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Abstract—Video anomaly detection is a challenging task due to
the diversity of anomaly. Existing GAN-based approaches model
normal motion pattern through transforming a single image to
optical flow map, which tends to learn the mapping between
two adjacent frames instead of motion evolution in normal
scenes. Therefore, this paper proposes a Temporal enhanced
Appearance-to-Motion generative Network (TAM-Net) to model
evolution of appearance and motion for normal events. In
the motion generative branch, the corresponding optical flow
map is generated by a ConvLSTM-based generative adversarial
network from consecutive frames to learn normal motion pattern.
In order to learn appearance pattern, consecutive frames are
reconstructed by a auto-encoder in the reconstruction branch.
Temporal encoded features of consecutive frames are shared by
these two branches to represent changes of normal appearance
along with time. By modeling spatio-temporal evolution of normal
events, our network can effectively highlight abnormal regions
with high generation errors of the predicted optical flow map
and reconstructed frame. Experimental results on three inde-
pendent datasets, UCSD Pedl, Ped2 and Avenue, demonstrate
the competitive performance of the proposed method with the
other approaches.

Index Terms—Appearance-to-Motion, Generative Adversarial
Network, Temporal Encoded Features, Video Anomaly Detection

I. INTRODUCTION

Anomaly detection in videos, which is crucial for video
surveillance and scene understanding, has drawn more and
more attention recently. However, this task faces two extremely
challenging problems. First, abnormal events are rare which
results in unbalance between normal samples and abnormal
samples. Second, anomaly is unbounded and highly diverse.
Therefore, most methods firstly learn representations of regular
activities from normal videos under an unsupervised way, then
discriminate the outliers as the anomalies.

A category of anomaly detection approaches is based on
auto-encoder, which learns to reconstruct input images in
normal situations, and uses the reconstruction error as an
indicator of an anomaly. 3D Convolutional auto-encoder [1]
and Convolutional Long Short Term Memory (ConvLSTM)
based auto-encoder [2] are proposed to learn regularity among
the appearance and motion patterns. However, these methods
are based on the assumption that abnormal events correspond
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Fig. 1. Generation errors of cGAN and our TAM-Net on abnormal optical
flow. Our network can better learn motion representation in normal scenes,
and obtain greater generation error when facing with abnormal event.

to larger reconstruction errors, which may not always hold.
The auto-encoder is likely to reconstruct the abnormal data
well resulting in missed discrimination [3], [4].

Instead of auto-encoder, another category of anomaly de-
tection approaches is based on Generative Adversarial Net-
work (GAN) [5]-[7], [23], which learns to generate regular
information, usually optical flows and frames, in normal
situations. Similarly, regions with high generation error are
detected as anomalies here. Ravanbakhsh et al. [5], [6] train
two conditional GANs (cGANSs) [8] to transform raw-pixel
frames to corresponding optical flows and vice versa. In this
way, the generator in cGAN can learn sufficiently informative
representations of normal data. Based on this approach, Vu
et al. [7] introduce multilevel representations (MLAD), where
multiple cGANSs are trained to generate level-wise representa-
tions of appearance and motion respectively. However, these
methods based on GAN are not sufficient to character the
motion in videos, which may also generate optical flow maps
of abnormal events well. Generating optical flow from a
single frame makes the network tend to learn the mapping
between current frame and next frame, instead of regular
motion of normal activities. As shown in third column of
Fig. 1, generation errors of optical flow maps are small on the
abnormal regions. Moreover, another cGAN that transforms



optical flow to corresponding raw-pixel frame has a limited
improvement, which is redundant.

Thus, this paper proposes a temporal enhanced appearance-
to-motion generative network (TAM-Net) for video anomaly
detection, which effectively utilizes temporal information to
excavate regularity in normal scenes and model evolution of
appearance and motion. Our TAM-Net consists of a motion
generative branch and a reconstruction branch. First, a content
encoder is adopted to extract appearance features of each
frame. A ConvLSTM further encodes appearance features
of the input frame sequence, and temporal encoded features
are shared by these two branches. In order to learn motion
representation of normal scenes, the optical flow map is
generated by a motion decoder under adversarial learning
framework in the motion generative branch. At the same time,
the frame sequence is reconstructed by a content decoder to
learn normal appearance pattern in the reconstruction branch.
The whole TAM-Net can be trained end-to-end. To summarize,
the main contributions of this work are as follows:

e The regular motion pattern of normal activities is learned
by the ConvLSTM-based GAN from consecutive frames
in motion generative branch. Moreover, temporal encoded
features can be obtained to effectively represent change
of normal appearance along with time.

e A content decoder is also introduced to model normal ap-
pearance pattern under unsupervised learning framework.

As shown in Fig. 1, our network can highlight abnormal
regions with high generation errors of the motion on abnormal
frames. Experiments on three independent datasets demon-
strate the competitive performance of our approach compared
with other methods at frame-level and pixel-level criterion.

II. RELATED WORK
A. Trajectory-based Methods

Early methods based on trajectory features [9]-[11] are
proposed to learn normal pattern in a particular scene, and
then recognize unusual behaviour patterns based on the learned
model. Trajectory-based methods usually contains three main
stages. First, object tracking algorithms are used to extract
trajectory-based features of foreground objects, such as flow
vectors and control points. Then a statistical model is con-
structed to learn regular patterns in normal scenarios. Finally,
activities that deviate from the learned model are discriminated
as anomalies. However, performance of these trajectory-based
methods significantly degrades in complex scenes with occlu-
sions and dense crowds, because trajectory features rely on
the output of object tracking algorithms.

B. Hand-crafted Features Based Methods

Hand-crafted features based detection approaches use usual-
ly low-level spatial-temporal features to learn normal patterns,
such as histogram of oriented gradients (HOG) [12], histogram
of oriented flows (HOF) [13], 3D spatio-temporal gradient and
dense spatial-temporal interest points [14]. Kim and Grauman
[15] use a Mixture of Probabilistic Principal Component
Analyzers (MPPCA) to learn atomic motion patterns and

introduce a space-time Markov Ranbdom Field (MRF) model
to detect abnormal activities. Kratz and Nishino [16] propose
a HMM-based approach that models the variations of local
spatio-temporal motion patterns. Mehran et al. [17] propose a
social force model based on optical flow to model the normal
behavior of the crowd. Mahadevan et al. [18] joint model
appearance and dynamics of the scene by using mixtures
of dynamic textures. Besides, sparse coding is also usually
used to encode the patterns of normal activities. Cong et al.
[19] introduce a sparse coding model based on multi-scale
histograms of optical flow and use the sparse reconstruction
cost (SRC) to measure the normalness of the testing samples.
Compared to trajectory-based methods, these methods based
on hand-crafted features are more robust for anomaly detection
in complex scenes. However, due to the diversity of abnormal
activities, these hand-crafted features are difficult to define a
priori and are insufficient to represent appearance and motion
in videos.

C. Deep Learning Based Methods

Deep learning approaches have recently achieved successes
in various computer vision tasks and many deep learning
based approaches are proposed to deal with the anomaly
detection in videos. Based on auto-encoder, a category of
anomaly detection works [1], [2], [20] learns to reconstruct
the normal training data and uses the reconstruction error as
an indicator of an anomaly. Zhao et al. [20] propose a spatio-
temporal auto-encoder (STAE) based on 3D convolutions to
reconstruct frames and predict future frames. Different from
STAE, our approach integrates convLSTM with cGAN to
predict the future optical flow from a frame sequence, which
model explicitly evolution of appearance and motion. Because
of the great generalization of deep auto-encoder, these methods
may also reconstruct the abnormal videos well.

Tonescu et al. [21] use the object-centric convolutional
auto-encoders to encode motion and appearance and train
a one-versus-rest abnormal event classifier to discriminate
anomalies. Liu er al. [22] propose to predict a future frame
with high quality for the anomaly detection problem. There
are other detection approaches [5]-[7] that apply the condi-
tional Generative Adversarial Networks (cGANSs) to generate
frames and optical flow respectively for anomaly detection.
However, the models that generate frames and optical flows
are redundant. Nguyen and Meunier et al. [23] combine a
convolutional autoencoder and an image translation model
to learn a correspondence between appearance and motion.
Compared with this method, our approach can better model
regularity of appearance and motion by generating an optical
flow from the consecutive frames. There are other methods by
multiple-instance learning [24] or supervised learning under
noisy labels [25] for anomaly detection.

III. PROPOSED METHOD

Temporal information is extremely important to identify
anomalies for video anomaly detection. Existing GAN-based
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Fig. 2. Overview of our TAM-Net. The whole network consists of a motion
generative branch (blue) and a reconstruction branch (purple), which share
the same content encoder (red). The normal optical flow map Fy 1 between
frame I; 7 and I; 74 is predicted by the motion decoder, and the input
frames are reconstructed by the content decoder. The convLSTM is used
to better extract temporal encoded features for both decoders. Moreover,
adversarial learning is also adopted to generate optical flow here.

approaches [5], [7], [23]usually learn to generate the cor-
responding optical flow from a raw-pixel frame in normal
situations. While learning the representation of motion from
a single frame constraints the construction of regular motion
pattern in normal videos. In order to better excavate temporal
information when modeling motion pattern, we integrate a
ConvLSTM with a GAN to generate optical flow map from
consecutive frames. In this way, our motion generative branch
can effectively utilize temporal encoded features to learn
regularity of motion in normal scenes. Moreover, regular
appearance pattern can also be modeled with shared temporal
encoded features by our reconstruction branch. The proposed
TAM-Net is trained on normal data end-to-end. In the testing
phase, the fused generation errors of the generated optical
flow and the reconstructed frame, are used as the indicators of
anomaly. The architecture of temporal enhanced appearance-
to-motion generative network is shown in Fig. 2. Each com-
ponent of our network is described as follows.

A. Temporal Content Encoder

Given a normal video, a snippet with T" frames is sampled
consecutively, defined as {I1, Io, ..., IT}. The content encoder
extracts appearance features by reducing gradually the spatial
resolution of feature maps. We denote the mapping function
of the content encoder as x; = f.(I;). This content encoder
is constructed by a sequence of blocks, which contains a 2D
convolutional layer, a batch-normalization layer and a leaky-

ReLU activation. The parameters of first six blocks are same as
c¢GAN’s generator [8]. In order to preserve spatial information,
convolutional layers with 3 x 3 kernels and 1 x 1 strides
are used in the last two blocks. For each frame of the input
sequence, the parameters of content encoder are shared.

LSTM has shown strong capability to model the sequential
data. As a variant of LSTM, ConvLSTM [26] replaces the
matrix multiplication with convolutional operation for the
calculation of the three gates and the memory cell. Compared
with LSTM, ConvLSTM captures spatio-temporal correlations
better for the sequential data. Therefore, we introduce a
ConvLSTM to memorize changes of appearance and motion
information. The mapping function of the ConvLSTM is
denoted as hy = fi(f.(I1), fe(I2), ..., fe(IT)).

B. Frame Reconstruction Branch

Through introducing temporal information, our content de-
coder reconstructs the input images, which helps to model
appearance pattern in normal scenes. Moreover, temporal
encoded features can be extracted effectively in this process,
which represent changes of appearance patterns along with
time. The content decoder contains a sequence of blocks,
which contains a deconvolutional layer, a batch-normalization
layer, a ReLU activation and a dropout layer. The mapping
function of content decoder is defined as ft = fea(he).

In order to make the reconstructed frames close to the real
frames, L2 loss and gradient difference loss are adopted, which
is defined as follows:
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where L2 loss guarantees the similarity of reconstructed
frames and real frames in RGB space, which is given by:
2
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Because the output images are blurred if L2 loss is only
used, the gradient difference loss is also added, which can
sharpen the reconstructed frames [22]. The formula of this
loss is shown as follows:

LovanaT 1) = 32 (lattl = [oati)|| - ®
de(z,y)

C. Motion Generative Branch

Optical flow map Fr between frame Ir and Ir4; contains
three channels, which consists of the xy displacements and
magnitude. The motion generative branch is used to generate
the normal optical flow map F'r between I and Iy using
the shared temporal encoded features. The motion generative
branch consists of two modules: a motion decoder and a
discriminator.

The motion decoder is also constructed by a sequence of
blocks, which is same as the content decoder. The spatial
resolution of hidden state hr increases gradually and channel
number of feature maps reduces at the same time. This motion
decoder outputs the predicted optical flow map Fr. We denote



the mapping function of decoder as Fr = fma(hr). Since
the low-level features of the content encoder contain the edge
and texture informations, the skip connections between content
encoder and motion decoder are employed to enhance the
prediction of optical flow’s details. In order to simplify the
architecture, the skip connections are leaved out in the Fig. 2.

Generative adversarial networks (GANs) have shown strong
capability in image translation and video generation task [8],
[27]. In order to generate a realistic optical flow map, we also
introduce a GAN model, which consists of a generator G and
a discriminator D. The G and D are trained by adversarial
learning with alternative update manner. In order to avoid the
problem of mode collapse, we adopt the conditional GAN
[8], which learns a mapping from observed image z and
random noise z to y. In our approach, The content encoder,
ConvLSTM and motion decoder are treated as G. For D,
we use a patch discriminator that penalizes structure at the
scale of patches. The parameters of this discriminator are
same as cGAN [8]. The training step of the motion generative
subnetwork is as follows:

a) Training D: D takes two images as input: the pair
{I,F} or the pair {I, F'}, and tries to classify if each patch
in the images is real or fake. During training D, the weights
of G are fixed. The loss function of D is defined as:
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where 4, j indicate the indexes of spatial patches.

b) Training G: @G is trained to generate the corresponding
optical flow map F' that is as similar as possible to the real
F'. Therefore, the loss function of G consists of Lade and L;
loss, is defined as:

Lo(I,F F)=1L¢

adv

(LE)+ M Li(FF) (9
where Ay is a loss trade-off parameter and Lade loss asks the

generator GG to fool the D, which is define as follows:
LS, (I,F) =Y —log D(I, F), ; (6)
i
L1 loss encourages the generated F' to be near the ground
truth /' in L1 sense and be less blurring, which is given by:

el L} 0

D. Objective Function

To summarize, Our model is trained by end-to-end. The
whole used losses are combined into a objective function when
generator G is trained, which is given by:

Ly =Ly, (I, Fr)
+ ALy (F, F) ®)
+ )\rLrecon({Ih ceey IT})

where Ay and )\, are the loss trade-off parameters.

When discriminator D is trained, the used objective function
is defined:
Lq=LE, (I, Fr, Fr) 9)

E. Anomaly Detection on Testing Data

At testing time, only the content decoder and generator G
including the content encoder, the ConvLSTM and the motion
decoder are used to detect anomalies. Given a testing video
with N frames, N snippets with 7" consecutive frames are
sampled and the stride size is 1. We pad the video in head with
first frame so that the first 7'— 1 snippets have the same length
T.s; ={li—r+1,Ii—742,...,I;} indicates the ith snippet, and
F; denotes the optical flow map between frame I; and I, ;.

Our generator G takes s; as input, and generates optical flow
map }A?'z between frame [; and [;; and reconstructs the last
frame fl The generation error between FZ and F; is defined
as AF, = F; — FZ-. The reconstruction error is defined as
AI; = I, — I;. Then, AF; and AT, are normalized into [0,1]
for each channel. The normalized optical flow error map is
defined as follows:

AF{(x,y) = AFf(z,y)/mE; (10)

where z, y denotes the position of pixel in error map and mf ;
is the maximum value of all position in the generation error
maps for ¢! channel. The normalized reconstruction error map
is given by:

AL (z,y) = AL (z,y)/m§, (11)

Finally, a abnormality map is obtained by fusing AF; and
AI;, which is defined as e; = AF; + a/AlI;, which is used as
the indicator of anomaly.

IV. EXPERIMENTS

In this section, we evaluate the proposed network on three
anomaly detection datasets, including CUHK Avenue dataset
[28], UCSD Pedestrian Pedl dataset and Ped2 dataset [18].
The evaluation is performed at frame-level and pixel-level.

A. Datasets

UCSD [18]. The UCSD Pedestrian dataset consists of two
subsets, Pedestrian 1 (Pedl) dataset and Pedestrian 2 (Ped2)
dataset. The Pedl dataset includes 34 training videos and 36
testing videos with 40 abnormal events. The resolution of each
frame is 158 x 238 pixels. The Ped2 dataset is composed of 16
training videos and 12 testing videos with 12 abnormal events.
The resolution of each frame is 240 x 360 pixels. The definition
of anomaly for Pedl is the same as Ped2, including bicycles,
skate-boards, wheelchairs and vehicles crossing pedestrian
areas.

Avenue [28]. The Avenue dataset consists of 16 training
videos and 21 testing videos with 47 abnormal events. The
resolution of each frame is 360 x 640 pixels. For each testing
frame, a pixel-level mask is provided as ground-truth position
of anomaly. In this scene, abnormal activities usually include
throwing objects, loitering and running.



TABLE I
ABLATION STUDY OF THE PROPOSED MOTION GENERATIVE SUBNETWORK ON THREE DATASETS

Ped2 Ped1 Avenue
Model frame pixel frame pixel frame pixel
AUC* EER* | AUC EER | AUC EER | AUC EER | AUC EER | AUC EER
cGAN 94.6 8.8 84.6 8.7 797 262 | 53.0 268 | 707 33.6 | 327 507
motion generative branch 97.1 4.7 93.4 5.1 81.8 247 | 609 248 | 762 30.6 | 467 383
whole TAM-Net 98.1 3.1 95.7 33 832 247 | 683 230 | 783 259 | 562 377

*Higher AUC and lower EER indicate better performance.

ROC curve for Pedl Dataset (Frame Level)

ROC curve for Pedl Dataset (Pixel Level)

ROC curve for Ped2 Dataset (Pixel Level)
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Fig. 3.

B. Evaluation Metric

Following the literature [29], two criteria of frame-level and
pixel-level are used to evaluate an anomaly detection method.
A frame that contains anomalies is denoted as a positive,
otherwise a negative.

Frame-level criterion. At the frame-level evaluation, an
abnormality label is assigned to the testing frame if any pixel
is detected as an anomaly. Therefore, one frame is true-positive
if its ground truth mask contains abnormality and it is assigned
an abnormality label. The pairs of the true-positive rate (TPR)
and the false-positive rate (FPR) are computed according
to different confidence thresholds, and a Receiver Operating
Characteristic (ROC) curve is drawn using these pairs of TPR
and FPR. The Area Under Curve (AUC) and Equal Error Rate
(EER) are also used to evaluate performance.

Pixel-level criterion. Compared with frame-level criterion,
pixel-level criterion is much stricter and more rigorous. A
frame is a true-positive if the area of the detected abnormal
pixels overlaps with its ground-truth area by at least 40%.
A frame is a false-positive if any of its pixels is detected as
anomalous and it is negative. For the pixel-level evaluation,
AUC and EER are also used to evaluate performance.

C. Implementation Details

Our proposed network is end-to-end trained using training
videos of UCSD Pedl, Ped2 and Avenue datasets under
unsupervised learning framework. All frames are resized to
256 x 256 pixels as the inputs of our network. The optical flow
maps of videos are calculated using the method in [30]. Ay is
set to 100 and A, is set to 0.001. The Adam based Stochastic
Gradient Descent algorithm [31] is adopted to train the whole

False Positive Rate

(b) pixel-level ROC curves on Pedl dataset

False Positive Rate

(c) pixel-level ROC curves on Ped2 dataset

ROC curves for UCSD Pedl and Ped2

Original frames Original motion maps c¢cGAN Our TAM-Net

Pedl Ped2

Avenue

Fig. 4. Generation error maps of cGAN and our motion generative subnetwork
on the abnormal frames of Pedl, Ped2 and Avenue.

network and the mini-batch size is 1. The learning rate are
initially set to 2 x 10~* for generator G, content decoder and
discriminator D and then reduced by a factor of 10 after
every 20 epochs. We implement our system using pytorch, and
training is executed on a machine with 32G memory, NVIDIA
Titan Xp GPU.

D. Ablation Study

We analyze the contribution of the two key components in
the proposed model: motion generative branch and temporal
encoded features in this section.

Impact of the motion generative branch: In order to
evaluate the performance of the motion generative branch, we



DETECTION RESULTS OF DIFFERENT METHODS ON UCSD PED1 DATASETS

TABLE III

Algothrim Pedl (frame-level) Pedl (pixel-level)

AUC EER AUC EER

MPPCA [15] 67.4 35.6 214 76.8

Social force (SFM) [17] 68.8 36.5 37.5 59.1

MDT [18] 81.8 25.0 57.7 40.7
Unmasking [34] 68.4 - 524 -
MC2ST [35] 71.8 - - -
ConvLSTM-AE [2] 75.5 - - -
ConvAE [1] 81.0 27.9 - -

MLAD(0+3) [7] 82.3 23.5 66.6 22.7

our TAM-Net 83.5 25.0 69.9 23.6

construct a baseline model based on cGAN [8], which learns
to transform a raw-pixel frame to the corresponding optical
flow. Abnormal regions are detected by the generation errors
between generated optical flow maps and real optical flows
following Ravanbakhsh [5] and Vu [7]. Then we evaluate the
performance of the baseline cGAN generator, the proposed
motion generative branch and the whole TAM-Net on UCSD
Pedl, Ped2 and Avenue datasets respectively.

The results are shown as the Table I. Compared to the
c¢GAN generator, our motion generative branch improves the
AUC about 8.8%, 7.9% and 14% at pixel-level criterion on
the Ped2, Pedl and Avenue dataset respectively. Compared to
the motion generative, the whole model improves the AUC
about 2.3%, 7.9% and 9.5% at pixel-level criterion on these
datasets respectively. Besides, our method obtains lower EER
compared with cGAN. Fig. 3 shows the ROC curves of the
three networks on UCSD Pedl and Ped2 datasets. Some
qualitative results of the baseline and our model are shown
as Fig. 4. Compared with the results of cGAN generator,
the generation errors of our model in abnormal optical flow
regions are higher. From these results, we can obtain two con-
clusions: (1) our proposed motion generative branch based on
ConvLSTM can effectively learn temporal regularity of motion
in normal scenes using strong temporal encoded features; (2)
the reconstruction branch can further help to identify anomaly
by modeling common appearance patterns of normal events.

Impact of temporal encoded features: In order to evaluate
the impact of temporal encoded features, we set length 7" of
input sequence to 2, 4, 6, 8, 10 and train multiple TAM-Nets
respectively. The results are shown as Fig. 5, where Fig. 5(a)
is the AUC curves at frame-level and pixel-level criterion on
UCSD Pedl1 dataset and Fig. 5(b) is the AUC curves on UCSD
Ped2 dataset. For the Pedl dataset, the model that generates
optical flow map from 6 consecutive frames achieves best
performance among these models. For the Ped2, the model
that takes 4 frames as the input achieves best performance. The
reason for this phenomenon may be that a abnormal activity
come to the camera or is away from the camera because of
the localization of camera in the Pedl dataset, which makes
network predict motion from more frames.

pedl

0.90
—o— frame-level
0.85 pixel-level
— 0832 0835 ———a———o
0.8040.818 0.82 0.819
S 0.751
20
0.699
0.70 10,68 0.683 0.679 0.673
0.65 A
0.60 T T T T T
2 4 6 8 10
Length of Frame Sequence T
(a) AUC curves on Pedl dataset
ed2
1.00 P
0.981
| 0.977 0.976|
0.98 10.973 0.969
0.96 1 0.957 0.953
0.944
0.94 4
0 0922 0.924
2
< 0.92 4
0.90 4
0.88 1
—o— frame-level
0.86 4 pixel-level

2 4 6 8 10
Length of Frame Sequence T

(b) AUC curves on Ped2 dataset

Fig. 5. AUC scores on UCSD Pedl and Ped2 obtained by selecting values
for the length T" of input sequences from the set {2,4,6,8,10}

E. Comparison with other Methods

On the UCSD Ped1, Ped2 and Avenue datasets, we compare
our TAM-Net with other approaches, and report detection
performance on frame-level and pixel-level respectively. In our
experiments, we set the length of frame sequence to 4 for Ped2
and Avenue dataset, and 6 for Pedl dataset.

Pedl. Since some works [5], [6], [9], [20] report results
only a subset of 16 videos on the UCSD Pedl dataset, we
compare our method with other methods [1], [2], [7], [15],
[17], [18] reporting results on all 36 testing videos. As shown
in Table III, our model increases the AUC from 82.3% to
83.5% (about 1.2% improvement) on frame-level evaluation
and from 66.6% to 69.9% (about 3.3% improvement) on pixel-
level evaluation.

Ped2 and Avenue. We compare our method with different
hand-crafted features based methods [15], [18], [32], auto
encoder based methods [1], [2], [9], [20], and generative adver-
sarial network based methods [5]-[7]. The results are shown
as Table II. At both frame-level and pixel-level evaluation, our
model outperforms these methods on Ped2 and Avenue, which
demonstrates the superiority of our method.



TABLE 11
DETECTION RESULTS OF DIFFERENT METHODS AT FRAME-LEVEL AND PIXEL-LEVEL CRITERIA ON THE UCSD PED2 AND AVENUE DATASETS

UCSD Ped2 Avenue
Algothrim frame-level pixel-level frame-level pixel-level
AUC EER AUC EER AUC EER AUC EER
OC-SVM [32] 61.01 44.43 26.27 26.47 71.66 33.87 33.16 47.55
GMM [32] 75.20 30.95 51.93 18.46 67.27 35.84 43.06 43.13
MDT [18] 76.5 27.9 52.2 43.2 - - - -
MPPCA [15] 71.0 35.8 22.2 77.6 - - - -
Social force [17] 70.2 35.0 21.7 72.4 - - - -
ConvAE [1] 90.0 21.7 - - 70.2 25.1 - -
AMDN [36] 90.8 17.0 - - - - - -
ConvLSTM-AE [2] 88.1 - - - 77.0 - - -
STAE-grayscale [20] 91.2 16.7 - - 77.1 33.8 - -
FRCN action [33] 922 13.9 89.1 15.9 - - - -
GAN/gen [5] 93.5 14.0 - - - - - -
GAN/dis [6] 95.5 11.0 - - - - - -
MLAD(0+3) [7] 97.5 4.7 94.5 4.6 71.5 36.3 52.8 51.8
our TAM-Net 98.1 3.3 95.7 33 78.3 259 56.2 377
Real Frame Real Optical Flow  Reconstructed Frame Generated Optical Flow Generation Error  Abnormality Map Detection Result

Fig. 6. A few detection examples of our method. The last column shows the detected abnormal regions when threshold is set to 0.8.

Qualitative results. Fig. 6 shows the some detection results
of our proposed method on Pedl, Ped2 and Avenue datasets.
The generation error map of motion is shown as the fifth
column, and the sixth column is the fused abnormality map.
The last column shows the detected abnormal pixels when
the threshold is set to 0.8. We can observe that the TAM-Net
can obtain greater generation error when facing with abnormal
event to detect anomaly in videos.

V. CONCLUSION

In this paper, we propose a temporal enhanced appearance-
to-motion generative network for video anomaly detection,
which consists of a motion generative branch and reconstruc-
tion branch. In the motion generative branch, a ConvLSTM-

based GAN learns regular motion pattern via generating
optical flow map from the shared temporal encoded features.
The abnormal pixels can be highlighted in the generation error
maps of optical flow for abnormal events. Besides, a content
decoder is integrated with motion generative branch to model
appearance pattern, which can further improve the AUC values
of anomaly detection. By modeling evolution of appearance
and motion, our TAM-Net can effectively learn temporal regu-
larity of normal events. Experiments on 3 datasets demonstrate
the superiority of our TAM-Net over other methods.
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