
Online Testing in Machine Learning Approach for
Fall Detection

Lourdes Martı́nez-Villaseñor, Hiram Ponce, José Nuñez-Martı́nez, Sofı́a Pacheco
Universidad Panamericana. Facultad de Ingenierı́a.

Augusto Rodin 498, Ciudad de México, 03920, México
lmartine@up.edu.mx, hponce@up.edu.mx, 0169723@up.edu.mx, 0199375@up.edu.mx

Abstract—Robust fall detectors are needed to reduce the
time in which a person can receive medical assistance, and
mitigate negative effects when a fall occurs. Robustness in fall
detection systems is difficult to achieve given that there are still
many challenges regarding performance in real conditions. Fall
detection systems based on smartphones present good results
following a traditional methodology of collecting data, training
and evaluating classification models using the same sensors and
subjects, yet fail to experiment and succeed in different realistic
conditions. In this paper, we propose a methodology to build a
solution for fall detection, and online testing changing the sensors
and subjects of evaluation in order to provide a more flexible
and portable fall detector.

Index Terms—Fall detection, machine learning, smartphone,
edge computing, assisted living

I. INTRODUCTION

Fall detection is important to help older people live an
active independent life. Robust fall detection systems reduce
the fear of falling and the time in which a person can receive
medical assistance, mitigating negative effects when a fall
occurs. Many diverse approaches for fall detection are reported
in recent literature based mainly in wearable devices, ambient
and vision sensors [1]. Even several commercial devices are
available in the market for fall detection, but they are expensive
and charge a monthly fee for their services [2] and/or have low
performance on the field [3].

Robustness in fall detection systems is difficult to achieve
given that there are still many challenges regarding perfor-
mance in real conditions [4]. These challenges and limitations
differ according to the selected sensors for data collection.
Nevertheless, some issues are common regardless the types
of sensors, for example the lack of reference framework for
evaluation and the scarcity of public available datasets for
validation [5]. Falls are infrequent in real life, it is difficult
to collect data from real unexpected falls, and there is a
great unbalance in the datasets [5]. Falls and activities often
simulated by young adults, doesn’t accurately represent elderly
behaviors. Other design issues are computational cost and
energy consumption [6]. The process of classification can
be done in a server or in the data collection device. Using
computational intensive classification algorithms makes some
collection devices unsuitable for online training. Communica-
tion type of kinematic information of a subject and number
of sensors are factors that impact energy consumption [6].
Regarding the challenges when the collection devices are

wearable sensors or smartphones, placement and orientation
of the sensors or devices have impact on the performance of
fall detectors in addition to the above mentioned issues [7].

Fall detection systems based on smartphones reported in
literature present good results following a traditional method-
ology: collecting data, training and evaluating classification
models using the same sensors and subjects [4]. Very few
of these works describe most of the steps in the complete
process of fall detection: from dataset creation until the
deployment of a model and real time evaluation trying to
mimic realistic conditions [8] [2]. Hence, it is difficult to
achieve robust fall detection systems with good performance
in real life. Regarding smartphone technologies, the effort of
following the traditional methodology from dataset creation,
feature engineering, model training and testing in one type of
smartphone does not guarantee a good performance in real life
and/or other smartphones. It is desirable to build a flexible and
portable solutions to deal with this issue.

In this paper, we propose a methodology to build a solution
for fall detection, and online testing changing the sensors and
subjects of evaluation in order to provide a more flexible
and portable fall detector. Based on the creation of UP-
Fall multimodal dataset presented in [9], we applied feature
engineering, the analysis of sensor placement, the design
of an application in a mobile device, and online testing
of the system with different conditions. This online testing
was performed in an iPhone XS smartphone. Four machine
learning models were firstly evaluated offline, to say: random
forests, support vector machines, multi-layer perceptron and
k-nearest neighbors. The best model found was built using
the UP-Fall Detection dataset, and then it was translated and
deployed in the smartphone for online fall detection. Different
subjects performed the activities and simulated falls for the
online testing.

The main contribution of this work is an attempt of a novel
online testing with the aim of achieving a robust, flexible and
portable fall detection systems.

The rest of this paper is organized as follows. Related
work is provided in Section II. In Section III, we describe
our machine learning proposal for fall detection. Section IV
presents the results of the online testing. Section V concludes
our work.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. RELATED WORK

In this section, we reviewed related fall detection approaches
using wearable devices, inertial measurement unit (IMU) or
smartphones. We included examples of reported methodolo-
gies that described most of the steps in the complete process
of fall detection: from dataset creation until the deployment
of a model and real time evaluation.

The related work of Frank et al. [8] presented the devel-
opment of a system describing the complete process from the
dataset creation to a naturalistic real-time evaluation. Twenty
persons wearing an IMU in the belt performed sequences
of activities of daily living (including falling) under semi-
naturalistic conditions. Next, they performed feature design
and selection followed by a Naı̈ve Bayes activity classification.
An evaluation with new participants was done in which some
synchronization and classification difficulties were reported.
Falls in particular presented misclassifications (59% precision,
44% recall). This approach is very complete given that they
described their process starting with the dataset creation and
performed a new set of real-time experiments, nevertheless,
they only used one IMU position.

Ajerla et al. [2] proposed a framework using edge com-
puting and wearable devices for real-time fall detection. The
learning models were developed based on “MobiAct” dataset
[10] and a long short-term memory (LSTM) network trained
model was deployed in the edge computing framework. They
performed different experiments to determine the waist as
the best position for sensors. Code for execution of the
pipeline is available in GitHub. It is important to note that
the authors executed experiments in order to select the best
sensor position, deployed their model in a framework and even
shared some resources, hence they used a publicly available
dataset. On the other hand,the creators of ”MoviAct” dataset
(using sensors embedded in a smartphone) [10] presented only
a study to estimate the optimal feature set and an analysis of
the pipeline for human activity recognition and fall detection.
Their analysis included experimentation with random device
orientation, but the same device placement in a pocket.

Hassan et al. [11] introduced a framework for fall detection
in which real-time data were retrieved from an accelerometer
sensor embedded on a smartphone. Data are processed and
analyzed by an online fall detection system running on the
smartphone itself. They used MobiAct public dataset to train
the model offline.

Chen et al. [12] proposed FedHealth, a federated transfer
learning framework for wearable healthcare. They addressed
the aggregation of data from separate organizations and per-
sonalization problem. First they built a cloud model and next
utilized transfer learning methods to achieve personalization.
They suggest the deployment of FedHealth for elderly care
and fall detection among others.

Another approach using smartphones for fall detection is
described in [13]. The authors collected the dataset from ten
participants simulating eight type of fall and activities of
daily living recorded in real life. They focused their work

in adaptability of novel detectors to different conditions. In a
later work [14], Medrano et al. proposed a study to personalize
smartphone-based fall detectors and designed experiments un-
der two different training conditions for each subject. They did
not report if the model was deployed for real-time evaluation.

Albert et al. [15] presented a fall detection and classi-
fication system based on smartphone. They described the
data acquisition from 15 subjects that simulated falls wearing
an accelerometer and a smartphone attached on belt on the
back of the subjects. Nine subjects also wore the devices for
ten days collecting everyday behavior. Hence, no falls were
recorded in the second dataset and the collecting sensors were
the same.

In summary, we observe that good results are reported in
training and testing phases for fall detection, but very few
works present realistic evaluation.

III. MACHINE LEARNING APPROACH

This section describes our methodology to build a solution
for fall detection and to evaluate the performance using online
testing on a mobile device. In such that case, our methodology
consists of five steps: (1) the creation of a multimodal dataset,
(2) the application of feature engineering, (3) the analysis of
sensor placement, (4) the design of the application in a mobile
device, and (5) the online testing of the system. Figure 1 shows
our methodology. Details of each step are presented following.

A. Dataset Creation

The first step considers to create a dataset specifically
for fall detection. Even though there exist several data sets
in the literature, it is important that the information stored
corresponds to the type of system that will be created. In
that sense, sensor-based, vision-based or multimodal-based
approaches should be taken into account.

For this purpose, we selected to use a multimodal dataset,
namely UP-Fall Detection, from our previous work [9]. In
a nutshell, this is a public large dataset comprising a set
of 44 raw sensor signals and video recordings from two
cameras with different points of view. The dataset consists
of data information of non-overlapping simple human daily
activities and falls. Seventeen healthy young subjects without
any impairments (1.66 ± 0.05 m height and 66.8 ± 12.9 kg
weight), 9 males and 8 females, ranging from 18 to 24 years
old, performed 11 different actions (activities and falls), three
trials each. Table I summarizes those actions, including a
numeric label. Particularly, all falls were simulated by self-
generation of the subjects, and all of them were collected in
the same direction (right-to-left).

The dataset was collected with the following measurement
devices: five wearable IMUs each with three-axis accelerom-
eter, three-axis gyroscope and one ambient light sensors; one
brainwave sensor; six pairs of infrared proximity sensors, in
grid formation, to detect presence or absence of a person in
the environment; and two cameras, one in lateral view and the
other in front view related to the motion of the subjects. After
synchronization, cleaning and pre-processing (following the

Fig. 1. Methodology for the development of a fall detection system using machine learning on a mobile device with online testing.

TABLE I
TYPES OF ACTIVITIES AND FALLS IN THE DATASET.

Type of action Description Class label

Fall

Forward using hands 1
Forward using knees 2
Backward 3
Sideward 4
Attempting to sit in an empty chair 5

Daily activity

Walking 6
Standing 7
Sitting 8
Picking up an object 9
Jumping 10
Laying 11

TABLE II
MEASURE DEVICES AND PLACEMENT FOR DATASET CREATION.

Measure device Placement
Wearable IMU 1 Left ankle (as bracelet)
Wearable IMU 2 Right pocket (of pants)
Wearable IMU 3 Waist (on the belt)
Wearable IMU 4 Neck (as collar)
Wearable IMU 5 Left wrist (as watch)
Helmet Forehead
Infrared sensors 1–4 Along the length of environment
Infrared sensors 5–6 Along the width of environment
Camera 1 Lateral view (length side of environment)
Camera 2 Front view (width side of environment)

methodology described in [16]), the dataset comprised 296,364
samples of raw sensor and video frames of cameras, collected
at 18 Hz. Table II details the placement of each measure device
used in the dataset.

For a complete description of the UP-Fall
Detection dataset, see [9]. It is publicly available at:
http://sites.google.com/up.edu.mx/har-up/.

B. Feature Engineering

The second step is feature engineering. It is based on
treating the raw signals from sensors and/or the video record-
ings from cameras to obtain meaningful information from the
data. Several sub-steps were done: (i) windowing and feature
extraction, (ii) binary labeling and (iii) feature selection.

1) Windowing and Feature Extraction: For convenience,
we focused only in the wearable IMU sensor signals through-
out this work. First, we segmented the raw data in small
chunks or windows. Then, we calculated different features for
each window.

We first experimented with three different windowing sizes:
1-second, 2-second and 3-second time lengths. Windowing
was done with 50% of overlapping. Then, we constructed
three different datasets, each one for each window size. For
each window, in these different lengths, we extracted twelve

TABLE III
NUMBER OF SAMPLES IN EACH FEATURE DATASET CREATED.

Class label 1-sec dataset 2-sec dataset 3-sec dataset
1 172 86 51
2 175 85 50
3 209 109 66
4 169 85 52
5 230 116 79

Total fall 955 481 298
6 6,032 2,965 1,940
7 7,003 3,339 2,151
8 6,051 2,973 1,947
9 227 115 65

10 2,957 1,428 918
11 8,892 4,210 2,750

Unknown 177 81 55
Total no-fall 31,339 15,111 9,826

features in time: mean, standard deviation, root mean square,
maximal amplitude, minimal amplitude, median, number of
zero-crossing, skewness, kurtosis, first quartile, third quartile
and median auto-correlation. Also, we extracted six frequency
features over the fast Fourier transform (FFT): mean, median,
entropy, energy, principal frequency and spectral centroid.
Since the UP-Fall Detection dataset also contains these feature
sets, we used them for this work.

2) Binary Labeling: Then, a binary labeling was done to
consider one two classes for fall detection: fall and no-fall.
In this regard, we tagged actions from 1 to 5 as fall, and the
remaining actions from 6 to 11 (daily activities) as no-fall.
Unknown actions were automatically tagged as no-fall. Notice
that falls actually have three actions in the entire activity: first
subjects are standing up (class-7 or no-fall), then they start
falling until reaching the ground (class 1–5 or fall), lastly they
remain laying down (class-11 or no-fall) for a moment.

After that, we implemented a voting strategy [9] to deter-
mine the most probable action (fall or no-fall) within each
window. Table III summarizes the number of samples per label
in each of the feature sets created.

3) Feature Selection: Since we are interested on save
computational resources, we implemented a feature selection
procedure to determine the most useful features. To do so,
we used a proposed method by Witten and Frank [17] in
which the selection of features are done by combining subsets
of attributes and evaluating them in a classifier, and then
ranking the most powerful attributes found in each subset.
In this regard, the evaluation of subsets were implemented
with a scheme-independent technique, while the three ranking
methods evaluated attribute correlation, relief and classifica-
tion, methodology reported in [9]. It is remarkable to say that
feature selection was implemented together with the sensor

placement analysis, as discussed below.

C. Sensor Placement Analysis

In this work, we investigated the best wearable sensor
placement for the fall detection system using the UP-Fall
Detection dataset. For this analysis, we considered only the
five IMU sensors (see Table II). In that sense, we created five
feature data sets, one for each IMU sensor, and then we built
four supervised machine learning classifiers for each measure
device. Those methods were selected based on the literature
[5], [9], [13], [18], and they are the following:

• Random Forest (RF). This is one of the most used
methods in fall detection and human activity recognition
[18]. It implies an ensemble of decision trees aiming to
process the inputs into them, and computing the output
class as the most frequent solution of the given trees.

• Support Vector Machines (SVM). It is also a popular
machine learning classifier for fall detection systems [5].
The idea of SVM is to map the inputs to a different
space in which a hyper-plane separates the output classes.
These hyper-planes are built over kernels that are trained
to fulfill the classification task.

• Multi-Layer Perceptron (MLP). This is a classical ar-
tificial neural network using perceptrons as activation
functions. It is typically employed for general nonlinear
classification [5].

• k-Neareast Neighbors (KNN). This is an instance-based
method that seeks the k-nearest neighbors of training
points and compares them with an input data point.
The output response is based on the most frequent
class observed in the latter neighbors. This is a well-
known method used in many applications because of its
responsiveness and easiness of implementation [13].

Table IV summarizes the hyper-parameters of the classifiers
implemented throughout this work.

Since the data sets are unbalanced (i.e. more no-fall than
fall tags), we balanced the data sets doing an oversampling in
the minority class (fall) by doubling the samples. In addition,
we sub-sampled the majority class (no-fall) to one third. We
split each feature data set in 70% for training and 30% for
testing.

To evaluate the classifiers, we calculated the accuracy metric
as in (1), where TP , TN , FP and FN represent the true
positive, true negative, false positive and false negative values,
respectively.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

For each classifier model, we conducted 10 repetitions. We
reported the average performance of the classifier as shown in
Table V. Notice that this approach was done for each feature
data set at different window lengths (1-sec, 2-sec and 3-sec).

From Table V, we ranked the performance of the classifiers
based on the sensor placement. Table VI summarized these
results using the accuracy metric. It shows the IMU sensors
sorted in descending order. As observed in Table VI, the best

TABLE IV
HYPER-PARAMETERS SELECTED FOR THE CLASSIFIERS.

Classifier Hyper-parameters

RF

estimators = 10
min. samples split = 2
min. samples leaf = 1
bootstrap = true

SVM

c = 1.0
kernel = radial basis function
kernel coefficient = 1/features
shrinking = true
tolerance = 0.001

MLP

hidden layer size = 100
activation function = ReLU
solver = stochastic gradient
penalty parameter = 0.0001
batch size = min(200, samples)
initial learning rate = 0.001
shuffle = true
tolerance = 0.0001
exponential decay (first moment) = 0.9
exponential decay (second moment) = 0.999
regularization coefficient = 1e−8

max. epochs = 10

KNN
neighbors = 5
leaf size = 30
metric = Euclidean

performance (ranked in first and second places) is obtained
using the following sensor placements: neck, right pocket
and waist. Also, left wrist performed the worst in almost all
the classifiers. From that, the window length preference of
classifiers are: 3-sec in RF, 3-sec in SVM, 2-sec in MLP and
2-sec in KNN for right pocket, and 3-sec in RF, 3-sec in SVM,
1-sec in MLP and 3-sec in KNN for neck.

From the above, we decided to use the right pocket as the
best sensor placement, also considering easy adoption. Then,
we decided to use 3-sec size in windowing (50% overlapping)
and RF as the binary classifier.

D. Application Design

We developed a mobile application (App) for iOS version
13.0 for fall detection. The App was programmed for online
testing purposes. It enables data collection from sensors em-
bedded in an iPhone XS, namely three-axis accelerometer and
three-axis gyroscope. Feature extraction and selection as well
as the prediction of fall or no-fall are executed in real-time.
The following describes the functions enabled in the App and
its workflow (see Figure 2).

First, the subject ID, activity and trial must be captured
before starting each trial of each activity performed by each
subject. Once the trial is done the collection must be stopped
(see the frontal view of the app in Figure 3). Raw data from
sensors are acquired and stored in CSV files when the trial
is executed. The structure of raw data collected with the
smartphone is shown in Table VII. A timestamp with date
and time is also saved.

Temporal features are extracted and selected from sensors
raw data of the smartphone. We tested our fall detection system
using a 3-second windowing with overlapping of 50% . The

TABLE V
ACCURACY PERFORMANCE OF THE CLASSIFIERS DEPENDING ON THE WINDOW LENGTH PER IMU SENSOR. IT INCLUDES THE MEAN (STANDARD

DEVIATION) VALUES. NUMBERS IN BOLD REPRESENT THE BEST METRIC WITHIN THE WINDOW LENGTH PER SENSOR PLACEMENT.

Classifier Window length Left ankle Right pocket Waist Neck Left wrist

RF
1-sec 97.86 (0.21) 97.89 (0.28) 97.96 (0.23) 97.76 (0.38) 97.17 (0.33)
2-sec 98.42 (0.32) 98.47 (0.43) 98.50 (0.37) 98.28 (0.48) 98.32 (0.52)
3-sec 98.19 (0.44) 98.57 (0.33) 98.41 (0.43) 98.70 (0.31) 97.88 (0.34)

SVM
1-sec 95.17 (0.48) 95.52 (0.50) 95.65 (0.29) 95.43 (0.38) 95.40 (0.33)
2-sec 95.29 (0.69) 95.13 (0.41) 95.38 (0.46) 95.32 (0.40) 95.37 (0.42)
3-sec 95.69 (0.41) 95.76 (0.50) 95.65 (0.69) 95.73 (0.54) 95.24 (0.34)

MLP
1-sec 72.90 (21.60) 85.78 (3.57) 79.62 (4.84) 83.70 (4.94) 77.20 (11.96)
2-sec 82.13 (2.95) 86.16 (2.66) 73.49 (13.06) 83.13 (7.64) 76.69 (18.29)
3-sec 83.12 (1.74) 83.55 (2.82) 78.31 (4.14) 72.81 (23.41) 76.35 (19.19)

KNN
1-sec 87.31 (0.52) 91.76 (0.31) 89.98 (0.36) 90.43 (0.37) 87.32 (0.35)
2-sec 87.33 (0.83) 91.96 (0.61) 91.20 (0.53) 90.80 (0.49) 87.19 (0.58)
3-sec 88.56 (0.71) 91.32 (0.69) 91.84 (0.59) 91.31 (0.60) 87.47 (0.94)

TABLE VI
RANKING (TOP-BOTTOM) OF THE BEST SENSOR PER CLASSIFIER, BASED

ON THE ACCURACY (IN PARENTHESIS).

Rank RF SVM MLP KNN
1 (98.70) Neck (95.76) Pocket (86.16) Pocket (91.96) Pocket
2 (98.57) Pocket (95.73) Neck (83.70) Neck (91.84) Waist
3 (98.50) Waist (95.69) Ankle (83.12) Ankle (91.31) Neck
4 (98.42) Ankle (95.65) Waist (79.62) Waist (87.47) Wrist
5 (98.32) Wrist (95.40) Wrist (77.20) Wrist (87.33) Ankle

TABLE VII
DATA COLLECTED WITH THE SMARTPHONE

Sensor Raw data

Accelerometer

x-axis
y-axis
z-axis
Date
Time

Gyroscope

x-axis
y-axis
z-axis
Date
Time

selected features are shown in Table VIII. A timestamp with
date and time is added to features file.

The best 3-sec size in windowing (50% overlapping) Ran-
dom Forest binary classifier was deployed for testing in the
smartphone. We used Core ML framework [19] to integrate
our machine learning model into the app. The classifier was
applied in real-time to deliver the fall estimation which was

TABLE VIII
FEATURES EXTRACTED AND SELECTED FROM SENSOR DATA

Sensor-axis Feature
Accelerometer: z-axis (g) Standard deviation
Accelerometer: y-axis (g) Third quartile
Gyroscope x-axis (deg/s) Skewness
Accelerometer: y-axis (g) Kurtosis
Gyroscope z-axis (deg/s) Median
Accelerometer: z-axis (g) Maximal amplitude
Gyroscope z-axis (deg/s) Autocorrelation
Gyroscope z-axis (deg/s) Kurtosis
Accelerometer: y-axis (g) Maximal amplitude
Accelerometer: x-axis (g) Autocorrelation

Fig. 2. Diagram of the workflow in the App design.

added and saved in the feature file.

E. Online Testing

Lastly, we designed an online testing to measure the perfor-
mance of our fall detection system on the smartphone. For this
purpose, we created in this work a new dataset with different
conditions than those implemented in the UP-Fall Detection
dataset. With the new dataset, the deployed binary classifier
is tested on the smartphone in real-time. This new dataset
is intended to measure the flexibility and portability of our
fall detection system. The details of the new dataset and the
description of the experiments are provided following.

1) Dataset for Online Testing: This dataset was created
with different subjects and different sensors, in contrast to
the UP-Fall Detection dataset. At first, we recruited fourteen
young subjects without any impairments (1.70±0.09 m height
and 68.8 ± 17.2 kg weight), 6 males and 8 females, ranging
from 19 to 37 years old. They performed the same 11 actions

TABLE IX
PERFORMANCE OF THE ONLINE TESTING FOR EACH ORIENTATION OF THE SMARTPHONE IN THE RIGHT POCKET. IT REPORTS THE ACCURACY AND

RECALL METRICS FOR EACH SUBJECT, AND THE AVERAGE.

Subject Orientation 1 Orientation 2 Orientation 3
accuracy (%) recall (%) accuracy (%) recall (%) accuracy (%) recall (%)

1 70.94 85.71 92.94 80.0 92.42 83.33
2 80.20 75.0 93.51 100.0 95.09 100.0
3 72.25 66.67 87.14 50.0 85.71 37.50
4 75.59 71.43 91.63 75.0 95.26 33.33
5 83.17 28.57 98.56 100.0 98.09 80.0

Average 75.79 57.78 91.79 69.23 92.55 57.50

Fig. 3. Screenshot of the App for online testing the fall detection system.

(activities and falls) as summarized in Table I, three trial
each. The same protocol for action performance and data pre-
processing was adopted from [9], [16].

As measurement device, we used one iPhone XS smart-
phone with its three-axis accelerometer and three-axis gyro-
scope, placed in the right pocket and collected at 100 Hz. For
manual tagging purposes, we placed a camera in lateral view;
but images grabbed from it were not used in the fall detection
system.

We changed the orientation of the smartphone in each trial.
In the first trial (orientation 1), the smartphone was oriented
upside down and with the screen flipped to the body of the
subject. In the second trial (orientation 2), the smartphone was
oriented upright and with the screen flipped to the body of the
subject. In the third trial (orientation 3), the smartphone was
oriented upright and with the screen flipped out the body of
the subject.

We encountered battery and communication issues when
dealing with the smartphone. In the first case, sensor infor-
mation lagged so it did not match with the performance of
the subject. In the second case, portions of data were not
consistently transferred to the server. For those reasons, in
this paper, we only report information from five subjects in
which these issues were not found.

The work was approved by the Research Committee of the
School of Engineering in Universidad Panamericana (Mexico).

For this study, all the subjects that participated previously filled
out an agreement, considering the regulations and data policies
applicable. The decision to participate in these experiments
was voluntary.

2) Settings of the Fall Detection System: For experimenta-
tion, we setup the app in the smartphone to retrieve data from
the built-in sensors (accelerometer and gyroscope). From the
sensor placement analysis, we defined a windowing approach
of 3 seconds with 50% overlapping. At the end of each
window, the raw sensor data was processed and the same
features implemented in the machine learning model were
extracted locally in the smartphone. These features were input
to the deployed model and the estimated values were collected
in real-time. For further analysis, all the raw sensor data, the
features extracted and the estimations done in the smartphone
were sent to the server.

3) Metrics of Evaluation: For this test, we calculated the
accuracy metric as in (1) and the recall metric as in (2).

recall =
TP

TP + FN
(2)

IV. RESULTS OF ONLINE TESTING

This section reports the results of the online testing of
the deployed binary classifier for fall detection, as described
above. The results reported the performance of the five sub-
jects with the smartphone wore in the right pocket. The
estimated falls were computed on the mobile device in real-
time considering a windowing approach of 3 seconds with
50% overlapping. Table IX summarizes the results of the
online testing performance in the different orientations (trials)
of the smartphone (trials). The overall performance obtained
was 87.56% of accuracy and 69.79% of recall.

In Table IX, it can be observed that the performance of
the deployed fall detection system depends on the orientation
of the smartphone. In this regard, both orientation 2 and
orientation 3, where the smartphone was oriented upright,
performed better than orientation 1 based on the accuracy
metric. It is remarkable to say that the IMUs in the UP-Fall
Detection dataset were randomly oriented [9], thus orientation
in the online testing gives insights on the preferable orientation
of the smartphone (i.e., upright or upside-down). In terms
of the recall metric, all the orientations performed similar
results, with some preference on orientation 2 (the screen of
the smartphone is flipped to the body of the subject).

Fig. 4. Normalized confusion matrices of the average performance in the online testing: (a) orientation 1, (b) orientation 2, (c) orientation 3, and (d) overall
performance (87.56% of accuracy and 69.79% of recall).

Moreover, Figure 4 shows the average normalized confusion
matrices of the three orientations and the overall performance
summarizing all the orientations. The confusion matrices of
the orientations (Figure 4(a)–(c)) show that fall actions are es-
timated less accurate than no-falls. This behavior is associated
to the imbalanced dataset, thus better techniques for training
machine learning models with imbalanced data are required.

Furthermore, the confusion matrix of the overall perfor-
mance reveals that the deployed binary classifier model es-
timates the fall class 70% of the times while the no-fall class
is detected 88% (Figure 4). In contrast to the literature, our
proposed deployed fall detection system outperforms the work
reported in [8] with 59% of precision and 44% of recall.

From the results above, it is evident that there is a decreasing
in the predictive power of the deployed fall detection system in
online testing (overall accuracy of 87.56%) when comparing
with the binary classifier model trained directly from the
UP-Fall Detection dataset (overall accuracy of 98.57%, see
Table V). Differences in sensors, e.g. sampling rate, resolution,
orientation, limited the performance of the deployed model.
We consider that advanced techniques, e.g. transfer learning,
should be applied for improving the performance of the
deployed fall detection system.

V. CONCLUSIONS

In this paper, we presented a solution for fall detection,
and designed an online testing to measure the performance of
our fall detection system on a smartphone. For this purpose,
we designed new experiments and created a new dataset with
different conditions than those implemented in the previously
gathered UP-Fall Detection dataset.

Our methodology, including online testing in deployed fall
detection systems, is one of the few existing works related
to evaluate the performance of deployed machine learning
models online. Even if many of the research in fall detection
systems report high performance of the classifier models, there
is still a lack of understanding on how to translate and deploy
those models on real, portable, constrained –and possibly
different– platforms (e.g. different smartphone models).

For future work, it is recommended to test other techniques
like transfer learning to improve the performance of the
classification. In order to enable our App to work in real

world, it is necessary to implement the ability to run in the
background, and to test it in a larger pool of subjects.

REFERENCES

[1] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection:
Principles and approaches,” Neurocomputing, vol. 100, pp. 144–152,
2013.

[2] D. Ajerla, S. Mahfuz, and F. Zulkernine, “A real-time patient monitoring
framework for fall detection,” Wireless Communications and Mobile
Computing, vol. 2019, 2019.

[3] N. Noury, P. Rumeau, A. Bourke, G. ÓLaighin, and J. Lundy, “A
proposal for the classification and evaluation of fall detectors,” Irbm,
vol. 29, no. 6, pp. 340–349, 2008.

[4] R. Igual, C. Medrano, and I. Plaza, “Challenges, issues and trends in
fall detection systems,” Biomedical engineering online, vol. 12, no. 1,
p. 66, 2013.

[5] ——, “A comparison of public datasets for acceleration-based fall
detection,” Medical engineering & physics, vol. 37, no. 9, pp. 870–878,
2015.

[6] Y. Delahoz and M. Labrador, “Survey on fall detection and fall preven-
tion using wearable and external sensors,” Sensors, vol. 14, no. 10, pp.
19 806–19 842, 2014.

[7] A. Özdemir, “An analysis on sensor locations of the human body
for wearable fall detection devices: Principles and practice,” Sensors,
vol. 16, no. 8, p. 1161, 2016.

[8] K. Frank, M. J. Vera Nadales, P. Robertson, and T. Pfeifer, “Bayesian
recognition of motion related activities with inertial sensors,” in Pro-
ceedings of the 12th ACM international conference adjunct papers on
Ubiquitous computing-Adjunct. ACM, 2010, pp. 445–446.

[9] L. Martı́nez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-
Martı́nez, and C. Peñafort-Asturiano, “UP-fall detection dataset: A
multimodal approach,” Sensors, vol. 19, no. 9, p. 1988, 2019.

[10] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis, and M. Tsik-
nakis, “The mobiact dataset: Recognition of activities of daily living
using smartphones.” in ICT4AgeingWell, 2016, pp. 143–151.

[11] M. M. Hassan, A. Gumaei, G. Aloi, G. Fortino, and M. Zhou, “A
smartphone-enabled fall detection framework for elderly people in
connected home healthcare,” IEEE Network, vol. 33, no. 6, pp. 58–63,
2019.

[12] Y. Chen, J. Wang, C. Yu, W. Gao, and X. Qin, “Fedhealth: A federated
transfer learning framework for wearable healthcare,” arXiv preprint
arXiv:1907.09173, 2019.

[13] C. Medrano, R. Igual, I. Plaza, and M. Castro, “Detecting falls as
novelties in acceleration patterns acquired with smartphones,” PloS one,
vol. 9, no. 4, p. e94811, 2014.

[14] C. Medrano, I. Plaza, R. Igual, Á. Sánchez, and M. Castro, “The effect
of personalization on smartphone-based fall detectors,” Sensors, vol. 16,
no. 1, p. 117, 2016.

[15] M. V. Albert, K. Kording, M. Herrmann, and A. Jayaraman, “Fall
classification by machine learning using mobile phones,” PloS one,
vol. 7, no. 5, p. e36556, 2012.

[16] C. J. Penafort-Asturiano, N. Santiago, J. P. Nunez-Martinez, H. Ponce,
and L. Martinez-Villasenor, “Challenges in data acquisition systems:
Lessons learned from fall detection to nanosensors,” in 2018 Nanotech-

nology for Instrumentation and Measurement (NANOfIM). IEEE, 2018,
pp. 1–8.

[17] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[18] S. Kozina, H. Gjoreski, and M. G. Lustrek, “Efficient activity recognition
and fall detection using accelerometers,” in International Competition on
Evaluating AAL Systems through Competitive Benchmarking. Springer,
2013, pp. 13–23.

[19] A. Inc, “Framework core ml:integrate machine learning models into
your app,” 2020 (accessed April 3, 2020). [Online]. Available:
https://developer.apple.com/documentation/coreml

