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Abstract—Chinese poetry is an important part of worldwide
culture, and classical and modern sub-branches are quite differ-
ent. The former is a unique genre and has strict constraints, while
the latter is very flexible in length, optional to have rhymes, and
similar to modern poetry in other languages. Thus, it requires
more to control the coherence and improve the novelty. In this
paper, we propose a generate-retrieve-then-refine paradigm to
jointly improve the coherence and novelty. In the first stage, a
draft is generated given keywords (i.e., topics) only. The second
stage produces a “refining vector” from retrieval lines. At last, we
take into consideration both the draft and the “refining vector”
to generate a new poem. The draft provides future sentence-
level information for a line to be generated. Meanwhile, the
“refining vector” points out the direction of refinement based
on impressive words detection mechanism which can learn good
patterns from references and then create new ones via insertion
operation. Experimental results on a collected large-scale modern
Chinese poetry dataset show that our proposed approach can
not only generate more coherent poems, but also improve the
diversity and novelty.

Index Terms—generate-retrieve-then-refine paradigm, auto-
matic poetry generation, coherence and novelty

I. INTRODUCTION

Automatic poetry generation is a sub-field of Natural Lan-
guage Generation (NLG). In recent years, there have been
many studies focusing on the classical Chinese poetry gener-
ation, since this kind of poetry is distinctive. Among different
types of classical poems, quatrain (绝句) and regulated verse
(律诗) are perhaps the best-known ones. They mainly have
four requirements: 1) strict constrains in length, e.g., a qua-
train consists of four lines, and each line contains five or seven
characters; 2) tonal patterns, i.e., “Ping” (level tone) or “Ze”
(downward tone); 3) rhyme schemes, e.g., for a quatrain, the
ending character of the second and the fourth lines should have
the same rhyme; 4) unified structure, e.g., a quatrain often
follows the “beginning, continuation, transition, summary”
template [1].

The modern Chinese poetry has become more and more
popular nowadays, and people use it to record daily life,
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Fig. 1. A comparison between the classical and modern Chinese poetry.
The upper one is a 5-char quatrain exhibiting one of the most popular tonal
patterns, which is also used in Zhang and Lapata’s paper [2]. The tone of
each character is shown within parentheses, P and Z are “Ping” and “Ze”,
respectively. * indicates that the tone is not fixed and can be either. The lower
one is part of a famous modern Chinese poem. Rhyming characters are shown
with underlines.

express personal emotions, and send blessings at special oc-
casions. It is similar to modern poetry in other languages, and
does not have too many strict constraints. Meanwhile, there
are some challenges for automatic modern Chinese poetry
generation. Linguistic accordance (coherence) and aesthetic
innovation (novelty) are two important aspects. Modern poems
are more free in length, thus it is hard to control the coherence.
Besides, writing poems is an artistic creation process so nov-
elty is necessary, which means more imagination and various
uses of language are needed [3]. However, recent works mainly
focused on the classical Chinese poetry and could not cover
both two aspects very well at the same time [4].

To improve the coherence and novelty simultaneously, we
borrow thoughts from how humans compose a poem. Not like
one-stage automatic poetry generation, humans tend to start
with a draft, and keep polishing it. Basically, there are two
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ways to refine a draft: 1) learning from predecessors’ works.
They learn how to use words and organize sentences from
others’ masterpieces, and then apply them into their works to
create new expressions; 2) deliberating one sentence based on
the context. With the information from previous and following
sentences, they can modify current sentence to fit in the whole
poem more appropriately. There have been some works imi-
tating above ideas individually, and Wu et al. [5] summarized
them as either “retrieve-then-generate” paradigm [6]–[8] or
“generate-then-refine” paradigm [5], [9]–[14]. However, we
think both two ways are necessary and need to be considered
together, so we bring up the “generate-retrieve-then-refine”
paradigm. Besides, previous works can only utilize history
sentences or word-level bidirectional context, or they simply
feed all retrieval lines into model which may contain lots of
noises.

To tackle the above problems, we propose a novel approach
that polishes generated drafts with bidirectional sentence-level
context and a “refining vector” for modern Chinese poetry
generation. In the first stage, the model generates a draft which
provides future sentence-level information. Second, it lever-
ages the generated draft to get some retrieval lines, and uses
the impressive words detection mechanism to get the “refining
vector”. At last, both bidirectional sentence-level context and
the “refining vector” are applied to generate a refined poem.
Since we use both the past and future information in sentence
level, we can improve the coherence of the entire poem better.
By using impressive words detection mechanism, we filter out
noises and extract some good expression patterns to distill the
“refining vector”, and finally improve the novelty and diversity
of language usage.

Since there is no public large-scale modern Chinese poetry
dataset1, we collect one from the internet, and will publish it
in the near future. Experimental results on this dataset show
that our approach outperforms other baselines significantly in
terms of the coherence and novelty.

Our main contributions can be summarized as follows:

• We propose a new paradigm, generate-retrieve-then-
refine, for automatic poetry generation.

• In order to jointly improve the coherence and novelty,
we leverage future information from the draft and the
“refining vector” produced by impressive words detection
mechanism.

• We collect a large-scale modern Chinese poetry corpus,
and empirically verify the effectiveness of our model in
terms of fluency, coherence, novelty and diversity.

II. RELATED WORK

Our work touches two research fields: automatic poetry
generation and refinement methods.

1Liu et al. [15] published a small modern Chinese poetry dataset with
60,000 sentences in total. Their poems are cut into short chunks with the size
of 3 lines, while our dataset has over 9 million lines and keeps the original
long poems.

A. Automatic Poetry Generation

Early researches in this area are based on grammatical rules
[16]–[18], genetic algorithms [19]–[21] or statistical machine
translation methods [1], [22], [23]. After the boom of deep
learning, many new approaches have appeared. Yan et al. [24]
formulate this task as an optimization problem based on a
generative summarization framework. Zhang and Lapata [2]
utilize Recurrent Neural Networks (RNN) to take into account
the entire history of what has been generated. Wang et al. [25]
propose a two-step method which first plans the sub-topics
of the poem and then generates it with a modified Seq2Seq
model. Yang et al. [26] employ a conditional variational
autoencoder to generate thematic poems. Zhang et al. [4] lever-
age external memories to improve the creativity of generated
poems. In order to achieve better coherence, Yi et al. [27]
propose a novel Working Memory model to keep a coherent
information flow and learn to express each topic flexibly and
naturally. Cheng et al. [3] generate Modern Chinese poetry
from images. Liu et al. [15] work on rhetorical patterns (e.g.,
metaphor and personification) in modern Chinese poetry.

Our work differs from the above since: 1) most of them are
based on classical Chinese poetry generation; 2) the inputs are
not the same, and our input is text but not images; 3) the points
of interest are diverse, others focus on the theme, fluency,
diversity, rhetorical patterns, etc., while we try to improve the
coherence and novelty simultaneously.

B. Refinement Methods

There are two main paradigms for refinement. One is the
“retrieve-then-generate” paradigm. Song et al. [9] and Pandey
et al. [10] encode all retrieval candidates into vectors and
feed them into a decoder for response generation. Cao et
al. [11] apply this paradigm in summarization by reranking
and rewriting jointly. Li et al. [12] similarly use deletion,
retrieval and generation for text style transfer. Guu et al. [13]
leverage latent variables to form the “edit vector” according
to lexical differences (insertion and deletion words) in two
sentences, while Wu et al. [5] transfer the concept of “edit
vector” to response generation and explicitly utilize the lexical
differences in queries. The other is the “generate-then-refine”
paradigm. Yan et al. [6] generate a quatrain based on several
iterations. Xia et al. [7] propose Deliberate Network that
uses one decoder to generate a prototype from scratch and
another decoder to revise the prototype in a joint training
way. When generating a word in a sentence, this model can
leverage backward and forward words. Wang et al. [8] apply
the Deliberation Network to abstract generation.

The differences between the above paradigms and ours are
listed below. “Generate-then-refine” paradigm only utilizes
context information in word level, which means that when
generating a word, it only looks backward and forward in
the range of current sentence. In contrast, we use future
sentences from the draft when generating a word, so we
can see much wider context in sentence level. “Retrieve-
then-generate” paradigm tries to edit the retrieval sentences.
It cannot guarantee the content coherence as the retrieval



Fig. 2. Overview of our GRR (generate-retrieve-then-refine) model. Lower: The draft generator generates draft D given n keywords. Upper: When generating
line Li, bidirectional context encoder is used to encode context Li−m:i−1 and L′i+1:i+m, draft encoder is for L′i. Impressive word candidates consist of
keyword ki and good patterns we detected. “bcv”, “dv” and “ref” are bidirectional context vector, draft vector and refining vector, respectively.

sentences may be noisy and very different in topic and style.
On the contrary, we try to edit a generated draft, as it is
consistent to some extent, and we tune it and make it better.
Besides, we distill a “refining vector” to point out the direction
for refinement. The “edit vector” in previous works [5], [13]
is simply the concatenation of insertion and deletion words,
while the “refining vector” represents good expression patterns
in retrieval sentences, thus it contains more diverse language
usage. Our approach is a combination of the above two
paradigms.

III. BACKGROUND

For input X = {xi}ni=1, where n is the number of words,
it is encoded into a sequence of hidden states H = {hi}ni=1.
Here we employ êxt as the embedding vector of word xt, and
the hidden state ht is defined as:

ht = fLSTM(ht−1, êxt
), (1)

where fLSTM is the activation function of LSTM.
The decoder state st is updated by:

st = fLSTM(st−1, êyt−1
, ct), (2)

where st−1 and êyt−1
are hidden state and word embedding of

decoded word at time step t− 1 respectively. ct is calculated
by attention mechanism. Attention mechanism [28] is designed
to focus on input information which is highly related to the
generation of current word. The relevance between the to-be-
generated word yt and the i-th input word is computed as:

ri,t = vTα tanh (Wαst−1 +Uαhi) . (3)

Then, the relevance score is normalized and serves as the
weight for corresponding encoder hidden state when calcu-
lating vector ct:

αi,t =
exp (ri,t)∑T
i′=1 exp (ri′,t)

, ct =
∑n

i=1
αi,thi. (4)

IV. APPROACH

Coherence of a poem is mainly embodied in the relevance
between several consecutive sentences, while novelty can
be regarded as the way how new expression patterns are
constructed. We generate a draft given some keywords at first.
Then, we improve coherence and novelty jointly by leveraging
bidirectional sentence-level context and a “refining vector”
from the impressive words detection mechanism.

A. Writing Topic Representation

Suppose we have a dataset D = {P̂j}Nj=1, and N is the
number of poems. Each poem has n lines, i.e. P̂j = {L̂i}ni=1.
Following the works of Wang et al. [25] and Yang et al. [26]
which assume that each line in the poem corresponds to a
keyword (sub-topic), we use TextRank [29] to extract keyword
ki for each line. Then, we obtain {(L̂i, ki)}ni=1 pairs for each
poem.

TextRank is a graph-based algorithm. Each vertex stands
for a candidate word and edges between two words represent
their co-occurrence. Besides, the edge weight is set according
to the total co-occurrence rate between these two words.
The TextRank score T (Vi) is initialized to a default value
and computed iteratively until convergence according to the
following equation:

T (Vi) = (1− d) + d
∑

Vj∈E(Vi)

wji∑
Vk∈E(Vj)

wjk
T (Vj), (5)

where wji is the weight of the edge between vertex Vj and
Vi, E(Vi) is the set of vertices connected with Vi, and d is
a damping factor. Empirically, d is set to 0.85 and the initial
score of T (Vi) is 1.0.

B. Draft Generation

In Draft Generation Stage, our goal is to write a draft D
with n lines, i.e. D = {L′i}ni=1, given keywords {ki}ni=1. L′i



is generated by taking the concatenated result of keyword ki
and previous m lines L′i−m:i−1 as input. We use a multi-layer
encoder with bidirectional Long Short-Term Memory (LSTM)
[30] to encode the input by concatenating the last hidden states
of the forward and backward LSTMs of the top layer, i.e.
hi =

[−→
h i;
←−
h i

]
.

Then we feed hi to an attention-based multi-layer decoder.
The parameters of the model are trained to maximize the log-
likelihood on the entire training set, which is formulated as:

argmax
∑M

i=1
logP (L′i|L′i−m:i−1, ki), (6)

where M is the number of input-output pairs of the model.

C. Impressive Words Detection Mechanism

Algorithm 1 Impressive Words Detection
Input: Line L′ (we omit i) in draft D, candidate number

Niw
Output: Impressive words W
1: Retrieve twenty human-written lines R from Elasticsearch

based on L′ and keyword k.
2: Segment each line r ∈ R into words and select one line
r′ based on Jaccard similarity and sentence length.

3: Label POS tags, calculate TFIDF values for each word in
L′ and r′, and keep nouns (n.), adjectives (a.) and verbs
(v.).

4: Group words: n., a. for one set and v. for the other, and
get word lists wL′na, wL′v and wr′na, wr′v for L′ and r′.

5: Sort wL′na, wL′v , wr′na and wr′v individually by TFIDF
values in descending order.

6: Get new word lists wL′′, wr′′ by concatenation, wL′′ =
wL′na + wL′v , wr′′ = wr′na + wr′v .

7: Let cn = 0, W = []
8: for each w ∈ wr′′ do
9: if cn < Niw then

10: if w /∈ wL′′ then
11: Add w to W , cn = cn+ 1
12: end if
13: else
14: Jump out of the loop
15: end if
16: end for
17: return W

In order to learn good patterns explicitly in poems written
by humans and generate new expressions, we import the
impressive words detection mechanism.

Given the entire training set, we index each line and
construct a query as the combination of the draft line L′i and
its keyword ki. We use the query to retrieve top 20 similar
poem lines from the index based on a BM25 score [31]. Here,
we use an open-source tool Elasticsearch2. Then, we pick
sentences with characters more than 5 to maintain meaningful

2https://www.elastic.co/products/elasticsearch

ones, perform word segmentation by Jieba3. Sentences that
are almost identical with the draft line are not needed, since
do not want to simply copy the retrieval lines. Our goal is
to generate some new and impressive expressions by learning
the most essential patterns from retrieval results. Therefore, we
pick out the most similar retrieval lines in the range of [0.3,
0.7] (Algorithm 1 line 1 to 2) based on Jaccard similarity
which is defined as:

J(S(L′), S(r)) =
|S(L′) ∩ S(r)|
|S(L′) ∪ S(r)|

, (7)

where S(L′) and S(r) are word sets of the draft line L′ and
retrieval line r, respectively. | · | denotes the size of a set.

For the obtained one retrieval line, we employ Part of
Speech (POS) tagging on each word by Jieba4 and only keep
nouns(n.), adjectives(a.) and verbs(v.), since they are usually
semantically rich. Then we group these three kinds of words
into na (nouns and adjectives) set and v (verb) set. For each
set, we use the TFIDF value to sort words in descending order.
Then we get two concatenated ordered word lists denoted by
wL′′ and wr′′ (Algorithm 1 line 3 to 6). Then we select words
appearing in wr′′ but not in wL′′ as the impressive word
candidates for line L′ (Algorithm 1 line 7 to 17). Finally,
we have triples {(L′i, ki, {wi,j}

Niw
j=1 )}ni=1 for each draft, where

Niw is the number of impressive words candidates.

D. Refinement

In Refinement stage, we generate a new poem P with n
lines, P = {Li}ni=1 by taking into account both the draft
and “refining vector” distilled from impressive patterns. When
generating line Li, there are three parts of the input, which
are bidirectional sentence-level context, L′i from draft and the
“refining vector”.

1) Construct Bidirectional Context: For NLG tasks, when
generating a word in a sequence, only previously produced
words can be utilized. Even with two decoders like Delibera-
tion Network [7], the backward and forward information are
limited in one sentence. In contrast, given a draft, humans
tend to polish a line based on sentences before and after
current one to make the poem more coherent and fluent.
Inspired by this, the bidirectional sentence-level context in
our model is composed of Li−m:i−1 and L′i+1:i+m. Li−m:i−1
are lines we generated before Li in refinement stage and
provide information in the past, while L′i+1:i+m are lines in the
draft version and represent information in the future. Finally,
Li−m:i−1 and L′i+1:i+m are concatenated and the bidirectional
context is transformed to hidden vectors {hj |hj =

−→
hj ;
←−
hj}2mj=1

with bidirectional LSTM.
2) Refining Vector: For each draft line L′i, impressive words

detection gives out corresponding impressive words candidates
W = {wi}Niw

i=1 . Instead of feeding these words and keyword
ki directly to the model, we compute a “refining vector” by
an attention mechanism defined as follows:

3https://github.com/fxsjy/jieba
4Jieba is for modern Chinese, which fits our task on modern Chinese poetry,

and its POS tagging results are reasonable enough by human evaluation.



ref =
∑

w∈W∪{ki}

αwêw, (8)

where êw is the embedding of word w. The weight αw is
computed by:

αw =
exp (ew)∑

w∈W∪{ki} exp (ew)
, (9)

ew = vTα tanh (Wαh2m +Uαêw) . (10)

Here, h2m is the last hidden state of bidirectional context
encoder, since we need to consider bidirectional context when
we want to add impressive words in current sentence.

The decoder state st is updated by:

st = fLSTM(st−1, êyt−1 , rt), (11)

rt = bcvt ⊕ dvt ⊕ ref, (12)

where bcvt and dvt denotes the bidirectional context vector
and draft vector at time step t, ref is time step independent.
For bidirectional context and draft hidden states, we apply two
attention mechanisms on them, following Equation 4. Then we
get bidirectional context vector bcv and draft vector dv.

V. EXPERIMENTS

We first introduce some empirical settings, including the
dataset, baselines, implementation details and performance
measures, then use evaluations on both automatic metrics and
human judgements to prove the effectiveness of our model.
Finally, we conduct case study to show the quality of generated
poems.

A. Dataset

TABLE I
STATISTICS ABOUT OUR MODERN CHINESE POETRY CORPUS.

Number of poems in training set 210,935
Number of poems in validation set 26,367
Number of poems in test set 26,367
Lines per poem 10.25
Characters per line 12.35
Characters per poem 143.77

Since there is no public large-scale modern Chinese poetry
dataset, we collect a new dataset. Our dataset is constructed
with 2 parts: (1) modern Chinese poetry, collected from a
online poetry website5; (2) modern Chinese lyrics, collected
from NetEase Cloud Music6. Lyrics are very close to modern
poems in both content and style so we can regard them as
poetry. We totally collect 263,669 modern Chinese poems
containing 9,209,186 sentences. Then, we tokenize each line
to words by Jieba and calculate the TextRank score for each
word. The word with the highest TextRank score is selected
as the keyword for each line. The dataset is separated into
training, validation, and test sets with the ratio 8:1:1. Table I
provides descriptive statistics about our dataset.

5http://www.shigeku.org
6http://music.163.com

B. Baselines

We compare our model with representative poetry genera-
tion and refinement approaches as listed below:

Plan: a Planning-based model [25] which divides poetry
generation into two steps: organizing outlines (keywords) and
writing poems.

DN: the Deliberation Network [7] which is firstly proposed
for machine translation. When generating a word in a sentence,
it looks backward and forward in the range of current sentence
by jointly optimizing two decoders. It’s a representative model
for the “generate-then-refine” paradigm.

EED: the Exemplar Encoder-Decoder model [10] which is
firstly proposed for neural conversation generation. There are
two encoders: context encoder and similar-sentence encoder.
These similar sentences are retrieved from training set and fed
entirely into the second encoder. It’s a representative model for
the “retrieval-then-generate” paradigm.

Mem: a poetry generation model with neural memory [4]
that contains human-written poems in a static external memory
to improve the generated quatrains. It aims to generate creative
Chinese poetry.

WM: a recent Working Memory model [27] for poetry
generation that dynamically invokes a memory component
by saving the writing history into memory. It focuses on
generating coherent poems.

We denote our model as GRR, and GRR-Refine is the one
without the “refining vector”.

C. Implementation Details

We employ 54,500 words with the highest frequency as
our vocabulary and define all the out-of-vocabulary words to
a special token <unk>. The word embedding size is 128,
and initialized with word2vec [32] pre-trained on the poetry
corpus. The recurrent hidden layers of encoder and decoder
contain 128 hidden units, and the number of layers is 4. The
model is trained using the Adam algorithm [33], where the
batch size is 512 and the learning rate is 3e-4. The dropout
technique [34] is also adopted and the dropout rate is set to
0.3. The number of sentence-level context in one direction (m)
is set to 1. The number of impressive word candidates (Niw)
is set to 2. All models are implemented with the same set
of hyper-parameters. Optimization objective is standard cross
entropy. For inference, beam search is utilized and the beam
size is 10. We tune our hyper-parameters on validation set
and measure the performance on test set. We use Tensorflow
Framework7 for our implementation.

D. Performance Measures

We use four metrics for automatic evaluation: Perplexity
(PPL): it measures the average fluency of generated poems.
Using a 5-gram character based language model trained on
our poetry corpus, we calculate the perplexity on test set.
Rouge-L: it uses longest common sub-sequence to calculate
the similarity between the generated line and its reference [35].

7https://www.tensorflow.org/



TABLE II
AUTOMATIC AND HUMAN EVALUATION RESULTS. THE LAST LINE IS THE RESULTS OF HUMAN-WRITTEN POEMS IN TEST SET AND HUMAN EVALUATION
SET. ALL SIGNIFICANCE TESTS ARE MEASURED BY T-TEST, AND THE RESULTS SHOW THAT THE IMPROVEMENTS OF OUR MODEL ARE SIGNIFICANT ON

THE DATASET, I.E., P-VALUE < 0.01.

Automatic Evaluation Human Evaluation
PPL Rough-L Distinct-1 Distinct-2 Novelty-2 Novelty-3 Fluency Coherence Impressiveness Poeticness

Plan 30.98 0.3375 0.2978 0.7025 1020 4985 3.19 2.94 2.74 2.97
DN 26.33 0.3423 0.3017 0.7203 1036 5006 3.23 3.08 2.79 3.09
EED 27.45 0.3533 0.3121 0.7655 1058 5073 3.32 3.29 3.16 3.21
Mem 27.72 0.3425 0.3335 0.7836 1077 5092 3.55 3.52 3.35 3.18
WM 26.84 0.3654 0.3226 0.7521 1043 5089 3.68 3.73 3.50 3.30
GRR-Refine 24.06 0.3178 0.3237 0.7636 1050 5070 3.85 3.94 3.44 3.37
GRR 28.52 0.4138 0.3447 0.8287 1085 5102 3.88 3.98 3.86 3.40

Human-written 25.32 / 0.3640 0.8275 1064 5072 4.06 4.20 4.35 4.42

Distinct-1/2: it reflects whether poems are diverse in content.
It is defined as the ratio of unique uni/bi-grams over all uni/bi-
grams in generated poems [36]. Novelty-2/3: it is a new metric
defined in this paper, which is calculated as the number of new
bi-/tri-grams that do not appear in the training set.

Human evaluation is necessary for poetry generation. In
order to make our results more believable, we use four criteria
for human evaluation following Yi et al. [37] and Wang et al.
[25]: Fluency: it measures whether the poem reads smoothly
and fluently. Coherence: it measures the relevance of adjacent
lines in one poem. Impressiveness: one of our motivations
is trying to learn some good patterns explicitly from human-
written poems and then to generate new ones. We design this
criterion to let annotators judge whether our model generates
some impressive expressions. Poeticness: it represents the
overall quality of a poem, such as whether a poem could
convey a poetic image and artistic conception.

We randomly select 200 groups of keywords and feed them
into 7 models. For each group, we shuffle these 7 poems and
the corresponding human-written one, then display them in one
page8, and the annotators do not know their sources. During
evaluation, annotators can also see retrieval lines to help them
judge the novelty to some extent. Each criterion is assessed
with a score from 1 (worst) to 5 (best) by 8 annotators, and the
average score for each criterion is computed. The annotators
are all postgraduate students in literature background, and they
took 10 days on average to finish the evaluation. The Fleiss’
kappa [38] value is 0.403.

E. Experimental Results

Now we demonstrate our experimental results on the dataset
in terms of automatic evaluation and human evaluation.

1) Automatic Evaluation Results: The left part of Table II
shows the automatic evaluation results on our test set. Our
proposed method GRR outperforms other models almost on all
metrics. GRR-Refine receives the lowest PPL values, which
shows that bidirectional sentence-level context is beneficial to
fluency. It has been proven that lower PPL values usually
correspond to simple and general sentences, thus a higher

8Since annotators can see 8 poems at the same time, their scores are based
on comparison, which are more reliable.

PPL for GRR indicates that our model can generates more
diverse and novel words. A higher Rough-L score shows that
our generated sentences are more similar to their references,
which also implies their diversity.

GRR-Refine or EED help very little on Distinct-1/2 score,
even information like future sentences or similar sentences are
provided to these models. Compared to EED, Mem and GRR-
Refine, the highest Distinct-1/2 score of GRR illustrates the
effectiveness of the “refining vector”, that is, rather than using
the entire retrieval candidates, memory-stored sentences or
generated lines, the “refining vector” is more useful to reduce
the noises and improve the diversity. Our approach increases
both Distinct-1/2 and Novelty-2/3 significantly, which indicates
that it generates more diverse and creative expressions. All
significance tests are measured by t-test, and the results show
that the improvements of our model are significant on the
dataset, i.e., p-value < 0.01.

2) Human Evaluation Results: Human evaluation results
are shown in the right part of Table II. GRR receives the best
evaluation on all metrics. The evaluation results on Coherence
and Impressiveness prove that our model can jointly improve
coherence, diversity and novelty. Compared with DN and WM,
GRR-Refine has higher Coherence score, which indicates the
validity of bidirectional sentence-level context for improving
the coherence. Besides, human evaluation results on Fluency
and Coherence show that PPL is not totally reliable for
sentence fluency and especially poem coherence. For human,
a sentence with diverse language usage can also be fluent but
its PPL value may be high.

Impressiveness and Poeticness scores almost have the same
tendency. GRR outperforms other methods significantly, which
means that our proposed approach can generate some good
and new expression patterns successfully, and more impressive
patterns also help express intents and emotions clearly, which
contributes to the overall Poeticness. All significance tests are
measured by t-test, and the results show that the improvements
of our model are significant on the dataset, i.e., p-value < 0.01.

Since human-written poems are mixed with other generated
ones and evaluated by annotators, we put the results of them
in the last line of Table II to show the gap between generated
and human-written poems in our human evaluation set.



Fig. 3. Examples generated by our method. The keywords lie in the first block. The second block is a draft and the third block is corresponding retrieval
lines. Words in parentheses in the last block is the impressive words candidates extracted by impressive words detection mechanism. Words in (red) bold play
a positive role on coherence, and phrases with wavy underlines are impressive expressions. In order to better understand these generated poems, we also use
“//” to separate slightly different semantic chunks.

F. Case Study

We present examples generated by GRR-Refine and GRR
with the same keywords in Figure 3 for case study. Comparing
the draft and the poem generated by GRR-Refine, we figure
out that the correct usage of conjunctions and pronouns can
improve the coherence of entire poem. For the draft, “you are
the little flower in my heart, and that is my memory of you”,
this sentence is about the memory of a person and does not
have many connections with preceding and following lines.
In contrast, the fourth line in GRR-Refine poem writes that
“these are memories of my life”, and looking back to the first
three lines in it, they are all in the structure that a noun with
its modifier, which enhances the relationship in the first four
lines. Word “affection” with underlines in the sixth line is
also the keyword in the seventh line, which shows that the
generation of the sixth line is influenced by its next line. Above
characteristics also occur in the poem generated by GRR, for
example, “but” and “since” are well used in this example. The
reason for improving coherence is that we take bidirectional
context into consideration, and this can help generate closely

tied sentences.
When it comes to impressive words generation, phrases with

wavy underlines in GRR poem are new patterns that do not
appear in neither the draft nor corresponding retrieval lines. A
poem can be creative and vivid if it includes various nouns,
verbs and adjectives. As we can see, “scatter”, “blossom” and
“a string of” are all impressive expressions that can lighten
a sentence. The GRR poem shows that our generated poems
can be more diverse and creative.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a generate-retrieve-then-refine
paradigm for poetry generation by imitating humans’ com-
position process. It enables a generative model to leverage
both generated draft and retrieval results. To improve the
coherence, we use bidirectional sentence-level context from
previous generated lines and draft lines. Also, we introduce
the “refining vector” distilled by impressive words detection
mechanism to generate newer and more impressive expres-
sions. Experimental results on a large-scale modern Chinese
poetry dataset show that our model outperforms baselines in



terms of coherence and novelty. In the future, we will use other
datasets to demonstrate the effectiveness of our approach, and
further investigate the way to fulfill impressive words detection
in an End-to-End framework.
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