “Hash-grams: Faster n-gram features for
classification and malware detection,” in Proceedings of the ACM
Symposium on Document Engineering 2018, ser. DocEng ’18. New
York, NY, USA: ACM, 2018, pp. 22:1-22:4. [Online]. Available:
http://doi.acm.org/10.1145/3209280.3229085

X. Hu, K. G. Shin, S. Bhatkar, and K. Griffin, “Mutantx-
s: Scalable malware clustering based on static features,” in
Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX, 2013, pp. 187-198.
[Online]. Available: https://www.usenix.org/conference/atc13/technical-
sessions/presentation/hu

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eck-
ert, and F. Roli, “Adversarial malware binaries: Evading deep learning
for malware detection in executables,” CoRR, vol. abs/1803.04173,
2018. [Online]. Available: http://arxiv.org/abs/1803.04173

M. Ahmadi, G. Giacinto, D. Ulyanov, S. Semenov, and M. Trofimov,
“Novel feature extraction, selection and fusion for effective malware
family classification,” CoRR, vol. abs/1511.04317, 2015. [Online].
Available: http://arxiv.org/abs/1511.04317

D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
accurate deep network learning by exponential linear units
(elus),” CoRR, vol. abs/1511.07289, 2015. [Online]. Available:

http://arxiv.org/abs/1511.07289

J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Malware detection using deep
transferred generative adversarial networks,” in Neural Information
Processing, D. Liu, S. Xie, Y. Li, D. Zhao, and E.-S. M. El-Alfy, Eds.
Cham: Springer International Publishing, 2017, pp. 556-564.

M. Mays, N. Drabinsky, and S. Brandle, “Feature selection for malware
classification,” in Proceedings of the 28th Modern Artificial Intelligence
and Cognitive Science Conference 2017, Fort Wayne, IN, USA, April
28-29, 2017., 2017, pp. 165-170.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque,
L. Hong, V. Jain, X. Liu, and H. Shah, “Wide & deep learning
for recommender systems,” in Proceedings of the Ist Workshop
on Deep Learning for Recommender Systems, ser. DLRS 2016.
New York, NY, USA: ACM, 2016, pp. 7-10. [Online]. Available:
http://doi.acm.org/10.1145/2988450.2988454

