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Abstract—Automated algorithm selection and hyperparameter
tuning facilitates the application of machine learning. Traditional
multi-armed bandit strategies look to the history of observed
rewards to identify the most promising arms for optimizing
expected total reward in the long run. When considering limited
time budgets and computational resources, this backward view
of rewards is inappropriate as the bandit should look into the
future for anticipating the highest final reward at the end of
a specified time budget. This work addresses that insight by
introducing HAMLET, which extends the bandit approach with
learning curve extrapolation and computation time-awareness for
selecting among a set of machine learning algorithms. Results
show that the HAMLET Variants 1-3 exhibit equal or better
performance than other bandit-based algorithm selection strate-
gies in experiments with recorded hyperparameter tuning traces
for the majority of considered time budgets. The best performing
HAMLET Variant 3 combines learning curve extrapolation with
the well-known upper confidence bound exploration bonus. That
variant performs better than all non-HAMLET policies with
statistical significance at the 95% level for 1,485 runs.

Index Terms—Automated Machine Learning, Multi-Armed
Bandit, Learning Curve Extrapolation

I. INTRODUCTION

When applying machine learning, one crucial decision to be
taken is to choose a learning algorithm (denoted base learner)
among the plethora of algorithms available. Each machine
learning algorithm comes with a different set of hyperpa-
rameters that can be optimized to maximize the algorithm’s
performance concerning an application-specific error metric
for a given dataset. Besides, different feature preprocessing
algorithms and feature selection techniques - each with their
set of hyperparameters - can be combined into a machine
learning pipeline to improve the base learner’s performance.

Automated machine learning (AutoML) addresses the au-
tomation of selecting base learners and preprocessors as well
as tuning the associated hyperparameters. Hence, AutoML
lowers the workload of expert data scientists by automating
many of the decision steps. Further, AutoML provides a
structured approach to identify well-performing base learner
configurations. AutoML typically outperforms manual tuning
or grid search heuristics [1] (and references therein). More-
over, AutoML allows nonexperts to leverage machine learning
efficiently, e.g. in the biomedical domain [2].

This work focuses on selecting the base learner to be
applied to a dataset. Specifically, this work models the iterative
approach to selecting the base learner and the optimization

of its hyperparameters as a hierarchical problem. A multi-
armed bandit focuses on selecting the base learner, and a
specialized component (the tuner) is responsible for tuning
that respective base learner’s hyperparameters. This approach
is easily extensible with base learners by integrating them as
additional arms.

In realistic settings, AutoML faces a limitation of resources
in terms of computational power and time budget for solving
the machine learning problem. This work studies the extreme
case of a single CPU available for solving a machine learning
task within a strict wallclock time budget. In this setting,
the traditional multi-armed bandit approach is not optimal
because it requires to observe a complete function evaluation.
In other words, it requires training a parametrized base leaner
on the dataset before updating the associated arm’s statistics.
Additionally, most multi-armed bandit algorithms assume sta-
tionary reward distributions - which in AutoML is not true
as tuning algorithms usually increase their performance over
time. Finally, the typical AutoML problem strives to get the
maximum possible performance, not to maximize the average
sum of rewards over repeated trials. For these reasons, this
work modifies the multi-armed bandit approach by accounting
for time explicitly and learning the different arms’ learning
curves. The bandit then solves the algorithm selection problem
by extrapolating the curves to the end of the time budget with
consideration of the budget already spent on each arm.

We refer to the approach presented in this work as HAM-
LET - Hierarchical Automated Machine LEarning with Time-
awareness due its hierarchical decision making and its ability
to account for the progress of time. We summarize the
hypothesis underlying HAMLET as follows:

The combination of learning curve extrapolation
and accounting for computation time improves the
performance of multi-armed bandits in algorithm
selection problems.

Our empirical evaluation uses the 99 traces for six different
base learners from [3]. The evaluation shows that even a
simple approach to fit learning curves provides gains for tight
time budgets. Overall, the best performing HAMLET Variant
3 achieves with 95% confidence a better performance than all
non-HAMLET bandits used in the experiments.

The remainder of this work is structured as follows. Section
II summarizes relevant related work and shows where this
work differs. Section III introduces the notation, the methods,
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and the experimental protocol to verify HAMLET’s effects.
Section IV documents the experiments’ results that are dis-
cussed in Section V. Finally, Section VI concludes this work
by summarizing the main findings and providing an outlook
on future work.

II. RELATED WORK

A. Exploration and Exploitation for Multi-Armed Bandits

In the basic form of the multi-armed bandit problem, an
agent is faced repeatedly with a choice among k different
actions. After each choice, the agent receives a numerical
reward from a stationary probability distribution that depends
on the selected action. The objective is to maximize the
expected total reward over some time period. At any time
step, the agent may act greedily and select one of the actions
with the highest estimated value (denoted exploitation). On
the other hand, by selecting a non-greedy action, the agent
can improve its estimate of the chosen action’s value (denoted
exploration). Agents need to explore, because even though the
greedy actions are those that look best at present, some of the
other actions may actually be better [4].

A simple exploration technique called ‘ε-greedy’ behaves
most of the time greedily, but with small probability ε selects
randomly from among all the actions with equal probability.
An advantage is that as the number of time steps increases, the
bandit will sample every action an infinite number of times.
Therefore, the bandit’s action value estimates will converge
to the accurate values. Another technique denoted decaying
ε initializes ε high and decreases it (and thus, the rate of
exploration) over time [4].

In contrast to random exploration, the Upper Confidence
Bound (UCB) method selects actions according to their po-
tential for being optimal. UCB does so by taking into account
both their respective value estimates and the uncertainties in
those estimates. UCB will select actions with lower value es-
timates, and actions that have already been selected frequently
with decreasing frequency over time. One difficulty of UCB
bandits is in dealing with non-stationary problems [4].

The multi-armed bandit problem presented in this work
differs from the original problem as rewards are not stationary.
When performing algorithm selection, the rewards should
increase as more time is spent on the arm, while the rate of
improvement is unknown. The objective is not to maximize
the total reward, but to find the single best reward.

B. Multi-Armed Bandits for Algorithm Selection and Hyper-
parameter Tuning

ATM [5] is a distributed, collaborative, scalable AutoML
system, which incorporates algorithm selection and hyperpa-
rameter tuning. ATM approaches AutoML by iterating two
steps: hyperpartition selection followed by hyperparameter
tuning. A hyperpartition includes one specific base learner,
as well as its categorical hyperparameters. ATM models
each hyperpartiton selection as a multi-armed bandit problem.
ATM supports three bandit algorithms: the standard UCB-
based algorithm ‘UCB1’, and two variants designed to handle

drifting rewards as encountered in the AutoML setting. The
variants compute the value estimates for selecting the actions
either based on the velocity or the average of the best K
rewards observed (denoted BestK-Velocity and BestK-Rewards,
respectively). The Machine Learning Bazaar [6] framework
for developing automated machine learning software systems
extends the work of ATM and incorporates the same bandit
structures. HAMLET differs from both. First, it does not
choose between hyperpartitions, but solely between base learn-
ers, i.e. it does not select categorical hyperparameters. Second,
it uses a novel bandit algorithm, which fits a simple model of
the learning curve to observed rewards, but selects the action
based on an extrapolation of the learning curve to find the
highest possible reward given a time budget. Third, ATM and
the Machine Learning Bazaar update the action value statistics
based on completed function evaluations, i.e. a base learner’s
test performance after training it on the dataset. HAMLET
updates training statistics in configurable time intervals. Even
if a base learner’s tuner did not manage to find better models in
a recent time interval, HAMLET tracks (the lack of) progress
of the tuner’s learning curve, allowing it to switch computing
resource assignments based on extrapolating learning curves.
This work uses the bandits of [5] as baselines to compare
HAMLET to.

Hyperband [7] is a bandit-based early-stopping method for
sampled parametrizations of base learners. It incorporates a
bandit that deals with the fact that arms in hyperparameter
optimization might improve when given more training time.
Hyberband builds on the concept of successive halving: it
runs a set of parametrized base learners for a specific budget,
evaluates their performances, and stops the worse perform-
ing half of the set. When presented with a larger set of
possible parametrizations of base learners, Hyperband stops
parametrizations that do not appear promising and assigns suc-
cessively more computational resources to the promising ones
that remain. HAMLET differs in that it assigns computational
resources based on predicted performance and not observed
performance. In HAMLET, the bandit is used to decide which
algorithm to run, and not which hyperparameter setting to run.
Also, the approach to assign budget is different. Hyperband
applies the concept of a geometric search to assign increasing
portions of the overall budget to a decreasing number of base
learner parametrizations. In contrast, HAMLET continues a
chosen tuner for a configured time interval.

C. Learning Curve Extrapolation

As outlined in [8], the term learning curve is used to
describe (1) the performance of an iterative machine learning
algorithm as a function of its training time or number of
iterations and (2) the performance of a machine learning
algorithm as a function of the size of the dataset it has
available for training. For the AutoML challenge addressed by
HAMLET, we focus on extrapolating type (1) learning curves.

Given the first part of a learning curve for a given hyper-
parameter configuration of a Deep Neural Network (DNN),
[8] utilizes a probabilistic model to extrapolate its perfor-



mance. For this, [8] fits a set of parametric functions for
each hyperparameter configuration and combines them into
a single model by weighted linear combination. A Markov
Chain Monte Carlo method yields probabilistic extrapolations
of the learning curve, which allows to terminate runs with
non-promising hyperparameter settings early automatically.

Relying on a Bayesian Neural Network (BNN) in com-
bination with the parametric functions presented by [8], [9]
samples promising candidates to apply Hyperband [7] to.
Predicting the model parameters of parametric functions as
well as the mixing weights with the BNN enables transferring
knowledge of previously observed learning curves. However,
that implies that previous learning curve information is needed
to pre-train the BNN for good performance.

Freeze-Thaw optimization [10] is a Gaussian Process-based
Bayesian optimization technique for hyperparameter search.
The method includes a learning curve model based on expo-
nential decay and a positive definite covariance kernel to model
the iterative optimization curves. The Freeze-Thaw method
maintains a set of partially completed but not actively trained
models and uses the learning curve model for deciding in each
iteration which ones to ‘thaw’, i.e. to continue training.

For speeding up hyperparameter optimization, [11] proposes
a regression-based model for learning curve extrapolation.
The technique relies on trajectories from previous builds to
make predictions of new builds, where a ‘build’ refers to
a training run with a specific base learner parametrization.
Therefore, [11] transforms data from previous builds and adds
a noise term to match the current build and to extrapolate
its performance in order to identify and stop hyperparameter
configurations early.

HAMLET differs from previous work as, first, we use
a less sophisticated learning curve function to demonstrate
the general nature of benefits derived from moving from a
backward to a forward-looking multi-armed bandit for algo-
rithm selection. Second, this work aspires to provide a general
approach, not limited to a specific type of base learner such as
DNN [8], [9]. Third, to test our presented hypothesis, this work
does not rely on previous learning curves [9], [11], but only
uses information from the current AutoML problem. While a
transfer of information from previous learning curves appears
beneficial, this work investigates whether HAMLET improves
algorithm selection performance due to a simple learning curve
extrapolation, not due to a transfer and reuse of previous
information. Finally, HAMLET extrapolates learning curves
for the performance of base learners’ tuners and not individual
hyperparameter configurations.

III. METHODS

A. HAMLET

1) Symbols and Notation: Tab. I summarizes the symbols
used in this work.

2) Multi-Armed Bandit with Learning Curve Extrapolation:
Inspired by [5] and [6], we model the AutoML algorithm
selection problem as a multi-armed bandit problem, where
each arm represents a hyperparameter tuner responsible for

TABLE I: Symbols and notation used in this work.

Symbol Description
B overall Budget given

Brem remaining time budget
ε1 HAMLET Variant 1: chance to pick the tuner with the

second-highest learning curve
ε2 HAMLET Variant 1: chance to pick a tuner at random
εt HAMLET Variant 2: chance to pick a tuner at random,

time dependent
I number of arms

LCi Learning Curve Function for arm i, e.g. using Eq. 1
r vector of predicted reward of all arms when budget runs out

r̂i, r̂ ri, resp. r, after applying UCB bonus (Eq. 2)
ρ HAMLET Variant 3: UCB exploration bonus scaling factor

∆t time interval for HAMLET’s main loop in algorithm 1
tix execution time of arm i spent until now
ri predicted reward of arm i when budget runs out[

xi,yi
]

observed learning curve values for arm i
xi training time to reach yi for arm i
yi accuracy values for arm i
ŷi predicted accuracy values for arm i
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Fig. 1: Exemplary graph showing how a learning curve (LC)
is extrapolated based on observed learning curve values.

one specific base learner. Each iteration, HAMLET chooses
which action to take, i.e. selects the arm to pull, based on
extrapolations of the arms’ learning curves as described below
in Section III-A3 and outlined in Alg. 1 and 2. After deciding
on the action, the bandit continues the execution of the
corresponding hyperparameter tuner for a pre-configured time
interval ∆t. When the interval elapses, the arm’s execution
pauses. This work assumes that the arm’s execution resumes
in later iterations without loss of information. During the
execution of the arm, the bandit receives all monotonically
increasing accuracy values reached in that time interval as
well as information about when the arm reached these values
(i.e. the updated observed learning curve). When the arm’s
tuner did not find new monotonically increasing accuracy val-
ues in that time interval, this information is also incorporated.
The bandit then fits a parametric curve to match the learning
curve and reduces the remaining budget by ∆t. Subsequently,
HAMLET continues to the next iteration.

When HAMLET faces a new AutoML problem, it tries arms
in a Round Robin fashion for a predefined amount of time to
collect enough values to model learning curves for each arm.



3) Learning Curve Extrapolation: This work defines the
learning curve as a monotonically increasing function de-
fined by the maximum accuracies found over training time.
Fig. 1 depicts an example explaining HAMLET’s approach to
learning curve extrapolation. In this work, the term training
time includes the time spent on executing the tuner for
identifying parametrizations of the base learner and training
the parametrized base learner on the dataset. In Fig. 1, an arm
has been running for 500 seconds (marked by a vertical line).
From the accuracy values found until this point, we extract
the monotonically increasing values and use those to fit a
learning curve approximation. That approximation serves to
predict future accuracy values. For comparison, Fig. 1 also
shows the arm’s actual future learning curve, i.e. the ground
truth unknown to the HAMLET bandit after executing the arm
for 500 seconds. The goal in AutoML is to find, in a specified
time budget B, the model leading to the best test score. In
this work that score is given by the maximum accuracy value
across all tuners, i.e. arms i ∈ {1, ..., I}, where each arm has
received an amount of computational resources, in this case
training time tix: maxtix

yitix
, s.t.

∑I
i=1 t

i
x ≤ B.

HAMLET attempts to devote most computational resources
to the tuner corresponding to the base learner achieving the
highest accuracy, using the specified budget B optimally. As
HAMLET iteratively assigns training time intervals to the
different arms, it observes a time series of test scores

[
xi,yi

]
,

where xi ≤ tix, ∀xi ∈ xi. In any iteration, the arms’ future
accuracies yi

x>tix
are unknown. Therefore, HAMLET attempts

to predict each arm’s future accuracy scores ŷi
x>tix

by ap-
proximating each arms’s learning curve LCi and extrapolating
it. More specifically, HAMLET regresses the arms’ observed[
xi,yi

]
and extrapolates assuming that all remaining budget

Brem was spent exclusively on the corresponding arm i:
ri = ŷitix+Brem

.
To investigate if learning curve extrapolation is a meaningful

concept for the algorithm selection problem in constrained
computational settings, we use a straightforward parametric
function to model the arms’ observed accuracies over time. In
this work, learning curves are known to be (1) monotonically
increasing, (2) saturating functions with (3) values ŷ ∈ [0, 1].
Because of the similar shape and its compatibility with pre-
requisites (1)-(3), we choose the arctangent function with four
parameters (a, b, c, d) to translate, stretch and compress:

ŷx = a · arctan (b(x+ c)) + d. (1)

We use SciPy’s [12] curve fit function to fit the parame-
ters of the desired curve.

4) HAMLET Variants: HAMLET faces the same explo-
ration - exploitation dilemma as other multi-armed bandit
strategies. This work uses three variants of how HAMLET
chooses the arm to run in the next iteration. All variants
(see Alg. 2) base their decision on the i-dimensional vector r
containing for each arm i the predicted accuracy ri.

Variant 1 - Double ε-greedy Learning Curve Extrapolation
with Fixed ε1 and ε2: In this approach, HAMLET acts in

an ε-greedy fashion based on the extrapolation of learning
curves. After observing in preliminary experiments that often
a subset of the tuners perform much better than the rest, we
modified the standard ε-greedy bandit as follows. With chance
ε2, HAMLET chooses an action at random. With chance ε1,
HAMLET chooses the arm with the second-highest predicted
accuracy. With chance 1−(ε1+ε2), HAMLET takes the greedy
action, i.e. argmax(r).

Variant 2 - ε-greedy Learning Curve Extrapolation with
Decaying ε: In this approach, HAMLET acts in an ε-greedy
fashion based on the extrapolation of learning curves. The
variant starts with ε0 = 1 and reduces it in B

∆t iterative steps
to εB = 0, where the notation εt denotes the stochastic explo-
ration parameter’s time dependence. Each iteration, HAMLET
chooses an action at random with chance of the current εt.
With chance 1− εt, HAMLET takes the greedy action.

Variant 3 - Learning Curve Extrapolation with Exploration
Bonus: This variant adds for each arm a scaled UCB-based
exploration bonus [4] to the learning curve predictions to
compute the action values:

r̂i = ri + ρ

√
2 log n

log ni
, ρ ≥ 0, (2)

where n is the number of total iterations, ni is the number of
times arm i has been pulled and ρ is the scaling factor of the
exploration bonus. Each iteration, HAMLET chooses the arm
with maximum r̂i, i.e. argmax(r̂).

Algorithm 1: Algorithm selection based on learning
curve extrapolation.

Data: Overall budget B
Brem = B
while Brem > 0 do

if First iteration then
for each arm i = 1, ..., I do[

xi,yi
]

= TrainAndObserveLC(i, ∆t), where[
xi,yi

]
describes the observed learning curve

values
end

else
NextArm = MasterChooseNextArm(r), see Alg. 2;[
xi,yi

]
= TrainAndObserveLC(NextArm, ∆t),

where
[
xi,yi

]
describes the observed learning

curve values
end
for each arm i = 1, ..., I do

LCi = SciPy.Curve Fit(Eq. 1,
[
xi,yi

]
);

ri = LCi(tix +Brem)
end
r =

[
r1, r2, . . . , rI

]
;

Brem = UpdateBudget() ;
end

B. Experimental Validation

This work leverages the traces of experiments in [3], which
executed hyperparameter tuning for six base learners by an
evolutionary strategy. Running different algorithm selection



Algorithm 2: MasterChooseNextArm
Data: Vector r with predicted accuracy for all arms at end

of budget
#This includes 3 Variants;
if Variant 1 then

with probability (1 − (ε1 + ε2)): na = argmax(r);
with probability (ε1): na = i, if ri is runner-up in r;
with probability (ε2): na = random(1, .., I);

else if Variant 2 then
with probability (1 − εt) : na = argmax(r);
with probability (εt): na = random(1, .., I);
where εt linearly decreases with incr. time t;

else
calculate r̂ by applying Eq. 2 to all arms;
na = argmax r̂;

end
Return Nextarm = na

policies on the recorded experiment traces allows evaluating
different bandit policies based on a common ground truth.
While executing the different bandits on recorded traces allows
us to skip time-consuming base learner training, we make sure
to reflect the time needed to perform the bandits’ calculations
in the experiment analysis. That enables a fair comparison
among the bandits: more expensive bandit strategies have
to offset their higher computational costs by selecting better
actions.

1) Computational Resources and Setup: [3] executed each
tuner (and base learner) in a single docker container with only
a single CPU core accessible. Parallel execution of different
experiments was limited to ensure that a full CPU core was
available for each docker container. There was no limit on
memory resource availability. This work executes the bandit
logic also in docker containers constrained to a single CPU
core. We limit the execution of different experiment runs to
ensure each docker container has access to one full CPU core.

2) Datasets, Base Learners and Hyperparameter Tuners:
Relying on the traces from [3], the experiments in this work
perform algorithm selection for 49 small1 and 10 bigger
classification datasets2. The datasets have 1,000 - 680,000
samples, 2 - 18 classes, and 3 - 11,000 features. The datasets
have no missing feature values and the features are of types
numerical or categorical. Tab. II documents the budgets used
for the experiments with the small (denoted Experiment 1)
and bigger datasets (Experiment 2). The traces contain six
base learners: k-Nearest Neighbors, linear and kernel SVM,
AdaBoost, Random Forest, and Multi-Layer Perceptron.

3) Policies and Parametrizations for Comparative Evalu-
ation: For HAMLET Variants 1-3, time progresses in in-
tervals of ∆t = 10s. This work assumes the capability to
freeze and continue the execution of different arms (e.g. via
standard process control mechanisms). This work compares

1www.OpenML.org datasets: {23, 30, 36, 48, 285, 679, 683, 722, 732, 741,
752, 770, 773, 795, 799, 812, 821, 859, 862, 873, 894, 906, 908, 911, 912,
913, 932, 943, 971, 976, 995, 1020, 1038, 1071, 1100, 1115, 1126, 1151,
1154, 1164, 1412, 1452, 1471, 1488, 1500, 1535, 1600, 4135, 40475}

2www.OpenML.org datasets: {46, 184, 293, 389, 554, 772, 917, 1049,
1120, 1128} with five repetitions each.

TABLE II: Verification experiment parameter sets.

Parameter Parameter Set
ε1 {0.01, 0.05, 0.10, 0.20, 0.40, 0.60}
ε2 {0.00, 0.01, 0.05, 0.10, 0.20, 0.40}
ρ {0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00}
K {3, 5, 7, 10, 20, 50, 100}

B (Exp. 1) [s] {150, 300, 450, 600, 900, 1800, 3600}
B (Exp. 2) [s] {900, 1800, 2700, 3600, 7200, 10800, 21600, 43200}

HAMLET Variants 1-3 with a simple Round Robin strategy
(‘Round Robin’), a standard UCB1 bandit (‘UCB’), BestK-
Rewards (‘BestKReward-K’, where K refers the parameter
choice used) and BestK-Velocity (‘BestKVelocity-K’) policies,
leveraging [6]. The HAMLET Variant 1 is presented by ‘Mas-
terLC-ε1-ε2’. HAMLET Variant 2 relates to ‘MasterLCDecay’
and ‘MasterLC-UCB-ρ’ refers to HAMLET Variant 3. For
each parametrizable policy (BestK-Rewards, BestK-Velocity,
HAMLET Variants 1 and 3), we ran a simple grid search
(refer Tab. II) to identify the best performing parameter for
that policy when considering all datasets and all budgets. That
mimics a realistic setting, where the Data Scientist may not
know the optimal policy parametrization beforehand. Thus,
she parametrizes based on an educated guess.

4) Analysis: We compare the highest accuracies achieved
by each policy parametrization per dataset within a given
budget using boxplots to identify the most promising choices
of K, ε1, ε2, and ρ. After identifying each policy’s best
performing parametrizations across the different budgets, we
compare these against each other. Finally, statistical inference
yields the intervals of 95% confidence for the policies’ mean
ranks in these inter-policy comparisons.

IV. EXPERIMENT RESULTS

Fig. 2 shows boxplots of HAMLET Variant 1 ranks for
different values of ε1 and ε2 for selected budgets. It confirms
the intuition that substantial levels of constant stochasticity, as
well as too small levels of stochastic exploration, are detrimen-
tal for the performance of Variant 1. We select ε1 = 0.1 and
ε2 = 0.1 among the parametrizations for comparing with other
bandit policies. Fig. 3 shows boxplots of HAMLET Variant
3 ranks for different values of ρ. It confirms the intuition
that medium to large ρ for scaling the UCB exploration
bonus is detrimental for the performance of Variant 3 - as
is deactivating the UCB bonus altogether. We select ρ = 0.05
for comparing with other policies. Fig. 4 compares the ranks of
the various bandits for small datasets across different budgets.
In particular, HAMLET Variants 1 and 3 achieve favorable
performances for all depicted B.

Similar to Fig. 2, Fig. 5 shows selected boxplots of HAM-
LET Variant 1 ranks for different values of ε1 and ε2 across
a range of budgets. Fig. 5 re-confirms the intuition that high
levels of constant stochasticity, as well as too small levels of
stochastic exploration, are detrimental for the performance of
Variant 1. We confirm the selection of ε1 = 0.1 and ε2 = 0.1.
Similar to Fig. 3, Fig. 6 shows boxplots of HAMLET Variant
3 performance. It confirms the intuition that a medium to
large ρ value is detrimental for the performance of Variant
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(a) Budget 15 minutes.
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(b) Budget 30 minutes.
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(c) Budget 1 hour.

Fig. 2: Experiment 1: Boxplots of HAMLET Variant 1 ranks. With smaller budgets the results do not change qualitatively.
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(a) Budget 10 minutes.
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(b) Budget 15 minutes.
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(c) Budget 30 minutes.
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(d) Budget 1 hour.

Fig. 3: Experiment 1: Boxplots of HAMLET Variant 3 ranks. With smaller budgets the results do not change qualitatively.
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(a) Budget 15 minutes.
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(b) Budget 30 minutes.
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(c) Budget 1 hour.

Fig. 4: Experiment 1: Selected boxplots of ranks for inter-policy comparisons. For B < 900 s the policies are indistuingishable.

3. We confirm ρ = 0.05. Fig. 7 illustrates the boxplot of
ranks for bigger datasets for all eight budgets. HAMLET
Variants 1 (MasterLC-ε1-ε2) and 3 (MasterLC-UCB-ρ) achieve
a favorable performance. At higher budgets, BestKRewards-7
and UCB improve in their rankings relative to the HAMLET
policies and can even overtake HAMLET Variant 3 for the
12-hour budget.

V. DISCUSSION

Section IV indicates that HAMLET Variants 1 and 3 benefit
from the time-awareness and the learning curve extrapolation
capability. Exploration needs to be encouraged in a moderate

manner. Too high levels of stochasticity or exploration bonus
reduce the algorithm selection performance (Fig. 2, 3, 5,
6). HAMLET Variant 2 performs worst of the HAMLET
variants. For several low to medium budgets in each exper-
iment, HAMLET Variants 1 and 3 perform better than the
competitor policies (Fig. 4, 7). For budgets outside of that
range, HAMLET Variants 1 and 3 perform mostly on par
with the state of the art BestK-Reward policy - except for
the largest budget (Fig. 7h), where BestK-Rewards and UCB1
achieve better results than even HAMLET Variant 3.

The boxplots in Fig. 4 and 7 suggest that HAMLET
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(a) Budget 2 hours.
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(b) Budget 3 hours.
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(c) Budget 12 hours.

Fig. 5: Experiment 2: Selected boxplots of HAMLET Variant 1 ranks.
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(a) Budget 1 hour.
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(b) Budget 2 hours.
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(c) Budget 3 hours.
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Fig. 6: Experiment 2: Selected boxplots of HAMLET Variant 3 ranks.

M
as

te
rL

C-
0.

10
-0

.1
0

M
as

te
rL

C-
UC

B-
0.

05

Be
st

KR
ew

ar
d-

7

Be
st

KV
el

oc
ity

-5
0

UC
B

Ro
un

dR
ob

in

M
as

te
rL

CD
ec

ay

0

1

2

3

4

5

6

7

Ra
nk

IQR, inter-policy ranks, 900s

(a) Budget 15 minutes.
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(b) Budget 30 minutes.
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(c) Budget 45 minutes.
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(d) Budget 1 hour.
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(e) Budget 2 hours.
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(f) Budget 3 hours.
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(g) Budget 6 hours.
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(h) Budget 12 hours.

Fig. 7: Experiment 2: Boxplots of ranks for inter-policy comparisons.

performs better than the compared-to policies for a range of
budgets. However, we did not find on a per budget level a
consistent trend that is statistically significant at the 95% level

in the differences of the policies’ mean ranks. Fig. 8 shows
the aggregation of all 1,485 runs (99 traces × 15 budget
levels). Here, HAMLET Variant 3 - learning curve extrapo-
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Fig. 8: Confidence intervals for policies’ mean ranks.

lation combined with an uncertainty bonus for exploration -
achieves a better performance than the other policies (except
the HAMLET Variant 1). Because the respective confidence
intervals do not overlap, that better performance is statistically
significant at the 95% level. Therefore, we conclude that the
experiments - in particular, the performance of HAMLET
Variant 3 - confirm the hypothesis introduced in Section
I. Considering that the applied technique is straightforward
(Eq. 1), we argue that these results encourage future work
on integrating more sophisticated learning curve techniques
into multi-armed bandits for algorithm selection. Advanced
approaches should only increase the relative advantage of
HAMLET over alternative approaches.

In an evaluation not presented in this work for page limi-
tations, we also verified that the trends of the results do not
change when we compare for each budget the different policy
groups’ best-performing policies against each other. We chose
to focus the analysis on the results recorded in Section IV as
it is the more realistic setting from an end-user perspective.

Finally, we observed during the experiments that the BestK-
Velocity policy usually performs much worse than the BestK-
Rewards strategy or the UCB strategy.

Traditional multi-armed bandit algorithms can rely on incre-
mental updates of running averages of the observed rewards
with complexity O(1) for action selection. Each iteration
lasting ∆t and observing n test scores, the Best-K algorithms
require comparing n novel observations with the list of k
top observations, implying a complexity of O(n). In contrast,
HAMLET filters in each iteration the n new observations for
monotonicity, which is also O(n). Besides, HAMLET incurs
the complexity of curve-fitting the resulting m monotonically
increasing observations found so far using [12]. Depending
on the used solver algorithm that might involve, e.g. cubically
scaling matrix inversions, i.e. O(m3).

Note that this work relies on hyperparameter tuning traces of
[3] to evaluate the different bandits for solving the algorithm
selection problem. These traces are limited to classification
datasets. To move to other learning problems, e.g. regression,

the learning curve model in Eq. 1 requires adaptation.

VI. CONCLUSION AND FUTURE WORK

This work introduced HAMLET, a multi-armed bandit for
algorithm selection that is able to account for the progress of
time and is capable of extrapolating learning curves. Experi-
ments with a range of bandit policy parametrizations show that
even a straightforward approach to extrapolate learning curves
is a valuable amendment for the bandit-based algorithm se-
lection problem. Statistical analysis shows that the HAMLET
Variants 1-3 are at least as good as standard bandit approaches.
Notably, HAMLET Variant 3, which combines learning curve
extrapolation with a scaled UCB exploration bonus, performs
superior to all non-HAMLET variants (Fig. 8).

This work motivates multiple areas of future work. First,
more sophisticated learning curve modeling approaches,
e.g. the BNN-based learning curve predictors in [9], lend them-
selves for investigation. Another avenue to further improve
performance is to integrate meta-learning concepts, e.g. by
evolving HAMLET into a contextual bandit. Third, we plan
to adapt Eq. 1 to regression problems.
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