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Abstract—During the last decade, the digitization of pathology
has gained considerable momentum. Digital pathology offers
many advantages including more efficient workflows, easier
collaboration as well as a powerful venue for telepathology. At
the same time, applying Computer-Aided Diagnosis (CAD) on
Whole Slide Images (WSIs) has received substantial attention
as a direct result of the digitization. The first step in any image
analysis is to extract the tissue. Hence, background removal is an
essential prerequisite for efficient and accurate results for many
algorithms. In spite of the obvious discrimination for human
operator, the identification of tissue regions in WSIs could be
challenging for computers mainly due to the existence of color
variations and artifacts. Moreover, some cases such as alveolar
tissue types, fatty tissues, and tissues with poor staining are
difficult to detect. In this paper, we perform experiments on
U-Net architecture with different network backbones (different
topologies) to remove the background as well as artifacts from
WSIs in order to extract the tissue regions. We compare a
wide range of backbone networks including MobileNet, VGG16,
EfficientNet-B3, ResNet50, ResNext101 and DenseNet121. We
trained and evaluated the network on a manually labeled subset
of The Cancer Genome Atlas (TCGA) Dataset. EfficientNet-B3
and MobileNet by almost 99% sensitivity and specificity reached
the best results.

Index Terms—Histopathology, Convolutional Networks, Tissue
Segmentation, U-Net, artifact removal.

I. INTRODUCTION

In the recent decade, the image digitization has recently

become more popular in the pathology practice. Improvement

in this technology has led to the manufacturing of high-

resolution whole-slide scanners which can produce WSIs in

a short time. The digital scan of the biopsy glass slides can

be explored by image viewers rather than the conventional

microscope. Also, despite the large size of scans (a typical

WSI file is usually at least several hundred megabytes), new

storage and network sharing progress make it possible to

share these files much faster than mailing glass samples for

the purpose of consultations and acquiring second opinions

[1]. An important benefit of digital pathology is that AI and

computer vision methods can be applied on tissue scans to

help pathologists create more accurate reports [2]. Due to the

large size of WSIs, most pathology image processing methods

divide the slides into small tiles (patches) before feeding them

to the CAD systems. Unquestionably foreground segmentation

* This work was funded by a NSERC-CRD grant on “Design and De-
velopment of Devices and Procedures for Recognizing Artefacts and Foreign
Tissue Origin for Diagnostic Pathology”

is a necessary prerequisite for almost every tile-based method

to decrease the time complexity and possibility of making

mistakes by the algorithms due to analyzing irrelevant parts

[3]. Thus, one has to remove irrelevant pixels from WSIs as

much without removing any tissue pixels [4], [5]. Since in

medical imaging, histopathology image analysis is generally

the last step for cancer diagnosis [6], it is crucial to avoid

losing tissue pixels. Therefore, the expected segmentation

sensitivity has to be very high.

Another application of tissue foreground segmentation is

in whole slide scanners which digitize glass slides containing

tissue specimens to generate WSI files. The focus depth of

whole slide scanners must be adjusted for different tissue

regions due to variable tissue thickness. Hence, scanners need

to identify all areas which contain tissue. If an error occurs

during digitizing glass slides, there is no way to fix the

error in the following steps of the digital pathology workflow.

Currently, a technician manually checks every slide after

scanning, which is a tedious and expensive procedure [2], [7].

Some of the challenges in tissue segmentation in

histopathology images are related to the tissue type. For

instance, air sacs in the lung, and fat which could appear

in many tissue types, may confuse algorithms due to their

resemblance with the background color while they can be

easily segmented as tissue by an expert. Another important

challenge is the presence of artifacts including bubbles, tissue

folds, extra stain, broken glass, debris, and marker traces [4],

[8]. Moreover, mistakes in tissue preparation such as weak

staining raise difficulties for tissue identification algorithms

[2], [9]. Examples of some of the mentioned challenging cases

are indicated in Fig.1.

In this paper, we propose a novel method to identify tissue

areas in the WSI thumbnail images. The main contributions

of this paper are: (1) Releasing a publicly available dataset

consisting of 244 thumbnails of TCGA WSIs along with

their segmentation masks, (2) proposing a deep learning

topology using U-Net for reliable, accurate, and automatic

tissue segmentation, and (3) comparing the performance of

different encoders as the backbone of U-Net in the tissue

segmentation task. The manifest to download the data from

the GDC website, manually refined labels ,as well as codes to

run the proposed U-Net, is available for download1.

1https://kimialab.uwaterloo.ca/kimia/index.php/data-and-code/
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(a) Lung tissue with Air Sacs (b) Fatty Tissue

(c) Dirty Glass Slide (d) Extra Stain in Background

(e) Poor Staining (f) Broken Glass

Fig. 1: Some examples for challenges in tissue extraction

(images selected from the TCGA dataset).

II. RELATED LITERATURE

The identification of regions containing tissue is usually

the first step in histopathology image analysis. However, this

problem is often treated as a trivial part of research mostly

solved via threshold-based methods. Most research papers

have used empirical rules to set the threshold for different

image specifications such as gradient, intensity, color, etc. [9]–

[13].

A. Machine vision based methods

Estimation of the texture complexity in small neighbors has

been used by Oswal et al. to detect the foreground [10]. Babaie

et al. [11] used homogeneity and gradient values to estimate

the patch complexity. Bentaieb et al. [12] used a threshold

on the pixel intensity values to detect the tissue. As another

example, Kothari et al. [9] removed blank regions by setting

a threshold on saturation and intensity of pixels. Other works

used homogeneity criteria to only select patches containing a

considerable part of the tissue [14].
The Otsu algorithm [15] as a robust iterative thresholding

method has been widely used to compute the optimal thresh-

old. Mohit employed the Otsu method on HSV transformed

image for background removal [16]. Nguyen et al. applied

Otsu’s method on the b channel of the LAB color space to

obtain tissue regions in WSIs [17].
One of the most well known and widely used open-source

libraries in digital histopathology, Histomics Toolkit (His-

tomicsTK)2 can also perform tissue detection on the thumbnail

of a WSI. The process contains a series of Gaussian smoothing

and Otsu thresholding. Also, another threshold is used to filter

regions smaller than a preset size.
In contrast to the mentioned works, which treat background

detection as a small part of the entire WSI processing, there are

few studies which have addressed the foreground/background

detection in histopathology slides as a major problem [4], [7],

[13], [18]. Similar to the previous vision-based methods, FESI

[13] used a combination of basic methods, such as median

filtering, thresholding, erosion and dilation to address this

problem. Calculation of absolute value of the Laplacian based

on gray-scale image, and then applying Gaussian filter is used

in their work. Recently Chen et al. [19] introduced tissue

localization method by applying inverse binarization on the

gray-scale images followed by erosion and dilation.

B. Network based Methods
Neural network based methods are a rather recent trend

in the literature to address the tissue segmentation. Raja et

al. [4] have extracted four different features including color,

appearance, texture and spatial features. They fed the selected

features to a two-layer neural network to classify the patches

into background and foreground pixels. Bandi et al. [7] trained

FCN and U-Net networks for tissue segmentation with patches

with a single label. They used patches with the size of

892× 892 pixels for U-Net and 128× 128 pixels for FCNN.

Their patches were randomly extracted from 54 WSIs. They

assigned only one label to each patch based on its central

pixel which means the same labels are allocated to roughly

800,000 pixels in the U-Net case. It seems that all network-

based methods are working on the highest usually available

magnification (namely, 20× magnification). As a result, for

a whole slide processing, a large number of small patches

must be fed to their network which is a time-consuming task.

However, a more efficient way of segmentation is to assign

a label to each pixel in a thumbnail to save time and also

to avoid losing tissue parts (especially borders) as much as

possible. Therefore, in this paper we provide manually labeled

WSI thumbnails (low magnification) to train U-Net models

(Fig. 2). We have compared the most commonly used network

architectures to find the best backbone for proposed U-Net.

2https://github.com/DigitalSlideArchive/HistomicsTK



C. U-Net

U-Net is a convolutional neural network which firstly was

proposed for the segmentation of neural structures in electron

microscopic images in 2015 [20]. Since then, this network

has shown impressive performance in various segmentation

tasks in medical imaging. Dong et al. [21] proposed an

automatic method to detect and segment brain tumors in MRI

by using U-Net. Bulten et al. [22] utilized U-Net for epithelial

tissue segmentation to assist pathologists in prostate cancer

diagnosis. Naylor et al. [23] proposed a method for cell nuclei

segmentation by formulating this task as the regression of

the distance map. They compared results of three different

architectures: (1) the pre-trained VGG16 with fine-tuning as

the FCN approach, (2) U-Net, and (3) Mask R-CNN with

the pre-trained ResNet 101 as its backbone. U-Net can be

trained end-to-end using a small number of images [24]. This

is the most significant advantage of the U-Net, especially in

applications such as biomedical domain where usually only a

few annotated images are available.

Concatenate

Input Image Output Mask

Encoder Decoder

Fig. 2: Network Architecture: Each block shows a feature map.

III. METHODOLOGY

A. Data Annotation

For tissue segmentation, a label must be assigned to each

pixel to indicate whether it belongs to a tissue region or not.

A mask is a binary image where every pixel is either zero

(black) or one (white) where the white pixels generally mark

the region of interest.

A typical WSI contains more than several thousand pix-

els in each image axis (i.e., a typical WSI may easily be

50, 000 × 50, 000 or larger). Thus, assigning a label to each

pixel of the WSI is not a feasible task. To overcome this

challenge, we first work with thumbnails instead of WSIs,

that is generally the image at 1× magnification. Working

with thumbnails has the advantage of fast computation. Also,

tissue regions at higher magnifications can be constructed

from their corresponding segmented thumbnails by simple

calculations commonly known for the pyramidal structures

of whole slide images. We developed a handcrafted image

processing approach, details in Alg. 1, to produce initial masks

from thumbnails [25], [26].

Masking was performed in 2.5× magnification to preserve

details. Note that based on our practical experiments, in

Algorithm 1: Handcrafted Masking Method

Input : The rgb thumbnail of the WSI

Output: Thumbnail binary mask with the same size

chosenContours ← [];

binThmb ← binaryThresholding(rgbThmb);

contours, hierarchy ← findContours(binThmb);

fatherContours ← getContours(contours,
hierarchy, 0);

append(chosenContours, fatherContours);

firstLevelChildren ← getContours(contours,
hierarchy, 1);

firstLevelChildren ← sort(firstLevelChildren,
’area’);

append(chosenContours, firstLevelChildren [0]);

i ← 1;

while firstLevelChildren [i].area
>min(firstLevelChildren [i− 1].area *
ratioThreshold, areaThreshold) do
append(chosenContours, firstLevelChildren
[i]);

i ← i + 1
end

foreach x in firstLevelChildren do
distCond ← distanceToClosest(x,
chosenContours) <distThreshold;

if distCond and x not in chosenContours then
append(chosenContours, x);

end

foreach x in firstLevelChildren do

areaCond ← getArea(x) >areaThreshold;

if areaCond and x not in chosenContours then
append(chosenContours, x);

end
drawContours(chosenContours, finalMask,
’white’);

foreach hole in invert(binThmb) do
if hLowerThresh <hole.area <hUpperThresh

then
drawContours(hole, finalMask, ’black’);

end

challenging cases, the 2.5× magnification was the smallest

size which still could distinguish the tissue parts from artifacts

such as extra staining. Thereafter, initial masks were refined

manually to make sure that all tissue regions are selected,

and noise and artifacts are removed as much as possible. An

example of the mentioned steps can be found in Fig. 3.

With regard to difficult cases, we used image dilation with

3 × 3 kernels to make sure every pixel of tissue, especially



at borders, are preserved. Finally, each pair of mask and

thumbnail is resized (preserving the aspect ratio) in a way that

each image dimension does not exceed 1024 pixels to make

the images small enough to be processed by the network. It

is noteworthy that the thumbnails have various dimensions

necessitating background padding to have the unified size

1024× 1024 for all images.

B. Model Architecture

U-Net, which is a fully convolutional network with a U-

shape architecture, has two parts, called encoder and decoder.

The first sub-network, known as the encoder, extracts high-

level features to capture the image content. The decoder sub-

network, also known as the expansion part, creates the desired

segmentation map [20]. Fig. 2 shows the proposed network

architecture. U-Net-based deep networks, the same as U-

Net, include two encoder and decoder sub-networks. As the

input image passes through the first sub-network, higher-level

features are extracted. In the next sub-network, deep feature

maps are combined with low-level feature maps from the

encoder sub-network. The spatial resolution of feature maps

are increased in the second sub-network to achieve an output

mask with the same size as the input image. The connections

between the encoder and decoder in U-Net architecture fa-

cilitate information propagation. In terms of connections in

the U-Net architecture, feature maps from the encoder part

are cropped and concatenated to feature maps in the decoder

sub-network to retrieve local information. These connections

enable the network to learn from a few samples [20].

To improve the performance of U-Net, we applied custom

backbones on its architecture using Segmentation Models

library3. The encoder part of these customized networks are

the feature extractor, i.e., complete network architecture except

the last dense layer, of a chosen network, e.g., MobileNet. The

decoder part consists of 5 decoder blocks with filters of size

256, 128, 64, 32 and 16 as it gets deeper. The structure of

each decoder block is made up of one 2d-upsampling layer

and two repetitions of 2d-convolution, batch-normalization and

ReLU activation. Four skip connections connect layers from

the encoder part, usually the output of ReLU activation at a

certain layer of each encoder block, to the last four decoder

blocks, after the up-sampling layer. The last layers of the

network is a 2d-convolution layer with Sigmoid activation.

We experimented with six different backbones (topologies)

for U-Net-based solutions for tissue segmentation which are

introduced in Section IV-B.

IV. EXPERIMENTS

A. Data

We used 244 WSIs selected from different organs such

as brain, breast, kidney, and lung. All WSIs were randomly

selected from The Cancer Genoum Atlas (TCGA) dataset [27],

[28]. TCGA is one of the largest publicly available datasets

with histopathology whole slide images.

3https://github.com/qubvel/segmentation models

B. Topologies and Training Process

We have experimented with various network topologies

including MobileNet, VGG16, EfficientNetB3, ResNet50,

ResNext101, and DenseNet121 as the backbone of U-Net

model to find the most suitable ones for tissue segmentation

[29]–[33]. All networks were trained for 50 epochs, no early

stopping, using Adam optimizer [34] with the learning rate

of 1e − 4 on one NVIDIA Tesla V100 GPU with 32GB

memory. After running the experiments with two loss func-

tions, namely Jaccard Index and sensitivity plus specificity,

we chose the latter so the network tries to come up with

an approximation which avoids the misclassification of tissue

parts as background while having a good performance at

recognizing background. The drawback of using Jaccard Index

as the loss function was the relatively low sensitivity of the

results. The networks were initialized with ImageNet weights

and trained and evaluated with five-fold cross validation. For

each fold, 195 1024 × 1024 RGB images were used as the

input and binary masks with the same size as the label in

which pixel value 1 (positive) meant tissue and pixel value

0 (negative) meant background. Input images and their corre-

sponding masks were augmented by three transformations: (1)

Random rotation within the range of -180 and 180 degrees, (2)

random horizontal flipping, and (3) random vertical flipping.

The validation dataset contained 49 images for each fold.

C. Comparison of Methods

To compare our results against other methods, we used the

same input images fed to our networks as their input and

calculated their performance against the ground-truth masks.

All methods were checked to be able to work with the

given inputs. We compared our results against four traditional

computer vision methods:

(1) FESI algorithm [13] is improved by changing the color

space of the input image from BGR to LAB and the value

of the first two channels, lightness and red/green value, are

changed to maximum intensity value 4. Color space of the

resulting image is changed to gray-scale and binerized using

the mean value of the image as threshold. This binary image

is passed to the Gaussian filter instead of using the absolute

value of the Laplacian of the gray-scale image as done in the

original paper.

(2) We used locate tissue cnts function available in the

open-source Python package5, TissueLoc [19], as a recently

developed method for comparative purposes. We modified the

function in a way that it uses the thumbnail image as input.

Also all of input parameters of the function are set to default

values except min tissue size which is set to 50 to make

sure the algorithm would detect all tissue parts.

(3) Histomics Toolkit Python library is one of the

most popular libraries in the histopathology domain.

saliency.tissue detection.get tissue mask function was used

as tissue segmentation method. We set the input parameters

4https://github.com/alexander-rakhlin/he stained fg extraction
5https://github.com/PingjunChen/tissueloc
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Fig. 3: Two samples of sequential steps for generating masks.

TABLE I: Summary of results: Comparing our networks with image-processing methods (gray rows).

Method Time (s) Jaccard Index Dice Coeff. Sensitivity Specificity

MobileNet 0.11 0.95 0.97 0.99 0.99
EfficientNet-B3 0.18 0.95 0.97 0.99 0.98
ResNet50 0.16 0.94 0.97 0.99 0.98
DenseNet121 0.16 0.93 0.96 0.99 0.98
ResNext101 0.50 0.93 0.96 0.99 0.98
VGG16 0.11 0.75 0.82 0.99 0.81
Improved FESI [13] 0.11 0.86 0.92 0.91 0.97
TissueLoc [19] 0.26 0.81 0.88 0.88 0.97
Otsu algorithm 0.02 0.81 0.89 0.82 0.99
Histomics-TK 0.13 0.78 0.87 0.79 0.99

deconvolve first to False, n thresholding steps to 1 and

min size threshold to 50.

(4) Otsu binarization method as one of the well-known

algorithms to classify pixels into foreground and background.

The RGB thumbnail images are first converted to gray-scale

and then the Otsu method is applied.

D. Performance Evaluation

In the test phase, we compared the result of all methods with

the ground-truths via 5-fold cross validation. In addition to

the processing time, four different performance measurements,

i.e., Jaccard index, Dice coefficient, sensitivity, and specificity,

were conducted which are defined as:

Jaccard :=
TP

TP + FP + FN
, (1)

Dice :=
2 ∗ TP

2 ∗ TP + FP + FN
, (2)

Sensitivity :=
TP

TP + FN
, (3)

Specificity :=
TN

TN + FP
, (4)

where TP, TN, FP, and FN denote the number of true

positives, true negatives, false positives, and false negatives,

respectively. The segmented pixels are considered as positive

and negative where they are labeled as tissue and non-

tissue pixels, respectively. Note that the sensitivity is more

important than the specificity in the tissue segmentation task

because sensitivity penalizes wrong labeling of tissue region

as background while specificity gives a penalty to the wrong

labeling of the background region as tissue. In histopathology,

it is paramount to do not miss any part of the tissue.

E. Analysis of Results

In addition to Improved FESI and TissueLoc methods, we

chose HistomicsTK tissue segmentation and Otsu algorithm to

compare our networks’ results against well-known methods for

histopathology image analysis. Table.I shows that all networks,

except VGG16, outperform all four handcrafted methods with

respect to all performance measurements. The most important

advantage of networks over the handcrafted methods is their

high sensitivity (≈ 99%). In addition networks are as fast as

handcrafted methods such as Improved FESI and TissueLoc

while achieving considerably higher Jaccard Index and Dice

Coefficients. It can be seen that Jaccard Index for the networks

with best performance, namely MobileNet and EfficientNet-

B3, is 9% higher than the best handcrafted method, namely

Improved FESI. Considering the changes in the validation



loss for two networks, ResNext101 with around 51 million

parameters and EfficientNet-B3 with less than 18 million

parameters, through 50 epochs, Fig.5, it seems that both have

the same pattern; 20 epochs appeared to be enough for proper

network training. This would take around 20 minutes for a

medium-size network and 40 minutes for a large network

which is a negligible cost considering the benefits of using

networks.

To compare network backbones, it can be seen that Mo-

bileNet showed the best performance. Also EfficientNet-B3

shows very high performance. The poor performance of

VGG16 could be due to several reasons. First of all, this

network has a large number of parameters (more than 23

millions) while it only has 66 layers compared to other

networks such as MobileNet with more than 8 million pa-

rameters and 128 layers and EfficientNet-B3 with around 18

million parameters and 418 layers. Also, the use of batch

normalization and ReLU activation layers in the convolution

blocks in other architectures have the benefits of avoiding

internal covariate shift, which results in faster convergence,

and keeping the network sparse, causing the generalization

error to decrease, respectively. Since VGG16 lacks these layers

in its architecture, it converges with difficulty. Fig. 6 depicts a

visual overview of the proposed network results versus image-

processing methods. As we can see, the proposed networks

outperform in fatty tissue (second column) or tissue with an

air bubble (third column) considerably.

V. CONCLUSION

In this paper, we have compared the performance of U-Net

with various custom topologies (backbones) for the identifica-

tion of tissue regions in whole slide images. Using different

networks combines the strength of current state-of-the-art

CNNs with the custom architecture of the U-Net model for

image segmentation. Whereas U-Net topologies can generate

segments with 99% sensitivity, handcrafted methods struggled

to approach high 80%. Both MobileNet and EfficientNet-B3

appeared to be the best backbone topology for the U-Net.

Fig. 4: Jaccard Index

Fig. 5: Losses for ResNext101 and EfficientNet-B3

The next step for this research would be changing the current

binary masking network to a multi-class one which could label

each pixel as classes such as marker trace, dirt and tissue fold,

fat and informative tissue. Authors have made the segmented

images publicly available for sake of reproducibility.
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Fig. 6: Example results of different methods in tissue segmentation task for challenging cases.




