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Abstract—Recent advancements in deep learning have opened
new prospects in many areas of research. Especially interesting
field is biomedical image analysis, where plenty of problems wait
for efficient solution. The aim of this work is to develop new
approaches to recognition of different types of renal cancer on
the basis of Computed Tomography (CT) imaging. Two different
directions will be investigated. One uses the texture descriptors
of the images to define the diagnostic features. They are next
combined with support vector machine responsible for final
recognition and classification. The second applies deep learning
approach using different configurations of Convolutional Neural
Networks. The experimental research for both textural and deep
learning approaches was conducted on real world dataset of CT
scans consisting of eight types of renal cell carcinomas. The
proposed structures of predictive system were able to achieve
the level of accuracy around 90% for complex and unbalanced
datasets.

Index Terms—Computer Vision, Deep Learning, Convolutional
Neural Networks, textural features, Support Vector Machine,
medical imaging, renal cancer

I. INTRODUCTION

The ratio of deaths caused by the wide range of neoplastic
diseases was steadily increasing in the last decade. Cancer
nowadays is called a disease of affluence, because of high
correlation between becoming ill and unhealthy lifestyle, en-
vironmental pollution and stress factors. Meanwhile, many re-
gions of the world are currently facing problems with shortage
in medical professionals. These issues result in prolonging
queues to specialist’s appointment. However, passing time is
the main enemy for oncological diseases, because of the fact
that the ability of curing the patient is strictly associated with
his initial condition at the first visit to the cancer specialist.

For this reason, the research in supporting the medical
diagnosis by automated systems is very important. Having
in mind major advances in computational technology and
development of more and more sophisticated methods in
machine learning, the possibility of creating systems, used in
early diagnostics, is rising. The scientific society should work
hand in hand with medical staff to devise systems that are as
helpful as possible.

This work was financially supported by National Science Centre, Poland
(grant no 2016/23/B/ST6/00621).

This article will address the problem of creating a system
of automatic analysis of Computed Tomography (CT) scans
of patients with Renal Cell Carcinomas (RCC). The main task
is classifying the Regions of Interest (ROI) to the specified
RCC type. The task will include the process of creating data
set, extracting ROI and methods of data sets augmentation.
Key aspect considered in the research is comparison of two
groups of methods in creating features for pattern recognition
algorithms. The first one applies texture analysis methods,
well-established in the literature. It is based on some structural,
statistical or transformation information derived from raw
grey-scale images. The second one relies on Transfer Learning
(TL) technique applied to popular pretrained networks. Despite
the fact, that the collected RCC dataset is rather small and
unbalanced (because of scarce representation of patients with
rare variants of RCC), aforementioned technique enables to
create models with comparable or promising results to those
based on textural features.

II. PREVIOUS WORK

This section will briefly present few exemplary applications
of both textural and neural-based approaches. Quite popular is
the problem of differentiation between benign and malignant
variants of kidney tumours. For this binary classification
task, four numerical features: contrast, correlation, energy
and homogeneity based on Gray-Level Co-occurrence Matrix
(GLCM) and passing them to classical classifiers like SVM
or KNN turns out to be sufficient [1]. Numerical features
of the images can be also computed using histograms of
curvature-related features, histogram of oriented gradients or
raw intensities of pixels. Quite popular in literature is the
Computed Tomography Texture Analysis (CTTA) approach
[2], [3] which applies the computation of simple features
of raw image pixel values in order to obtain biomarkers for
tumour differentiation. Such features include average intensity,
entropy, skewness, kurtosis, standard deviation, histograms of
pixel intensities or frequency analysis results.

Combining Gabor filtering and ensemble classifiers with
majority voting can improve results of textural analysis of
RCC as shown in [4]. With extended domain knowledge about
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RCC types similarity, cascade of binary classifiers [5] can be
created instead of single multi-class classifier. This technique
is intended to be mimicking the steps undertaken by medical
doctors.

When neural based methods are considered, Deep Belief
Networks and Autoencoders [6] are used for some tasks
in the area of biomedical image analysis. Tedious stage
of features generation can be replaced with Convolutional
Neural Networks (CNN). Interesting results were obtained by
applying 3D-CNN models to classification of lung tumours
[7], [8]. 3D-CNN version of popular pretrained 2D images
models like AlexNet or GoogleNet were presented. Authors
of this research indicated possibility of improving the overall
performance with hybrid models. Convolutional part of 3D-
CNN model, which is responsible for features generation, is
extracted and then combined with classical classifiers like
SVM, XGBoost or Random Forest. However, it is worth
noting, that learning deep network from scratch is a process
requiring large number of learning examples.

Equally important to the classification task is also the
segmentation problem. Main purpose of the segmentation
process is extracting ROI from full frame of the scan. This
ROI is usually a homogeneous region with similar properties
e.g. a cancer region or a normal organ. Segmentation algo-
rithms can be divided into two subgroups: non-trainable (e.g.
thresholding, watershed transformation or edge detection) and
trainable (U-net [9], CNN [8] and fuzzy c-means clustering).
Segmented region can be used to obtain information about size
and volume of the tumour. These are important parameters
while planning pharmacological therapy.

Up to now, no papers have been devoted to recognition of
different types of renal carcinoma. It is very difficult problem
due to large variety of the same type of changes in lesion
regions of different patients, as well as very small areas
representing such lesions.

III. TEXTURE ANALYSIS METHODS

Texture analysis enables the characterisation of lesion re-
gions with the numerical values based on raw intensities of
the grayscale image. It looks for such properties as roughness,
irregularity or smoothness. Results of texture analysis, provide
feature vectors for classification, segmentation or detection
task. In this research four carefully selected, distinct algo-
rithms were tested and compared to deep learning approach.

A. GLCM features

Gray-Level Co-Occurrence Matrix is one of the most
popular algorithms of texture analysis [10]. It still finds
application in analysing biomedical objects e.g. biological
cells, x-ray or CT images. Key aspect of the GLCM al-
gorithm is representing the image from the perspective of
relation and distribution of gray-levels of pixels. Numerical
descriptors are computed on the basis of co-occurence ma-
trix hdθ, where each position (i, j) in this matrix hdθ(i, j)
represents the number of co-occurences of intensity val-
ues i and j of the image, assuming some offset function.

In this research multiple symmetrical offset function were
tested with distances ranging from d ∈ {1, 2, 3} and angle
θ ∈ {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°}. The list of
originally proposed descriptors contained fourteen different
parameters, e.g. energy, contrast, homogeneity, entropy, vari-
ance and correlation coefficient. This list can be enriched
by statistical measures such as median, kurtosis or skewness.
Final feature vector included fourteen well selected predictive
features. After determining the list of descriptors, the feature
vector should be normalized. In this research, standardization
(z-score) was used, which is normalization using mean and
standard deviation.

B. Fractal features

Fractal methods [11] are commonly applied to objects with
high local complexity. Fractals themselves are described with
fractional Brownian Motion (fBM) model or extended self-
similar (ESS) model, which is a generalization of fBM. How-
ever, structures with strong orientation dependences might not
be modelled well with fractal features. Fortunately, RCC im-
ages don’t show strong orientational dependences. The SFTA
algorithm proposed in [12] consist of two separate stages:
decomposition of input image into a set of binary images with
Two-Threshold Binary Decomposition and computing fractal
dimensions of the regions borders. Length of the initial feature
vector generated by SFTA algorithm will be denoted with n
and is subject to changes. Final feature vector included 33
features.

C. Unser features

Unser features [13], [14] were often used in textural seg-
mentation task. Linear filter is applied to an image, forming the
sum or difference of shifted image parts. On the basis of this
matrix, the descriptors such as variance, energy, correlation,
contrast and many other popular measures, are computed. In
this research 8 best features were selected. Two hyperparame-
ters should be chosen while using Unser method - shift length
and filter size.

D. Gabor filtering

This type of filtering is widely used in initial transformation
of textural images. Gabor filter is a specific type of band-pass
filter, which is susceptible to orientation. Therefore, this filtra-
tion method is quite popular in such tasks as textural analysis
or edge detection. One of the most important properties of
this method is its ability to generate informative description
for various shapes, sizes and smoothnesses of the image.

In this research, multiple types of descriptor vectors were
defined on the bases of Gabor filtering results:

• basic vector consisting of energy, mean amplitude and
entropy,

• previous vector exteded by average intensity, skewness,
kurtosis and standard deviation,

• local binary patterns (LBP) features [15] combined with
extended vector,



• histograms of oriented gradients (HOG) features [16]
combined with an extended vector.

In our solution the descriptors were based on real part of the
filtered image (found as the best in experiments). Depending
on the initial type of feature generation strategy, final vector
of descriptors included from 120 to 280 features.

IV. DEEP LEARNING MODELS

Convolutional Neural Networks are deep multilayer struc-
tures [17]–[19], which are tackling two tasks at the same
time: generation of features for modelled problem and ulti-
mate prediction (e.g. regression or classification). Fact that
tedious process of feature analysis is done automatically has
significantly contributed to general popularization of CNNs in
almost any pattern recognition tasks. The only bottleneck in
developing CNN models is large amount of data needed to
train such network.

Transfer learning is a method of training deep CNNs that
is solving this main obstacle. Instead of training all weights
of the neural connections with randomly initialized values, a
model trained on another task B is adapted to fit to the new
task. Weight adaptation speed is much higher than learning
from scratch. Additional advantage of transfer learning is the
fact, that if the task A and B are sufficiently similar, amount
of data needed to retrain the network is significantly smaller
than to train from the beginning.

Adaptation of model to the particular task can be performed
in multiple ways. Crucial part of every transfer learning is to
substitute the final predictor part of pretrained network (layers
such as fully connected, softmax, classification output). This
part has to be fit to a new task (e.g. the number of classes
in classification task). Feature extraction part can be reused
either without any adjustments (layers are freezed) or can be
altered through training (initial weights are not random).

Transfer learning in our task has been applied to well-known
CNN models, such as AlexNet [20], ResNet [21], Inception
[22], [23] and Inception-ResNet [24]. All of these networks
were competing in ILSVRC Challenge and have obtained state
of the art results. They were trained on ImageNet database
containing of more than 1 million RGB images divided
into 1000 categories such as ’clock tower’, ’vitamin pill’
and ’electric guitar’. The architectures evolved and improved
throughout the years which resulted in significant progress in
image pattern recognition. The main features of these networks
are listed below.

A. AlexNet

• nonlinear activation function tanh superseded by ReLu to
speed up the computation

• dropout as regularization tool to avoid overfitting
• overlapping pooling for network size reduction

B. ResNet

• vanishing gradients (training convergence problem in
deeper networks) solved with residual connections

• batch normalisation and global average pooling used in
layer structures

C. Inception

• vanishing gradients solved with additional classifiers
added in inner layers

• inception cell implementation as stacks of convolutions
1x1, 3x3, 5x5 organised in parallel branches

D. InceptionResNet

• hybridization of inception cells and residual connections
concepts to improve overall performance

V. DATA SETS AND METHODOLOGY

Aforementioned methods of features generation will be
applied in the task of recognising neoplastic renal lesion
types. These lesions include RCC, renal cysts and tumours of
different origin, located in kidney. RCC belongs to the atypical
cancers. For example, in the UK it is the 7th most common
one [25]. However, its proportion to other cancers is still
growing, due to more accurate diagnostics in the last decade.
Vast majority of the RCC cases are recognised accidentally
during diagnosing other diseases. It is due to the fact that
early stages of this disease rarely cause any symptoms, hence
it is much less specific. These facts show that automation of
CT scans analysis might significantly reduce the number of
cases diagnosed in advanced stages.

The most common type of renal lesions is Clear Cell Renal
Cell Carcinoma (CC-RCC) [27], which is responsible for 65-
70% of all renal cancer cases. CC-RCC has a high metastases
incidence rate to such organs as lung (75%), liver (40%),
bone (40%), soft tissue (34%) and pleura (31%). This type
of RCC has the worst prognosis among all RCC with respect
to such diagnostic variables as nucleolar prominence (Grade 1,
2 and 3) or the presence of pronounced nuclear pleomorphism
(Grade 4). In CC-RCC the 10-years survival rate varies from
96%, 90%, 50% to 20% from grade 1 to 4 respectively.
The next frequently identified RCC is papillary renal cell
carcinoma (PRCC) that accounts for approximately 15% of
RCC cases. It has more favourable survival outcome than CC-
RCC with the 10-years survival changing from 100%, 94%,
78% to 37% for grade 1 to 4 respectively. The chromophobe
renal cell carcinoma (ChRCC) constitutes 5-7% of all RCC.
It has a good prognosis with 5-year survival rate of 78-100%.
This type of RCC cannot be graded yet.

In contrast to RCC, two benign renal tumours would be
taken into account in this study. The first one is onco-
cytoma [28] composed predominantly of large eosinophilic
cells packed with mitochondria. This benign epithelial tumour
located in kidney is responsible for 5-9% of all renal neoplasm
cases. When no other co-morbid RCC disease is present, a
100% survival rate can be observed. The second benign renal
neoplasm considered is angiomyolipoma with approximately
1% of surgically removed renal tumours. It is a benign mes-
enchymal tumour composed of varying proportion of adipose
tissue, spindle cells, muscle cells and abnormal blood vessels.
Small minority of cases are associated with complications and
mortality. The last type of renal lesion taken into account in



this study is renal cyst, which is not a malignant itself, but
should be differentiated from the renal tumours.

A. Data source and renal cancer types

In this research a dataset of scans belonging to 143 patients
with 8, the most popular types of renal lesions was gathered
in cooperation with Military Institute of Medicine (Warsaw,
Poland). Table I shows the names of renal lesion types, their
shortened notations and population with respect to number of
patients and number of extracted frames. Examples of frames
containing kidney and cancer outlines representing each class
are depicted in Fig. 1.

It is evident that available data set is strongly unbalanced.
Number of frames in the most numerous class (J) is over
7 times higher than in the least populated class (A). It is
the result of differences in disease categories incidence rates,
which is the main obstacle in gathering balanced dataset. Other
issues that should be mentioned are the size and information
density carried in single grayscale frames of CT. Average size
of tumour bounding box, regardless of RCC type, is only
25x25px. Therefore, information conveyed by small images
of low contrast is rather poor. A single frame might be even
ambiguous for a professional oncologist. However, assembled
examples in the classes are believed to be representative and
of good quality, though they are coming from different CT
scanners.

TABLE I
QUANTITY OF RENAL LESIONS IN THE DATA SET

Full RCC name Abb.
name

Number of
patients

Number of
scan frames

Angiomyolipoma A 8 97
Chromophobe Renal Cell
Carcinoma

C 20 253

Clear Cell Renal Cell
Carcinoma

J 40 692

Multilocular Cystic Renal
Cell Carcinoma

M 10 164

Oncocytoma O 14 108
Papillary Renal Cell
Carcinoma

P 26 236

Urothelial Carcinoma R 11 292
Renal Cystis T 14 460

Fig. 1. Example frames containing kidney and cancer contour for each of
the classes (from the upper left corner: A, C, J, M, and below: O, P, R, T).

Outlines of the tumour regions were prepared by a surgeon
with oncological experience. Histopathology descriptions were

also available for inspection. Results of exploratory data anal-
ysis have shown that 65% of patients are male with average
age 64 years. Around 60% of the scans come from the year
2015 or later.

B. Training data preparation

Preparation of training and testing data was composed of
three main steps: normalisation, ROI extraction and data sets
augmentation. The first step uses dicom file parameters such as
window width, window center and rescale intercept to adjust
the values to a common scale uint8.

Second step intends to reduce the full frame of the scan to
more distinct representations, called ROI. In this research, we
assume that segmentation task is already done, and position
of the tumour is known from contours prepared by medical
specialist. However, the ROI can be extracted from full scan
frame in many ways. In table II five different types of
extraction methods are illustrated (denoted by D1, D2 up to
D5).

• D1 - Bounding box of RCC contour without surrounding
tissues,

• D2 - Bounding box of RCC contour with surrounding
tissues,

• D3 - 150x150px region where centre is in bounding box
centroid, with surrounding tissues,

• D4 - 50x50mm region where centre is in centroid of
bounding box, without surrounding tissues,

• D5 - 100x100mm region where centre is in centroid of
bounding box, without surrounding tissues.

TABLE II
ILLUSTRATION OF 5 TYPES OF ROI

Original frame ROI
type

Extracted
ROI

D1

D2

D3

D4

D5

The influence of the chosen extraction method on the quality
of the proposed classification system will be studied. It is
aimed to reduce the impact of class imbalance on quality of
classifier performance. The augmentation process takes into
consideration the fact, that images are small and shouldn’t
be altered too much to prevent major distortions. Two basic
transformations were used: rotation and cropping. Finally,
every class was augmented to have representation of at least
500 frames.



C. Experimental settings

10-fold cross validation technique was used to analyse
ultimate performance of trained models. To compare different
methods the classical quality measures defined on the basis of
confusion matrix, such as accuracy, weighted precision, recall
and F1-score [29] were used.

Two types of experiments have been performed. The first
one was based on texture analysis in feature generation and
application of Support Vector Machine (SVM) [26] as clas-
sifier. Parameters of SVM were chosen as follows: Gaussian
kernel with C = 1000 and γ = 1).

In the second case the generation of features and classi-
fication phases were combined in deep learning structures,
representing various implementations. Transfer learning was
applied in this approach. The preliminary research was needed
to find relationship between cut-off layer and output perfor-
mance. For all networks, similar pattern was observed: the
earlier freeze of the weights, the better results of recogni-
tion. Final models were trained in ensemble manner with
majority voting. Due to limitation of computation resources,
the pretrained models were divided into two subgroups. The
first one consisted of AlexNet. Ten independent networks
were separately trained and freezing was not applied to any
parameters of the layers. The second group was created by
all other models (ResNet, Inception and InceptionResNet).
Ensemble model was formed of 5 individual predictors and
freezing was applied to early convolutional layers.

Independence of ensemble members was provided thanks
to 2 different mechanisms:

• Random choice of proportion of training and validation
sets in learning folds in 10-fold cross validation scheme
for each ensemble member. This proportion has been
changing from 3:1 to 9:1.

• Different sizes of fully connected layer for each of
ensemble members.

Training was performed using Adam solver with small 10
element batches and learning rate scheduler with initial value
1e-4.

VI. RESULTS

A. Texture analysis results

Comparison of results of all texture analysis experiments is
presented on bar plot in the Fig. 2. F1-scores for every feature
method were presented with respect to five types of data
set (D1-D5) and four methods of feature generation (GLCM,
fractal, Unser, Gabor).

More detailed information about top 3 results can be also
found in table III. The best results were obtained for fractal
features and D5 type of data set. Weighted F1-score reached
the value close to 90%. Fractal method appeared to outperform
almost all other methods, regardless of the data set. ROI
extraction method named D5 has resulted into the best quality
measures for almost all texture analysis methods.

One of the most import conclusion from results presented
in Fig. 2 is the big influence of ROI generation techniques

Fig. 2. Results of texture analysis experiments with respect to 4 different
types of texture description.

TABLE III
TOP 3 RESULTS OF TEXTURAL ANALYSIS EXPERIMENTS (IN %)

No Method Data set Acc Prec Rec F1
1 Fractal a D5 89.0 89.7 89.0 89.1
2 Fractal b D5 88.5 88.8 88.5 88.5
3 GLCM c D5 80.9 81.5 81.1 81.0

an = 7
bn = 5
cd = {1, 2, 3}, full θ range, averaging tangent directions

on overall classification performance. It is evident that not
only feature selection, but also way of extracting ROI region
is crucial in creating efficient classification system of renal
images. As fractal features are concerned, minimal F1-score
result equals 76.2% for D2 data set and maximum for D5 -
89.1% (13 percentage points difference).

10 fold cross validation gave ultimate F1-score results on the
level of 89.1% ± 1.2%. Throughout cross validation process,
the maximal obtained F1 value was 90.6%, minimal 86.4%
with median equal 89.1%. The aggregated confusion matrix is
presented in Fig. 3. Most mistakes are related to recognition
of majority class J. Perhaps, it was caused by very large
number of different patients from which the images were
collected and significant differences among images for each
of them. According to medical experts RCC types are usually
misclassified in two separate groups: either between classes
C-J-P or P-R-T. This patterns can be also observed in Fig. 3.

To inspect the results more precisely, bar plot with F1-
scoring versus class is presented in Fig. 4. Classes A, O and
M are the ones with results above the average, whereas classes
J, P, R and T are the most problematic in recognition.

Fractal model outperforms other textural algorithms of
feature extraction. Presumably, it might be due to the fact that
SFTA algorithm is intended to be used in describing textures
with strong local features, which is the case of RCC renal
types.

B. Deep learning results

Six different arrangements of transfer learning have been in-
vestigated. The pretrained networks used in experiments were
as follow: AlexNet 1 (single AlexNet), AlexNet 10 (ensemble
of 10 separately trained AlexNets), ResNet-18 5 (ensemble of
5 separately trained ResNet-18), ResNet-50 5, Inception-v3 5



Fig. 3. Confusion matrix for fractal experiment.

Fig. 4. Distribution of F1-scores for fractal method.

and Inception-ResNet-v2 5 (same arrangement as for ResNet-
18).

The results of recognition of eight types of RCC in the
form of F1 measure are presented in a bar plot in Fig. 5.
They correspond to the testing results obtained in 10-fold cross
validation mode by the ensembles integrated with majority
voting rule. Detailed information about top 3 results can be
also found in table IV.

Fig. 5. Results of deep learning experiments with respect to 5 ROI extraction
types and 6 types of networks.

The best results were obtained in ensemble composed of
10 AlexNet predictors on D2 data set. F1-score has reached
the level of 87.1%± 1.6%. The maximal difference of results
in AlexNet ensemble for various data sets was 8 percentage
points (between D2 and D1). 10-fold cross validation varied
from 83.7 % to 89.2% with median of 87.3%. Mostly mis-

TABLE IV
TOP 3 RESULTS OF DEEP LEARNING EXPERIMENTS (IN %)

No Method Data
set

Acc Prec Rec F1

1 AlexNet 10 D2 87.1 87.5 87.1 87.1
2 Inception-ResNet-v2 5 D5 86.4 86.7 86.4 86.5
3 Inception-v3 5 D4 85.7 86.0 85.3 85.7

classified examples belonged to classes J and T.
As shown in Fig. 5, ensemble technique has improved the

classification results by almost 7 percentage points comparing
to the best individual classifier. Diversity of predictor’s results
within an ensemble provide the space for compensation of
some errors. The only drawback of such solution is the
increase of computation time.

Though, the RCC data set differs in quality, size and
information density from ImageNet database, transfer learning
achieved comparable results with baseline textural methods.
The way the features are generated in pretraining stage are
already applied in retraining process (transfer learning) on
the RCC data set. It is interesting to observe the changes
of the weight values of filters in different layers of CNN
in the process of retraining the structure starting from the
pretrained form. It is presented in table V for three image
filters taken from the first, second and fifth convolutional layer.
Upper row depicts a visual representation of weights in 3
chosen convolutional filters of different layers. The bottom
row represents their values after retraining. The deeper in the
network layers the more adjustments are made to the initial
weights in order to adapt the network to the new task.

TABLE V
VISUALIZATION OF CHANGES IN WEIGHTS VALUES

conv1 conv2 conv5

pretrained

retrained

C. Discussion

Both investigated methods based on texture analysis and
deep learning have shown high efficiency in recognition of
renal lesion types. Quality measures (accuracy, precision,
recall and F1) have reached high scores, which is good prog-
nostics for application in medical diagnostic support. Textural
methods have been found vulnerable to many parameters of
the system - ROI generation method, selection of hyperparam-
eters values and diagnostic features. These disadvantages are
partly eliminated in Deep Learning approach. However, ROI
generation method and choice of architectural parameters are
equally important.

Summarizing, we may state that both methods deliver
results of comparable quality. The decision which method
should be chosen in particular application may depend on



user expectations and limitations. The inference time of texture
based models is relatively shorter in contrast to ensemble of
CNN, which is more computational demanding. On the other
hand, Deep Learning methods do not require sophisticated
expert knowledge needed in creation of diagnostic features.
Thus, it is more convenient in practical applications.

It should be noticed that differentiation between RCC types
is in fact impossible for a person without specialised medical
education. Spotting small highlights and subtle textural nu-
ances among different types of RCC turns out to be a very
complex and prone to errors problem. Therefore, the devel-
opment of computerised recognition system is very useful to
support the medical staff in taking proper diagnostic decision.

VII. SUMMARY AND FUTURE WORK

In this article we present a complete method of creating an
automatic system of medical image analysis in the task of renal
tumours recognition. Two approaches to this problem were
presented. Both textural and deep learning methods developed
in the paper have provided satisfactory results, with accuracy
reaching 90%.

The results of this study might find application in supporting
the medical diagnosis in hospital practice. Implementation of
such system in automatic medical images analysis could lead
to significant acceleration of the diagnosis process and to better
prioritization of patients waiting for consultation with medical
specialists.

The important task in the future research, is to create
more balanced data sets and increase the total number of CT
scans. Scarce representation of some classes has a negative
impact on model outcome. Additional problems that have been
mentioned in this study are related to small size of lesion
region, wide inter-patient diversity and limited information
density of images. Hence proper segmentation of images,
careful selection of features and choice of classification system
are of great importance.

The size of the tumours is right now a bottleneck in
improving deep learning models. Resizing small images to the
required size of input layer might distort initial information
hidden in the CT scan fragment. Finding an effective method
of resizing and improving resolution is an inevitable step in
further development of deep learning models. Techniques of
super resolution, deblurring or adding deep image prior would
be investigated.

Providing that a bigger dataset would be collected, 3D
CNN model will be developed. Perhaps, information about the
sequence of frames can refine the overall performance. It is
worth noting that medical experts derive final diagnosis from
series of images, not from single static frame.

In the nearest future, more attention will be drawn to method
of ROI generation, data set augmentation algorithm and fea-
ture selection. Major performance improvement is expected
when multi-feature ensemble model is applied. Combining
various methods of feature generation with few classification
algorithms might help to minimize the ratio of misclassified
examples.

Finally, this research is intended to provide helpful infor-
mation to the medical doctors about the patient condition
rather than replace classical (expert) medical diagnosis pro-
cess. In the nearest future, explainability of the classification
models will be explored with techniques such as Grad-CAM.
Supporting medical diagnosis by automated system might
have significant influence on diagnosis durance - especially
when the model is self explaining its decisions with insightful
information for the medical specialist.
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