
A Neural Network Toolbox for Electricity
Consumption Forecasting

Jarosław Protasiewicz
National Information Processing Institute

Warsaw, Poland
jaroslaw.protasiewicz@opi.org.pl

Abstract—The aim of this study is to propose a neural toolbox
for electricity consumption prediction. The toolkit covers the
implementation of three artificial neural networks, namely: (i)
a multi-layered perceptron network; (ii) a radial basis function
network; and (iii) a self-organising map. Moreover, the toolbox
includes tools known as metamodels, which allow easy use of
these networks for forecasting. There are two prediction systems,
namely: (i) serially connected models; and (ii) a two-levelled
structure containing a classifier and a set of parallel models.
They have been validated experimentally in the task of electricity
consumption prediction. The results and flexibility of use suggest
that the neural toolbox should help users to develop prediction
systems of electricity consumption more conveniently, as it is
designed for that particular purpose. The toolbox has been
developed as open source - no commercial software is required
to use it.

Index Terms—neural networks, open source, electric energy

I. INTRODUCTION

The use of artificial neural networks remains a vital tech-
nique for data clustering and classification, forecasting, iden-
tification, and control. There is an extensive collection of
studies demonstrating the application of various types of neu-
ral network to time series prediction, including in electricity
consumption forecasting. Neural networks are commonly used
due to their ability to model non-linear relations between input
variables.

Although much software can be found which implements
neural networks, most of it is dedicated to general purposes
and needs to be adjusted for any particular task. The most pop-
ular open source packages presently are Tensorflow [1], [2],
Keras, and Weka [3], [4]. Their universality is an advantage
because anyone can adapt the software to his/her needs, though
this may also act as a drawback, as implementing any task
requires substantial effort from the user. It was thus necessary
to propose a neural software toolbox for time series prediction.

This study introduces a neural toolbox designated especially
for time series prediction. The toolbox covers the imple-
mentation of three artificial neural networks, namely: (i) a
multi-layered perceptron network; (ii) a radial basis function
network; and (iii) a self-organising map. Moreover, it includes
the tools known as metamodels, which allow easy use of these
networks for forecasting. I propose two prediction systems,
namely: (i) serially connected models and (ii) a two-levelled
structure containing a classifier and a set of parallel models.

The software is implemented in Java, meaning that it can easily
be integrated with other software.

The remainder of the paper is structured as follows: Firstly,
Section II briefly discusses the most popular open source
neural software. Next, Section III offers a short description of
the neural networks that are implemented in the toolbox, and
includes the technical details of the toolbox. Next, Section IV
demonstrates two exemplary applications of the toolbox for
time series prediction. Finally, conclusions and references are
included in Section V.

II. BRIEF OVERVIEW OF OPEN SOURCE NEURAL
SOFTWARE

Much effort has been made to produce neural network
software in recent years. Whilst there is a multitude of com-
mercial software on the market currently, this study focuses
exclusively on open source software. Thus, a brief discussion
of open source neural software, which is freely accessible on
the internet, is warranted.

One of the earliest implementations is the Stuttgart Neural
Network Simulator (SNNS), developed at the University of
Stuttgart1 [5]. Like the Fast Artificial Neural Network2 -
originally established at the University of Copenhagen - the
SNNS is written in C language [6]. Some neural software
is also developed in Java, notably the Java Neural Network
Simulator,3 (JavaNNS) [7] developed at the University of
Tubingen.

The latest implementations focus primarily on deep learning
methods. Deeplearning4j4 [8] is neural software, produced
using Java, which uses the ND4J computing library in C++.
The main advantage of this tool is the possibility to distribute
computation tasks on multiple nodes by using Apache Spark or
Hadoop. UC Berkeley researchers have produced yet another
deep learning tool, Caffe5 [9]. It was developed using C++
and Python, the latter of which is becoming an increasingly
popular programming language for machine learning solutions.
Some of the flagship software packages include: (i) the open-
source software library for Machine Intelligence6 (Tensor-

1http://www.ra.cs.uni-tuebingen.de/SNNS
2http://leenissen.dk/fann/wp
3http://www.ra.cs.uni-tuebingen.de/software/JavaNNS
4https://deeplearning4j.org
5http://caffe.berkeleyvision.org
6https://www.tensorflow.org

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Flow) [1], [2]; (ii) the Python Deep Learning library7 (Keras);
(iii) the Python library, Theano8 developed at the University
of Montreal [10]; (iv) a scientific computing toolbox; Torch9

developed in C and Lua [11], [12]; and Weka10 [3], [4].
It would be highly challenging to enumerate all neural

libraries - many of them are outdated because they are rarely
maintained or updated following initial release.

III. NEURAL TOOLBOX

This section covers the implementation details of the tool-
box, i.e. algorithms, relations between main objects, and
architecture11.

A. Algorithms

The toolbox implements three artificial neural networks,
namely (i) a multi-layered perceptron (MLP) network; (ii) a
radial basis function (RBF) network; and a self-organising map
(SOM). Since these neural networks are widely known, only
crucial information is included in this paper to clarify what
exactly the toolbox implements.

The MLP network is equipped with a backpropagation
algorithm in a basic form and with an additional momentum
component [13], [14]. In both cases, the learning rate can be
either fixed or adaptive. The fast backpropagation algorithm
with heuristic modifications proposed by Fahlman [15] is also
utilised in this model. The network may be composed of
perceptrons or ADALINE neurons organised in several layers.
A neuron may have a linear, sigmoidal, or Fahlman activation
function.

The RBF network includes both gradient and non-gradient
training methods [16]. The weight of an output layer can by
calculated by using a matrix pseudo-inversion method, or a
gradient descent algorithm which works stochastically. The
gradient approach also applies to the parameters of a radial
layer, i.e. the positions of the centres and degrees of the
centres’ fuzziness. The number of radial functions must be
drawn randomly. They may then be fine-tuned by a k-means
algorithm if necessary. A function may be Gaussian, power,
or glued.

The SOM is consistent with the Kohonen proposal [17]. In
the toolbox, a map may be one, two, or three-dimensional. A
neighbourhood measure between neurons can be rectangular,
hexagonal, or Gaussian. It is possible to measure distances
by using the maximum, Euclidean, or Manhattan metrics.
During self-organisation, the learning rate can be decreased
exponentially or linearly.

7https://keras.io
8http://deeplearning.net/software/theano
9http://torch.ch
10https://www.cs.waikato.ac.nz/ml/weka
11Please note that terms in italics, e.g. ‘Neuron’, ‘Layer’, or ‘Network’,

refer to classes or their instances, i.e. objects, in the context of an object
programming language. Conversely, the same terms in standard fonts, e.g.
‘Neuron’, ‘Layer’, or ‘Network’, relate to concepts applied in the field of
artificial intelligence.

B. Main classes

The toolbox is implemented in Java. Since it is a fully
object-oriented language, Java offers advanced modelling tech-
niques of concepts and data. There are six primary object
types, namely: Function, Neuron, Layer, Network, Algorithm,
and DataSet. Figure 1 shows the relationships between each
of them.

Fig. 1. A diagram showing the primary objects of the toolbox and the
relationships between them. It complies with Unified Modeling Language 2.0
(UML), i.e. arrows indicate that one object uses another in some way; objects
connected by an empty diamond indicate an inclusion; and objects connected
by a filled diamond show a composition.

The most elementary component of the toolbox is Func-
tion, which can act as an activation function of a neuron; a
method of centre selection; a distance metric; a neighbourhood
measure; an error measure; or a learning rate. Functions are
classes which provide uncomplicated methods for processing
the signals of a neural network or measuring its parameters.
They are therefore able to control training and simulation. All
classes extend the basic abstract class, Function and inherit
the ability to save or restore their state.

Additionally, Neuron is a fundamental processing element
of the toolbox. It includes one NeuronConfiguration object,
which defines neuron properties. It may include one Function
object which implements its activation function. Neurons in
an artificial neural network communicate with each other via
their inputs and outputs, and they are unaware of anything

more about themselves. The neuron classes in the toolbox
satisfy these assumptions. Each neuron class extends the basic
abstract class, Neuron and is concurrently able to calculate its
outputs based on input signals.

Next, the Layer object consists of one or more Neuron
objects. Practically, it is a layer or a matrix of artificial
neurons. The layer is usually two-dimensional, whereas the
matrix is able to be n-dimensional. Moreover, it includes
exactly one LayerConfiguration object, and it might include
one Function object. They determine a layer’s topology and
parameters. The Layer object organises the Neuron objects
topologically. Hence, it is able to process signals concurrently.
There are several layer types in the toolbox. Each of them
extends the abstract basic class, Layer.

Then, the Network object is composed of one or more Lay-
ers. The classes of neural networks extend the abstract class,
Network. The Network class is able to determine its outputs
during simulation based on inputs. The Network class includes
precisely one NetworkConfiguration object carrying its static
properties, and one or more Function objects modelling its
dynamic properties.

The Network uses the Algorithm object, which covers the
implementation of a training algorithm. Its parameters are
included in an AlgorithmConfiguration object. In addition,
it may include one or more Function objects, which imple-
ment an algorithm’s particular properties, e.g. changes in the
learning rate or neighbourhood. Finally, the Algorithm object
uses at least one DataSet object, which is responsible for
serving data for training, validation, testing, and simulation.
The training algorithms are separated from the elements of
neural networks, which means that they are unaware of their
own internal structure. However, they use objects such as
Function, DataSet, and Network by executing their public
methods. Each algorithm implemented in the toolbox extends
the abstract class, Algorithm.

C. Architecture

The toolbox comprises a typical three-layered architecture:
more specifically, it is composed of data, business, and inter-
face layers (see Figure 2).

The data access layer contains a database, which stores
trained artificial networks, data and predictions. They can be
accessed as Value Objects through programming interfaces
known as Data Access Objects (DAO). The DAOs are a group
of classes suitable for data access and managing connections
to the database. There are also API classes which provide
more complex operations, e.g. storing forecasts or retrieving
metamodels. Although the software currently works with the
PostgreSQL12 database, it can easily be adjusted to work with
any database.

The business layer hosts all computational processes, in-
cluding the training and simulation of neural networks; fore-
casting by using models and metamodels; and quality mea-
surement (see the business layer in Figure 2). The model

12https://www.postgresql.org

Fig. 2. An architecture of the toolbox.

corresponds to a neural network with its parameters. The
model contains data for training and simulation of the neural
network. It knows how to utilise the neural network and gener-
ate forecasts. Each model is based on the abstract class, Model.
Moreover, a metamodel organises models into a forecasting
system. It serves as a recipe, explaining how to use models
to execute a required job. Such a system is able to generate
better quality predictions than a single model, especially when
considering longer-term predictions.

Both models and metamodels can be accessed from the
interface layer. It covers two job types, namely: (i) a cross-
validation suitable for training models; and (ii) a task, which
primarily executes metamodels to obtain predictions. Both of
them utilise configurations and produce either signals (fore-
casts) or statistics (performance indicators). Since the toolbox
was designed to be incorporated easily into any software, it
was unnecessary to equip it with a graphical interface. In its
place, the toolbox contains dedicated classes. They constitute
a programming interface, in which a user can define any task
which is allowed by the software library. Naturally, its use
requires some degree of programming skill from the user.

IV. TIME SERIES PREDICTION

The section introduces two applications of the toolbox for
time series prediction, namely: (i) a serial connection of MLP
networks; and (ii) a two-levelled system composed of an SOM
classifier and MLP or RBF networks [18].

A. Data analysis

The experiments were conducted on hourly electric energy
consumption data from 2002 to 2004 in central Poland,
excluding Warsaw (see data in Figure 3a).

Fig. 3. Autocorrelation of time series of electric energy consumption: a) an
original time series; b) daily autocorrelation; c) weekly autocorrelation; d)
seasonal autocorrelation.

To propose an accurate prediction model, the time series
under examination must be stationary. This can be checked
by analysing its linear autocorrelation. Figures 3b and 3c
show distinctive daily and weekly autocorrelation, whereas,
Figure 3d depicts no seasonal autocorrelation. Thus, the elec-
tricity consumption is a stationary time series, and operates in
daily and weekly cycles.

It is believed that meteorological factors may influence the
electricity consumption of common consumers. To validate
this assumption, correlations between the time series of electric
energy and temperature, humidity, and insolation were calcu-
lated. The linear Pearson correlations are presented in Table I.
Between the aforementioned weather factors and electricity
consumption, a moderate correlation can be observed during
summer, and a low correlation during spring and autumn.

TABLE I
LINEAR CORRELATION OF ELECTRIC ENERGY CONSUMPTION AND

TEMPERATURE, HUMIDITY, AND INSOLATION IN MONTHS AND YEARS.
RED INDICATES A MODEST CORRELATION; BLUE INDICATES A LOW

CORRELATION; AND BLACK INDICATES NO CORRELATION.

Linear relationships may not explain the whole variability of
electricity consumption. Additional tests, such as Spearman’s
rank correlation, may reveal previously hidden relationships.
The results in Table II indicate that we cannot reject the
hypothesis that rank correlations exist between weather factors
and electricity consumption.

All of these tests suggest that a non-linear model, such
as a neural network, is necessary to predict electric energy
consumption. Each model may focus on particular days of
the week, or on public holidays, such as Christmas Day or
Easter Sunday, and may also be dependent on the data from
a previous day.

B. Serial model

In this approach, several prediction models are connected
serially. Each model represents a particular day type, and
produces forecasts for the day ahead to which it corresponds.
The models collectively form a metamodel, and their forecasts
are logically joined to form long-term predictions. The first
model in the series receives only historical data such as inputs;
whereas each successive model utilises some of the data and
forecasts produced by the previous model (Figure 4).

Figure 5 outlines the technical implementation of the algo-
rithm. Initially, the models of all types are preliminarily trained
using historical data, and are then stored in a database. Then,

TABLE II
RANK CORRELATION OF ELECTRIC ENERGY CONSUMPTION AND

TEMPERATURE, HUMIDITY, AND INSOLATION IN MONTHS AND YEARS.
BOLD NUMBERS INDICATE THE PRESENCE OF SUCH A CORRELATION.

D1

Dataset

D2

P1

DM

P2 PM

M
o

d
e

l 1

M
o

d
e

l 2

M
o

d
e

l 1

M
o

d
e

l M

PM−1

Fig. 4. A serial meta-model (D - a training dataset; P - forecasts).

the appropriate models are selected for the prediction period.
They are fine-tuned making use of additional data. Finally, the
models are ready to produce forecasts which are connected
serially as outputs for each of the models.

An exemplary application of this approach is in the pre-
diction of electric energy consumption based on autoregres-
sive inputs, e.g. historical electric energy consumption, and
regressive inputs such as temperature, humidity and insolation.
Here, each model corresponds to a particular day type, and
predicts for one day ahead. For instance, there may be separate
models for each day of the week and for each public holiday.
Thus, the position of the models in the series depends on a
calendar. Figure 6 presents the distribution of percentage errors
of electricity consumption forecasts for two days ahead in one

Fig. 5. Serial metamodel in practice.

year. The forecasts originate from eight serial metamodels,
each dependent on different input parameters.

Fig. 6. The distribution of percentage errors of electricity consumption
forecasts produced by exemplary serial meta-models (W - a neural network,
e - electric energy consumption, t - temperature, n - insolation, w - humidity,
PE - percentage error).

C. Parallel model

The second application of the toolbox is a parallel meta-
model which contains a classifier at the first level, and a set of
prediction models at the second. The classifier decides which
model has to make predictions for a particular time in the
future. In this way, a long-term forecast can be produced by
well-adjusted prediction models (Figure 7).

In practice, the classifier is based on a self-organising
network; whereas, the prediction models can be implemented
either as MLP networks or RBF networks. The classifier
clusters input data such as electricity consumption and weather
factors. These clusters act as training sets for prediction
models. Due to the relatively small cluster size, the models
predict only a few hours ahead. That is less than in the serial

Model 2
C
la
ss
ifi
e
r

D

D1

D2

DM

P1

P2

PM
Model M

Model 1

Fig. 7. A parallel metamodel (D - a training dataset; P - forecasts).

metamodel. Since the classifier organises data and models, the
parallel metamodel is able to work without the knowledge of
experts on the time series under investigation.

Figure 8 includes exemplary forecasts for one and two days
ahead. We can easily notice that the predictions mirror real
consumption. However, there are some imperfections in cases
in which the data changes rapidly.

Fig. 8. The forecasts of electricity consumption for one and two days ahead.

V. CONCLUSION

This paper has presented the neural software that, rather
than applying universally, is dedicated especially to time
series prediction, in particular for the forecasting of electric
energy consumption. Such an approach should help to develop
prediction systems rapidly.

The toolbox was developed with the use of non-commercial
tools. As open source software, it is available for everyone
for free on a remote repository13. It can be executed on any
operating system which contains a Java Virtual Machine. Fur-
ther development should focus on introducing deep learning
algorithms, as well as providing more forecasting metamodels.

The toolbox was developed in 2008 as a part of the writer’s
Ph.D. [18], and until now has never been released. Nowadays,

13https://github.com/Jaroslaw-Protasiewicz/pythia

it is evident that rapid development of open source neural
software is occurring. With this in mind, the toolbox has now
been made available publicly. The toolbox was an advanced
piece of software in 2008: now, it is unlikely to compete with
modern deep learning tools. However, this publication is the
first step towards upgrading the toolbox to an automatic tool
for time series prediction. This may involve automatic analysis
of time series to construct forecasting models, and upgrading
the toolbox to process modern neuronal structures.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[3] E. Frank, M. A. Hall, and I. H. Witten, The WEKA Workbench. Online
Appendix for D̈ata Mining: Practical Machine Learning Tools and
Techniques¨. Morgan Kaufmann, Fourth Edition, 2016.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[5] A. Zell, N. Mache, R. Hübner, G. Mamier, M. Vogt, M. Schmalzl,
and K.-U. Herrmann, SNNS (Stuttgart Neural Network Simulator).
Boston, MA: Springer US, 1994, pp. 165–186. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4615-2736-7

[6] S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Report, Department of Computer Science University of Copen-
hagen (DIKU), vol. 31, p. 29, 2003.

[7] I. Fischer, F. Hennecke, C. Bannes, and A. Zell, “Javanns: Java neural
network simulator,” User Manual, Version, vol. 1, 2006.

[8] D. Team et al., “Deeplearning4j: Open-source distributed deep learning
for the jvm,” Apache Software Foundation License, vol. 2, 2016.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[10] Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:
http://arxiv.org/abs/1605.02688

[11] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS workshop, no.
EPFL-CONF-192376, 2011.

[12] R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1,”
D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group,
Eds. Cambridge, MA, USA: MIT Press, 1986, ch. Learning Internal
Representations by Error Propagation, pp. 318–362. [Online]. Available:
http://dl.acm.org/citation.cfm?id=104279.104293

[14] ——, “Learning representations by back-propagating errors,” Nature,
vol. 323, no. 6088, pp. 533–536, 1986. [Online]. Available:
http://dx.doi.org/10.1038/323533a0

[15] S. E. Fahlman, “An empirical study of learning speed in back-
propagation networks,” Tech. Rep., 1988.

[16] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable
functional interpolation and adaptive networks,” Royal Signals and
Radar Establishment Malvern (United Kingdom), Tech. Rep., 1988.

[17] T. Kohonen, “Essentials of the self-organizing map,” Neural
Netw., vol. 37, pp. 52–65, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2012.09.018

[18] J. Protasiewicz and P. S. Szczepaniak, “Neural models of demands for
electricity-prediction and risk assessment,” Electrical Review, vol. 88,
no. 6, pp. 272–279, 2012.

