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Abstract—On binary classification, the goal of minimizing
the false positive and false negative rates creates a conflict,
being impossible to optimize both simultaneously. This challenge
is even more significant on imbalanced classification datasets
since an incorrect choice of the relative relevance of each
objective on the optimization can lead to ignoring, or poorly
learning the minority class. The proposal of this work takes
into account the existing conflict among the learning losses of
the classes, and use a deterministic multi-objective optimization
method, called MONISE, to create a set of solutions with diverse
misclassification tradeoffs among the classes. Since accuracy is
no longer a proper criterion for imbalanced datasets, we had
to resort to multiple criteria to report the performance: each
classifier, proposed or competitors, was selected and reported
using the same metrics. We used F1, kappa and g-mean for
general evaluation of performance and Fβs (F1/16, F1/4, F4 and F16)
to emulate a shifting decision maker preference from precision
to recall; all comparisons were made using a Friedman test with
Finner posthoc test. However, when we take into account multiple
metrics without any prior knowledge, it may become impossible
to pinpoint the best method, since the evaluation criteria may also
be in conflict. Again, to solve this, we resorted to a Friedman test
with a non-dominated ranking. With this multi-criteria analyses,
we conclude that explicitly considering multiple objectives on the
optimization can guide to promising results.

I. INTRODUCTION

The presence of imbalanced datasets is a common problem
in classification tasks characterized by a high distinction in
the number of samples associated with each class. This can
be a natural issue in scenarios which are inherently imbal-
anced such as fraud detection, medical diagnosis, network
intrusion detection, detection of oil spills, and manufacturing
issue detection [1]. The imbalance of a classification set can
deteriorate the performance of a non-specialized classifier. In
those scenarios, it is necessary to create methodologies to
handle this problem. Supported by the taxonomy explored in
[2], we aim at discussing some of those methodologies.

Cost-sensitive approaches consist of weighting the cost of
misclassification for each class and using these costs to guide
the learning process. The most naı̈ve approach tries to reduce
the effect of imbalance by weighting the classes inversely
proportional to the frequency of the samples on each class [3].
It can be accomplished by creating adjustable weight factors
on each loss term [4], [5], by changing the boosting weight
update to differently calculate the majority and minority class
samples [6], [7], or by adding class-specific terms in the kernel
calculation to become cost-sensitive [8].

Sampling-level approaches consist of cleverly under-
sampling the majority class samples and/or oversampling
the minority class samples. The main work on the over-
sampling vein, called SMOTE, creates new samples by a
convex combination of minority samples with their neighbors
of the same class [9]. Each minority sample creates the same
number of synthetic samples [9]; it can be proportional to the
ratio of majority samples in the neighborhood [10]; or the
generation can be constrained to the samples in the borderline
with majority class samples (at least 50% of the neighbors)
[11]. The under-sampling usually removes some majority class
samples from the training set. A grid search can select the
percentage of random under(and over)-sampling [9] or using a
wrapper algorithm to select the amount of under-re-sampling
and SMOTE over-sampling by firstly finding a valid under-
sampling followed by a performance improvement SMOTE
oversampling [12].

Algorithmic approaches changes the inner workings of
existing algorithms to reduce the bias towards the majority
class. There are several approaches in this vein: the use of
Hellinger distance to adapt decision trees [13]; the use of
dynamic ensemble selection to locally choose less biased
classifiers [14], [15]; and the use of KNN selection of samples
to construct sample-specific classifiers [16].

Boosting approaches adapt each step of AdaBoost to correct
the bias of the majority class. It can be done by modifying
the weight updating to be cost-sensitive [17], by applying
SMOTE to over-sampling the minority class on each step [7],
by under-sampling the majority class on each step [18], and
by over-sampling the minority class with SMOTE on each
step [19]. Preference is generally given to samples with more
neighbours in the majority class and hard-to-learn samples
[20], considered by the authors as being more frequent in
the minority class. Other ensemble approaches are founded
on creating each learning machine by sub-sampling only the
majority class [21], by also removing the correctly classified
samples from the majority class [21], and by bootstrap under-
sampling followed by SMOTE over-sampling, thus creating
balanced datasets. Other ensemble methods create a set of
components using random class proportions [22], and they
extend this approach for a multi-class scenario as well [23].

The use of multi-objective optimization can surely be
considered a comprehensive approach in imbalanced classifi-
cation, mainly because it can be used to (1) properly adjust the
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number of target samples and the number of neighbors simul-
taneously optimizing accuracy and kappa [24], (2) minimize
the number of selected samples and maximize AUC while
selecting features [25], and (3) maximize the accuracy and the
geometric mean of accuracies for each class [26]. However,
these works usually use evaluation metrics as the conflicting
objectives, instead of investigating the conflicting aspects of
machine learning methods. An example of this negligence can
be seen in a multinomial regression (further explored and
explained in the text) expressed in Equation (1), where the
loss of all classes are considered to exhibit a fixed degree of
relative relevance:

min
θ

K∑
k=1

[
N∑
i=1
−yki ln

(
eθ
>
kφ(xi )∑K

j=1 eθ
>
kφ(xi )

)]
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lk(θ), (1)
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is the probability that the model assigns

class k to sample i, yki = 1 if sample i is originally assigned

to class k and yki = 0 otherwise, thus −yki ln
(

e
θ>
k
φ(xi )∑K

j=1 e
θ>
k
φ(xi )

)
indicates the learning error of sample i associated with class
k.

In this case, it is possible to suppose that the class learning
losses, expressed by lk(θ), k ∈ {1, . . . ,K}, might be in
conflict. It happens because correctly classifing more samples
from one class may induce an increase in the misclassification
rate of other classes. Equation (1) implicitly takes a “flat” a
priori preference among samples, and the optimization method
will search the model with the lowest uniformly aggregated
loss. As a consequence: (i) this uniformly aggregated loss will
indirectly improve the classification accuracy of the majority
classes because they have more samples in cases of data
imbalance; and (ii) it may also not fulfill the expectation of
the user in some sensible scenarios such as in medical cases,
where wrongly classifying a case as a disease may not be as
crucial as sending a sick patient home. But the multi-objective
concepts can further explore more intrinsic conflicting aspects
of machine learning methods, such as taking into account the
conflict between the error in each class and the regularization
of the learning machines [27], [28].

Given that we further explore this intrinsic aspect of im-
balanced classification problems by proposing a framework
that is robust enough to satisfy multiple criteria established
by decision makers, and flexible enough to also be capable
of producing diverse and accurate ensemble components. The
proposed framework is composed of three steps: (1) modeling
the problem taking into account the conflict among the losses
of the classes; (2) using multi-objective optimization to create
a set of efficient classifiers with distinct preferences among
the classes; (3) applying an a posteriori criterion, designed
by the decision maker, to choose among the set of candidate
classifiers. However, classification problems – especially with
imbalanced datasets where the accuracy is strongly misleading
– have no single metric to evaluate the performance of the

classifiers. Because of this, we also proposed a non-dominated
ranked Friedman test to properly evaluate the classifiers taking
into account the non-dominance level among criteria, instead
of looking at the performance of an individual criterion.

II. PROPOSED METHOD

A. Multi-objective optimization

There are circumstances in which we want to choose, in
the objective space, between two possible solutions yi ∈ Rm
and yj ∈ Rm and there exist multiple objectives to be
minimized (m ≥ 2). The major challenge in this problem
is posed when there exists one objective k where yi

k
< yj

k

and other objective l where yi
l
> yj

l
, being impossible to

establish an orderly relation between yi and yj . This situation
is called non-dominance. However, there are cases in which
yi
k
≤ yj

k
, ∀k ∈ {1, . . . ,m} and ∃k : yi

k
< yj

k
, making yi

always better than yj . This situation configures what is called
dominance. In this case, it is possible to exclude yj from the
set of candidate solutions presented to the decision maker, thus
remaining solely the non-dominated candidate solutions.

Given that, a multi-objective optimization is defined base
on multiple criteria that we want to optimize. The equivalent
to optimal solutions, in this case, are called efficient solutions,
or Pareto-optimal solutions. They consist of a set of solutions
not dominated by any other solution, and they do not dominate
each other. Each one of those solutions represents a tradeoff
between the objectives and might satisfy decision makers with
distinct preferences. Figure 1 shows two Pareto-fronts with a
tradeoff between the multinomial loss for class 1, l1(θ), and
for class 2, l2(θ).
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Fig. 1. Pareto front representations of the multinomial logistic error both
associated with two classes for Pima and Wisconsin datasets (Available at
archive.ics.uci.edu/ml)

A good parallel with the example of Figure 1 is posed by
the conflict between false positive and false negative rates [29].
A well-distributed sample of the whole front can be useful to
select the most appropriate classifier for different situations
which the decision makers might face with, and as we can see
further in the paper this also depends on the metric adopted
by the decision maker.

B. Weighted sum method and Many-objective NISE

One way to deal with the high dimensionality and orderly
relation issues in multi-objective optimization is by taking
the convex combination of the objective functions, called



weighted sum method (Definition 1). It consists of summing
all objectives with a non-negative weight for every objective.

Definition 1. The definition of the weighted sum method is as
follows:

min
x

w>f(x)

subject to x ∈ Ω,Ω ⊂ Rn,
f(x) : Ω→ Ψ,Ψ ⊂ Rm

(2)

where wi ≥ 0, ∀i ∈ {1, 2, . . . ,m} and w>1 = 1.

Solving the optimization problem of Definition 1 leads
to a single solution that is guaranteed to be efficient [30].
However, the approach proposed in this work involves finding
a set of solutions well-distributed along the whole Pareto-front.
Taking an arbitrary sampling of the weights can overlook the
full potential of the multi-objective perspective [31], possibly
creating a poor representation of the solutions. Given that the
chosen machine learning model (presented in the next section)
is convex, MONISE (Many-Objective NISE) is a high-quality
optimizer for convex problems with more than two objective
functions [32]. This method is capable of sequentially finding
the R most representative efficient solutions thoughout the
Pareto front, that will be later selected according to the a
posteriori preference of the decision maker. Alternatively, we
can try to filter and aggregate those efficient solutions in an
ensemble.

C. Class-conflicting multinomial logistic regression

Consider a classification problem with N samples, in which
xi ∈ Rd : i ∈ {1, . . . , N} are the input variables and
yki ∈ {0, 1} : i ∈ {1, . . . , N}, k ∈ {1, . . . ,K} are the output
variables, each indicating the assignment of the i-th sample to
the k-th class. Since we are considering multiclass single-label
problems, only one class might be set to 1 for each sample
(
∑K

k=1 yki = 1, ∀i ∈ {1, . . . , N}). Also, it is important to define
the number of samples for each class nk =

∑N
i=1 yki .

Given that most methods for imbalanced classification act as
a meta learner, we select the regularized multinomial logistic
regression as the base classifier. This choice is convenient to
keep the convexity of the optimization, a necessary condition
to the proper behavior of the proposed algorithm. The tradi-
tional formulation is depicted in Formulation (3):

min
θ

w1

K∑
k=1

1
uk

N∑
i=1
−

[
yki ln

(
eθ
>
kφ(xi )∑K

j=1 eθ
>
kφ(xi )

)]
+ w2 | |θ| |22,

(3)
where uk helps in correcting the optimization to take into
account the minority class. By setting uk to be the number
of samples of class k (uk = nk), we end up with a “flat”
preference among the classes. On the other hand, setting to one
will guide to a “flat” preference among the samples (uk = 1).

To explore the potential of the multi-objective framework
in the imbalanced scenarios, instead of using the simple
regularized multinomial model, we are going to adopt the
multinomial model that considers the loss of every class

(
− 1

nk

∑N
i=1 y

k
i ln

(
e
θ>
k
φ(xi )∑K

j=1 e
θ>
k
φ(xi )

))
as conflicting objectives. This

alternative, called here class-conflicting multinomial logistic
regression is presented in Formulation (4):

min
θ

K∑
k=1

wk

[
− 1

nk

N∑
i=1

yki ln

(
eθ
>
kφ(xi )∑K

j=1 eθ
>
kφ(xi )

)]
+ wK+1 | |θ| |22,

(4)
In Formulation (4), the weight wk may be interpreted as

the misclassification weight of the k-th class, and it also
characterizes the proposal as a cost-sensitive approach where
the weights are Pareto-optimally sampled instead of arbitrarily
adjusted.

D. Model selection and ensemble aggregation

Knowing that those generative procedures produce a set of
candidate models, and that the multi-objective optimization
methods are capable of generating a diverse set of learning ma-
chines [33], it is meaningful to create procedures to aggregate
these models, and we employ three distinct procedures to con-
struct high-performance classifiers: (1) making the prediction
using the best model (kept with no additional tag identifier),
consisting in a simple model selection; (2) selecting the 10
best models (an elitist approach) and aggregating their outputs
by summing up the output probabilities (identified as Elt), a
procedure called distribution summation [34]; and (3) combin-
ing all output probabilities using another multinomial logistic
regression with flat preference among the classes (identified
as Stk), a procedure called stacking [34]. Considering, as an
example, the MO&AllAdHoc generation strategy explained
in the next section and taking all three aggregation proposals,
we end up with three classifiers: MO&AllAdHoc, that selects
the best model coming from all the three ways to generate
models, EltMO&AllAdHoc that sums the distribution of the
10 best models, and StkMO&AllAdHoc that uses another
model trained using the output of those models as the feature
vector.

III. EXPERIMENTAL SETUP

The proposed framework consists in exploring different
combinations of models generated using multi-objective op-
timization. Then, starting from this set of efficient learning
models, we can select the best model (using a posteriori
preferences) or combine them using an ensemble. Formulation
(4) is used to generate 150 efficient models using MONISE,
that we call here as MO. However, since it could not find the
models with a flat preference among the samples, as well as
the models with flat preference among the classes, we created
two approaches using Formulation (3): StandardMO for the
50 models generated with uk = 1, and CSMO for the 50
models generated with uk = nk . Given that, MO&AllAdHoc
uses the classifiers from all three generation proposals (MO,
StandardMO, and CSMO) that take into account all ways
of generating classifiers by manipulating the class weights,
and consists in the primary formulation of this proposal. Also,
AllAdHoc aggregates StandartMO and CSMO to clarify the



impact of the models coming from a closed form selection of
the weights among the classes (Formulation (3)) and coming
from letting multi-objective optimization to find the most
representative models (Formulation (4)).

The comparison was made using the following algorithms1:
1. cost-sensitive methods: Standard – keep the same impor-
tance for each sample uk = 1 (StandardManual), ad-hoc
cost sensitive – keep the same importance for each class
uk = nk (CSManual); 2. over-sampling methods: SMOTE,
ADASYN, random oversampling (RndOverSamp); 3. under-
sampling methods: ENN, Tomek-Links (TL), random un-
dersampling (RndOverSamp); 4. over-sampling followed by
under-sampling methods: SMOTEENN, SMOTETL; and 5.
ensemble methods: SMOTEBoost, RAMOboost, Easy Ensem-
ble. Given that those methods act as meta-learners, we use
a standard regularized multinomial regression as their base
classifier, the number of neighbors is kept as k = 5, the
under-sampling methods are targeted to achieve s + α(sk − s)
samples and the over-sampling methods are targeted to achieve
sk +α(s− sk) and α is varied in the set: {0.01, 0.1, 0.2, 0.5, 1}.
Notice that these settings also work on multi-class problems.
Also, after sampling, the training procedure evaluates models
taking constant steps on a logarithmic scale (λ ∈ {2− P

2 ,-
2− P

2 +1, . . . , 2 P
2 −1, 2 P

2 } ∪ {0}) [35]. We use cross-validation to
select: α from the sampling methods (except TomekLinks and
ENN), λ from the cost sensitive and sampling methods, and
the number of candidate models in the ensemble approaches.

Those methods are evaluated using KEEL dataset2: it has
22 datasets with imbalance level lower than 9; 78 datasets
with imbalance level higher than 9; and 15 datasets with
more than two classes. The testing procedures adopted are
the 5-fold splitting procedure, and 25% of the remaining
dataset separated to perform validation. For all methodologies
(proposed and competitors), we use the same evaluation metric
to tune the method in the validation set and to evaluate them
in the test set. This information is crucial because of the
multiplicity of evaluation metrics. The reported performance
for a method in a given dataset consists in the mean obtained
along the five folds.

Given that, we created 3 experiments with distinct objec-
tives:

• Experiment 1: In this experiment, we want to compare
the multi-objective methods with methods designed to
imbalanced classification datasets. Therefore we com-
pared the best model from multi-objective methods (MO,
MO&AllAdHoc, CSMO, AllAdHoc and StardardMO)
with all imbalanced methods for the tree sets of KEEL.

• Experiment 2: In this experiment, we want to simulate
the capability of the methods to accomplish preferences
of the decision maker. This simulation was done using
Fβ measures (F16, F4, F1/4 and F1/16), that is capable of
tuning the preferences towards precision (β < 1) or recall

1Available at contrib.scikit-learn.org/imbalanced-learn and
github.com/dialnd/imbalanced-algorithms

2Available at sci2s.ugr.es/keel/imbalanced.php

(β > 1). We compared the same methods coming from
the previous experiment.

• Experiment 3: In this experiment, we want to
compare only the best multi-objective generation in
the other experiments, followed by elite selection
EltMO&AllAdHoc (the best 10 methods given a mea-
sure) or staking aggregation StkMO&AllAdHoc (cre-
ates another model with the outputs) and the en-
semble methods designed to imbalanced classification
(SMOTEBoost, RAMOBoost, EasyEnsemble). We also
kept the ensemble generation followed by a simple model
selection MO&AllAdHoc.

We compared the classification algorithms for a set of
datasets using a Friedman test [36], with p = 0.01 as a
threshold to indicate the statistical difference, and using Finner
posthoc test [37] with the same threshold. This is done for each
evaluation metric and for each experiment.

With the problem of using accuracy for imbalanced learning,
the decision of which metric should be used to evaluate
the quality of a predictor in imbalanced learning becomes
challenging. Because of this, we use three distinct metrics:
kappa, g-mean (it consists of the geometric mean of the recall
for every class) and F1, where the multi-class versions of g-
mean consists in a geometric mean of the recall of each label,
and the F1 measure is the average of F1 for each label. Notice
that all these metrics are capable of handling imbalanced
datasets [24], and Fβ measure is capable of simulating change
in preferences.

However, when comparing the algorithms for multiple
metrics, it is interesting to find a procedure to rank these
algorithms. To meet this goal, we also compared the classifi-
cation algorithms for a set of datasets using a Friedman test
for non-dominance (with Finner posthoc test) by using non-
dominated sorting to rank the algorithms (further explained in
the Appendix).

IV. RESULTS

Tables I to V present information for each evaluated method
(indicated in the Method column): the average rank (in
the Rank column); the number of methods better than the
evaluated method (in the #< column); and the number of
methods worse than the evaluated method (in the #> column).
If the Friedman test is rejected, both columns #< and #>
will be marked with a dash (–). This orderly relation (better
and worse) is accounted only if there is statistical significance
according to the Finner posthoc test. The last group of columns
(non-dom) shows the Friedman test for non-dominance.

Experiment 1 is presented in Tables I, II and III for all
competitors with a single choice coming from the different
multi-objective model generations for the datasets with imbal-
ance level lower than 9, imbalance level higher than 9 and
multiclass classification, respectively; the comparison is made
using kappa, F1 and g-mean score. Experiment 2 is presented
in Table IV and compares the same methods but for Fβ
measures (F16, F4, F1/4 and F1/16). Finally, Experiment 3 is pre-
sented in Table V and compares ensemble methods designed



TABLE I
FRIEDMAN RANK (AVERAGE) CONSIDERING G-MEAN, KAPPA AND F1 METRICS FOR THE DATASETS WITH IMBALANCE LEVEL LOWER THAN 9.

kappa F1 g-mean non-dom
Method Rank #< #> Rank #< #> Rank #< #> Rank #< #>
MO&AllAdHoc 8.06 – – 8.65 – – 6.27 0 4 5.11 0 6
EasyEnsemble 7.77 – – 8.06 – – 4.72 0 7 5.84 0 4
AllAdHoc 9.49 – – 8.99 – – 7.34 0 3 6.54 0 2
CSMO 8.40 – – 8.95 – – 6.72 0 4 6.84 0 2
RAMOBoost 8.49 – – 8.47 – – 8.20 0 3 8.43 0 1
SMOTEBoost 9.40 – – 9.38 – – 9.29 0 1 8.54 0 1
MO 10.40 – – 10.27 – – 9.68 1 1 8.90 0 1
SMOTETomek 9.09 – – 9.06 – – 10.22 1 0 9.27 0 1
SMOTEENN 9.93 – – 10.36 – – 9.81 1 0 9.54 0 1
RndOverSamp 9.13 – – 8.95 – – 8.79 0 2 9.93 0 0
RndUnderSamp 9.02 – – 9.06 – – 9.61 0 1 10.18 0 0
CSManual 8.90 – – 8.88 – – 7.38 0 3 10.24 0 0
SMOTE 8.15 – – 7.88 – – 8.95 0 2 10.45 1 0
ENN 10.06 – – 10.29 – – 11.84 3 0 10.99 1 0
ADASYN 10.38 – – 9.90 – – 9.63 0 1 11.15 2 0
StandardMO 11.43 – – 11.31 – – 14.11 8 0 11.31 2 0
TomekLinks 11.36 – – 11.15 – – 13.70 6 0 12.61 4 0
StandardManual 11.43 – – 11.27 – – 14.65 12 0 15.04 9 0

TABLE II
FRIEDMAN RANK (AVERAGE) CONSIDERING G-MEAN, KAPPA AND F1 METRICS FOR THE DATASETS WITH IMBALANCE LEVEL HIGHER THAN 9.

kappa F1 g-mean non-dom
Method Rank #< #> Rank #< #> Rank #< #> Rank #< #>
MO&AllAdHoc 8.12 0 3 7.01 0 7 7.10 0 10 5.18 0 13
AllAdHoc 8.46 0 3 9.45 0 1 6.84 0 10 6.29 0 12
CSMO 9.99 1 1 10.90 3 1 5.09 0 13 6.69 0 11
MO 8.63 0 3 8.96 0 1 7.77 1 6 6.79 0 11
SMOTEBoost 7.32 0 6 7.22 0 6 7.88 1 6 7.23 0 10
RAMOBoost 7.81 0 3 7.83 0 5 7.94 1 5 8.05 1 6
SMOTEENN 8.72 0 3 8.41 0 3 9.85 5 4 8.75 2 3
SMOTETomek 8.83 0 3 8.56 0 2 10.11 5 4 9.55 4 2
EasyEnsemble 14.32 16 0 15.16 17 0 6.98 0 10 9.85 5 2
CSManual 10.31 1 1 10.83 3 1 5.94 0 10 9.87 5 2
RndUnderSamp 8.44 0 3 8.34 0 3 10.25 7 3 10.13 5 2
RndOverSamp 8.99 0 3 8.83 0 1 9.82 5 4 10.39 5 1
SMOTE 8.73 0 3 8.60 0 2 9.78 5 4 10.89 6 1
StandardMO 9.88 0 1 9.91 2 1 13.53 14 0 10.93 6 1
ADASYN 8.72 0 3 8.63 0 2 10.49 8 3 10.97 6 1
ENN 10.06 1 1 9.77 1 1 12.51 12 1 11.94 7 1
TomekLinks 11.67 11 1 11.12 5 1 13.74 14 0 12.56 11 0
StandardManual 11.91 11 0 11.37 8 1 15.25 15 0 14.83 16 0

TABLE III
FRIEDMAN RANK (AVERAGE) CONSIDERING G-MEAN, KAPPA AND F1 METRICS FOR THE DATASETS WITH MULTIPLE CLASSES.

kappa F1 g-mean non-dom
Method Rank #< #> Rank #< #> Rank #< #> Rank #< #>
MO&AllAdHoc 8.36 0 0 6.79 0 2 7.79 – – 5.66 0 3
AllAdHoc 6.93 0 0 6.73 0 2 7.53 – – 5.76 0 3
CSMO 8.23 0 0 6.46 0 2 7.13 – – 6.36 0 2
RndOverSamp 7.43 0 0 7.40 0 2 8.16 – – 7.26 0 0
SMOTETomek 8.49 0 0 9.43 0 0 7.06 – – 8.23 0 0
StandardMO 10.13 0 0 7.26 0 2 11.40 – – 8.66 0 0
SMOTEENN 9.53 0 0 9.80 0 0 8.90 – – 8.99 0 0
RndUnderSamp 7.86 0 0 8.66 0 0 8.63 – – 9.19 0 0
ADASYN 7.63 0 0 8.73 0 0 9.40 – – 9.33 0 0
RAMOBoost 8.66 0 0 8.86 0 0 10.16 – – 9.49 0 0
SMOTE 7.43 0 0 8.80 0 0 8.90 – – 9.80 0 0
CSManual 8.46 0 0 9.09 0 0 8.16 – – 10.06 0 0
EasyEnsemble 12.59 0 0 12.46 0 0 8.96 – – 10.19 0 0
SMOTEBoost 9.06 0 0 9.59 0 0 9.59 – – 10.26 0 0
TomekLinks 9.99 0 0 10.26 0 0 12.49 – – 11.03 0 0
MO 14.56 0 0 14.73 5 0 12.59 – – 12.90 2 0
ENN 14.16 0 0 14.43 5 0 11.23 – – 13.83 3 0
StandardManual 11.40 0 0 11.43 0 0 12.83 – – 13.90 3 0



TABLE IV
FRIEDMAN RANK (AVERAGE) CONSIDERING Fβ METRICS (F16 , F4 , F1/4 AND F1/16) FOR THE DATASETS WITH IMBALANCE LEVEL HIGHER THAN 9.

F16 F4 F1/4 F1/16 non-dom
Method Rank #< #> Rank #< #> Rank #< #> Rank #< #> Rank #< #>
MO&AllAdHoc 6.77 0 10 7.37 0 8 6.81 0 7 6.64 0 9 4.78 0 16
AllAdHoc 7.47 0 7 7.49 0 8 7.92 0 3 7.18 0 6 6.01 0 13
CSMO 5.92 0 10 6.61 0 10 11.28 5 1 11.29 6 1 7.38 1 9
MO 7.80 0 5 7.88 0 5 9.14 0 2 8.98 0 2 7.42 1 9
SMOTEBoost 7.58 0 6 6.53 0 10 9.20 0 2 9.69 1 1 7.49 1 9
RAMOBoost 7.64 0 6 6.94 0 9 9.58 1 1 9.97 2 1 8.81 2 3
SMOTEENN 9.67 3 4 8.90 0 4 9.16 0 2 8.94 0 2 9.05 2 3
SMOTETomek 9.71 3 4 9.72 4 4 8.71 0 2 9.30 1 2 9.55 2 3
StandardMO 13.01 14 0 12.35 11 0 7.85 0 3 8.12 0 3 9.80 2 1
RndUnderSamp 9.94 4 4 9.92 6 4 8.70 0 2 8.51 0 3 10.09 5 1
CSManual 6.08 0 10 6.68 0 10 12.15 11 1 11.88 10 1 10.18 5 1
SMOTE 9.41 3 4 9.27 3 4 8.99 0 2 8.78 0 2 10.46 5 1
EasyEnsemble 8.11 0 4 10.69 7 2 15.25 17 0 14.90 17 0 10.61 5 1
RndOverSamp 10.08 6 4 9.98 6 3 8.37 0 3 8.56 0 3 10.63 5 1
ADASYN 10.45 7 3 10.12 6 2 8.51 0 3 8.63 0 3 10.70 5 1
ENN 12.70 13 0 12.39 12 0 9.77 1 1 9.87 2 1 12.05 8 0
TomekLinks 14.15 14 0 13.84 14 0 9.58 1 1 9.61 1 1 12.17 8 0
StandardManual 14.42 14 0 14.22 14 0 9.94 1 1 10.06 2 1 13.72 15 0

TABLE V
FRIEDMAN RANK (AVERAGE) CONSIDERING G-MEAN, KAPPA AND F1 METRICS FOR THE DATASETS WITH IMBALANCE LEVEL HIGHER THAN 9.

kappa F1 g-mean non-dom
Method Rank #< #> Rank #< #> Rank #< #> Rank #< #>
StkMO&AllAdHoc 3.06 0 1 3.12 0 1 2.92 – – 2.42 0 4
EltMO&AllAdHoc 3.10 0 1 3.14 0 1 3.35 – – 3.07 0 2
MO&AllAdHoc 3.28 0 1 3.02 0 1 3.51 – – 3.44 1 1
SMOTEBoost 3.02 0 1 3.04 0 1 3.79 – – 3.63 1 0
RAMOBoost 3.24 0 1 3.20 0 1 3.92 – – 4.10 2 0
EasyEnsemble 5.27 5 0 5.44 5 0 3.48 – – 4.32 3 0

to imbalanced classification (SMOTEBoost, RAMOBoost,
EasyEnsemble), considering the multi-objective generations
with ensemble aggregation methods (EltMO&AllAdHoc and
StkMO&AllAdHoc).

V. DISCUSSION

In Experiment 1 (Tables I, II and III), we see that
MO&AllAdHoc has an overall better performance in all
scenarios regardless of the imbalance level and number of
classes, mainly considering the non-dominance Friedman test
but never statistically worse than any other method in other
metrics. Most of this behaviour can be explained by aggre-
gating the classifiers from the ad-hoc cost-sensitive models
(CSMO) and the models that take into account the conflict
among all classes (MO). These models with a diversity of
misclassification weights for each class are capable of cre-
ating high-quality performance classifiers, with no need for
resampling, oversampling or other approaches. The use of
misclassification weights, specially when sampled by multi-
objective approaches, can deal with the raw data without
excluding or artificially creating samples. This attribute might
be considered the driving force of such performance.

In Experiment 2 (Table IV), the importance of using
Pareto-optimal misclassification weights is even more clear;
MO&AllAdHoc is statistically better (in the non-dom Fried-
man test) than all other approaches except for AllAdHoc.
MO&AllAdHoc had a great performance on all Fβ metrics,

standing out as a good model no matter the scenario. This
increase in performance, when compared with Experiment 1,
along with the decrease in performance of CSMO and the
non-significant improvement of AllAdHoc, highlights the rel-
evance of multi-objective optimization. Exploring the conflict
on the misclassification among the classes has a main role in
this performance.

In Experiments 1 and 2 we can see that the best con-
tender algorithms are EasyEnsemble for low imbalance, and
SMOTEBoost for high imbalance. It can be explained by
the fact that EasyEnsemble keeps the samples from minority
classes and resample the majority classes to have the same
number of samples – it performs well when there are enough
samples from the minority class (with low imbalance level)
but can be misleading with fewer samples. On the other hand,
SMOTEBoost was capable of improving the performance with
boosting methods but keeping the complexity and performance
by over-sampling the minority class. Given that, we designed
Experiment 3 to compare only the ensemble methods for im-
balanced classification and confirm the quality of our proposal.

In Experiment 3 (Table V), we can see that using multiple
models generated with multi-objective optimization can also
improve the classification performance, achieving a perfor-
mance even better than MO&AllAdHoc and having a perfor-
mance statistically better than all baseline ensembles. It shows
that the framework also creates models with enough diversity



to improve the performance.
Overall, it is possible to acknowledge that multi-objective

optimization is quite effective in many ways. First of all, the
simple manually adhoc weighted models (StandardManual
and CSManual) are always defeated by their multi-objective
trained counterparts (StandardMO and CSMO) and it can
be generally explained by the better exploration of models
against the grid-search. Moreover, despite the class-conflicting
models (MO) not always generating the best performed clas-
sifiers, some of those models are successfully aggregated with
more traditional ones to become the best strategy among the
evaluated classifiers. It is explained by the high flexibility of
those models (better seen in the multiple classes of Table III,
which has an even poorer performance) thus not being capable
of automatically finding the class weights employed in the
traditional models. However, these traditional models are not
always the best fit, and having these more flexible options
clearly confers robustness to the performance.

VI. CONCLUSION

This paper demonstrates that imbalanced classification tasks
can be successfully solved when properly exploring two well-
established tradeoffs: (1) Tradeoff established by the perfor-
mance on each class, characterized by the inherent conflict
among the losses produced by minority and majority classes
on regularized multinomial logistic regression; (2) Tradeoff
established by the performance on each criterion, given that
there is an absence of a clear order when multiple performance
criteria are considered. Both tradeoffs are explicitly modeled
here under the perspective of multi-objective optimization.

The conflict among the class losses is conveniently modeled
by a weighted sum formulation, including a regularization
term, so that multiple efficient and diverse learning models are
acquired when using a many-objective solver called MONISE.
Given that MONISE is capable of automatically spreading the
solutions all over the Pareto front, the diversity here is much
more effective than the one possibly obtained by grid search.
Those multiple efficient solutions produced by MONISE may
be filtered to provide the best individual learning model (e.g.
by the a posteriori preference of the decision maker), or
may compose an ensemble, capable of exploring the existing
diversity of candidate solutions. The higher the level of data
imbalance, the more intense the gain in performance of our
proposal. Accordingly, we clearly demonstrate that defining a
priori ad-hoc weights for each class loss is not effective, when
taken in isolation, but it tends to contribute in an ensemble
formed by a diverse set of learning models characterized by
efficient tradeoffs.

When evaluating the learning methods, given that multiple
performance criteria (multiple metrics) are involved in im-
balanced classification tasks, a new proposal is conceived to
rank the candidate solutions, resorting to the non-dominance
relation produced by the performance criteria when adopting
the Friedman test. Therefore, we put down the rank of a
learning method if there is another learning method with better
performance for all metrics, thus providing a reliable ranking

of the methods even when there is no clear preference among
the metrics.
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APPENDIX

A. Friedman test

The so-called Friedman test [36] is used to evaluate if
there is a difference between K treatments (here, classifiers)
considering a set of D trials (here, datasets) by assigning a
rank for the classifiers, from the best (1, second best would
be 2) to the worst (K) method. Mathematically, let’s consider
pi, j ∈ R the performance of method j ∈ {1, . . . , M} in the
dataset i ∈ {1, . . . ,D}. Given that, |P>i, j | = |xi,k : xi,k >
xi, j ∀k ∈ {1, . . . ,K}| is the number of methods better than
j for dataset i and |P≡i, j | = |xi,k : xi,k = xi, j ∀k ∈ {1, . . . ,K}|
is the number of methods equivalent to j for dataset i. Now,
we can find the rank ri, j in Equation 5:

ri, j = |P>i, j | +
|P=i, j |2 + |P=i, j |

4
, (5)

the average Friedman rank in Equation 6:

r · j =
∑D

i=1 r i, j
D

, (6)

and the Q statistics in Equation 7:

Q =
12D

K(K + 1)

K∑
j=1

(
r · j −

K + 1
2

)2
(7)

The test consists of evaluating how close the Q statistics is
to a χ2 distribution since the premise confirms whether the
rank is, in fact, random.

B. Friedman test with non-dominated sorting

On the other hand, when there is more than one evaluation
metric, the ordering relation becomes more complex. To solve
that, we resort to the dominance concepts, presented previ-
ously, and apply a non-dominated sorting [38]. This ordering
method creates a set of Pareto fronts P1, . . .PF , where the
first front considers all non-dominated solutions, and the f -th
front considers all solutions only dominated by the previous
fronts. Mathematically, xi ∈ P f iff there exists xj ∈ P f−1 that
dominates xi and there is no xj ∈ P f ∪PF that dominates xi .

Given that, let’s consider pi, j ∈ RM the performance vector
of method j in the dataset i. We can redefine the number of
methods better than j for dataset i as |P>i, j | = |xi,k : ∀xi,k ∈
P1 ∪ . . . ∪ Pk−1 ∧ xi, j ∈ Pk |, and the number of methods
equivalent to j for dataset i as |P≡i, j | = |Pk : xi, j ∈ Pk |.

With those definitions, it is possible to use Equations 5, 6,
7 to calculate the Q-statistcs and test the hypothesis. However,



we can anticipate the problem of too many ties in the non-
dominated sorting so that the statistics might be hurt [39], thus
we use the correction presented in Equation 8.

C = 1 −
F∑
f=1

|P f |3 − |P f |
N(K3 − K)

(8)

and compare Qc = Q/C to a χ2 distribution to test the
hypothesis.
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