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Abstract—Siamese neural network is a very powerful architec-
ture for both feature extraction and metric learning. It usually
consists of several networks that share weights. The Siamese
concept is topology-agnostic and can use any neural network as
its backbone. The two most popular loss functions for training
these networks are the triplet and contrastive loss functions. In
this paper, we propose two novel loss functions, named Fisher
Discriminant Triplet (FDT) and Fisher Discriminant Contrastive
(FDC). The former uses anchor-neighbor-distant triplets while
the latter utilizes pairs of anchor-neighbor and anchor-distant
samples. The FDT and FDC loss functions are designed based
on the statistical formulation of the Fisher Discriminant Analysis
(FDA), which is a linear subspace learning method. Our experi-
ments on the MNIST and two challenging and publicly available
histopathology datasets show the effectiveness of the proposed
loss functions.

Index Terms—Fisher discriminant analysis, triplet loss, con-
trastive loss, Siamese neural network, feature extraction.

I. INTRODUCTION

Siamese neural networks have been found very effective for
feature extraction [1], metric learning [2], few-shot learning
[3], and feature tracking [4]. A Siamese network includes
several, typically two or three, backbone neural networks
which share weights [5] (see Fig. 1). Different loss functions
have been proposed for training a Siamese network. Two
commonly used ones are triplet loss [5] and contrastive loss
[6] which are displayed in Fig. 1.

We generally start with considering two samples named
an anchor and one of its neighbors from the same class,
and two more samples named the same anchor and a distant
counterpart from a different class. The triplet loss considers the
anchor-neighbor-distant triplets while the contrastive loss deals
with the anchor-neighbor and anchor-distant pairs of samples.
The main idea of these loss functions is to pull the samples
of every class toward one another and push the samples of
different classes away from each other in order to improve the
classification results and hence the generalization capability.
We will introduce these losses in Section II-C in more depth.

The Fisher Discriminant Analysis (FDA) [7] was first pro-
posed in [8]. FDA is a linear method based on generalized
eigenvalue problem [9] and tries to find an embedding sub-
space that decreases the variance of each class while increases
the variance between the classes. As can be observed, there
is a similar intuition behind the concepts of both the Siamese
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Fig. 1. Siamese network with (a) contrastive and (b) triplet loss functions.

network and the FDA, where they try to embed the data in a
way that the samples of each class collapse close together [10]
but the classes fall far away. Although FDA is a well-known
statistical method, it has been recently noticed in the literature
of deep learning [11], [12].

Noticing the similar intuition behind the Siamese network
and FDA, we propose two novel loss functions for training
Siamese networks, which are inspired by the theory of the
FDA. We consider the intra- and inter-class scatters of the
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triplets instead of their `2 norm distances. The two proposed
loss functions are Fisher Discriminant Triplet (FDT) and
Fisher Discriminant Contrastive (FDC) losses, which corre-
spond to triplet and contrastive losses, respectively. Our exper-
iments show that these loss functions exhibit very promising
behavior for training Siamese networks.

The remainder of the paper is organized as follows: Section
II reviews the foundation of the Fisher criterion, FDA, Siamese
network, triplet loss, and contrastive loss. In Sections III-B
and III-C, we propose the FDT and FDC loss functions for
training Siamese networks, respectively. In Section IV, we
report multiple experiments on different benchmark datasets to
demonstrate the effectiveness of the proposed losses. Finally,
Section V concludes the paper.

II. BACKGROUND

A. Fisher Criterion

Assume the data include c classes where the k-th class,
with the sample size nk, is denoted by {x(k)

i }
nk
i=1. Let the

dimensionality of data be d. Consider a p-dimensional sub-
space (with p ≤ d) onto which the data are projected. We
can define intra- (within) and inter-class (between) scatters as
the scatter of projected data in and between the classes. The
Fisher criterion is increasing and decreasing with the intra- and
inter-class scatters, respectively; hence, by maximizing it, one
can aim to maximize the inter-class scatter of projected data
while minimizing the intra-class scatter. There exist different
versions of the Fisher criterion [13]. Suppose U ∈ Rd×p

is the projection matrix onto the subspace, then the trace of
the matrix U>SU can be interpreted as the variance of the
projected data [14]. Based on this interpretation, the most
popular Fisher criterion is defined as follows [8], [15]

J :=
tr(U>SB U)

tr(U>SW U)
, (1)

where tr(·) denotes the trace of matrix and SB ∈ Rd×d and
SW ∈ Rd×d are the inter- and intra-class scatter matrices,
respectively, defined as

SW :=

c∑
k=1

nk∑
i=1

nk∑
j=1

(x
(k)
i − x

(k)
j )(x

(k)
i − x

(k)
j )>, and (2)

SB :=

c∑
k=1

c∑
`=1, 6̀=k

nk∑
i=1

n∑̀
j=1

(x
(k)
i − x

(`)
j )(x

(k)
i − x

(`)
j )>. (3)

Some other versions of Fisher criterion are [13]

J := S−1W SB , and (4)

J := tr(U>SB U)− tr(U>SW U), (5)

where the former is because the solution to maximizing (1)
is the generalized eigenvalue problem (SB ,SW ) (see Section
II-B) whose solution can be the eigenvectors of S−1W SB [16].
The reason for latter is because (1) is a Rayleigh-Ritz quotient
[17] and its denominator can be set to a constant [14]. The
Lagrange relaxation of the optimization would be similar to
(5).

B. Fisher Discriminant Analysis

FDA [7], [8] is defined as a linear transformation which
maximizes the criterion function (1). This criterion is a gen-
eralized Rayleigh-Ritz quotient [17] and we may recast the
problem to [14]

maximize
U

tr(U>SB U),

subject to U>SW U = I,
(6)

where I is the identity matrix. The Lagrange relaxation of the
problem can be written as follows

L = tr(U>SB U)− tr
(
Λ>(U>SW U − I)

)
, (7)

where Λ is a diagonal matrix which includes the Lagrange
multipliers [18]. Setting the derivative of Lagrangian to zero
gives

∂L
∂U

= 2SBU − 2SWUΛ
set
= 0 =⇒ SB U = SW UΛ, (8)

which is the generalized eigenvalue problem (SB ,SW ) where
the columns of U and the diagonal of Λ are the eigenvectors
and eigenvalues, respectively [16]. The column space of U is
the FDA subspace.

C. Siamese Network and Loss Functions

1) Siamese Network: Siamese network is a set of several
(typically two or three) networks which share weights with
each other [5] (see Fig. 1). The weights are trained using a loss
based on anchor, neighbor (positive), and distant (negative)
samples, where anchor and neighbor belong to the same class,
but the anchor and distant tiles are in different classes. We
denote the anchor, neighbor, and distant samples by xa, xn,
and xd, respectively. The loss functions used to train a Siamese
network usually make use of the anchor, neighbor, and distant
samples, trying to pull the anchor and neighbor towards one
another and simultaneously push the anchor and distant tiles
away from each other. In the following, two different loss
functions are introduced for training Siamese networks.

2) Triplet Loss: The triplet loss uses anchor, neighbor, and
distant. Let f(x) be the output (i.e., embedding) of the network
for the input x. The triplet loss tries to reduce the distance of
anchor and neighbor embeddings and desires to increase the
distance of anchor and distant embeddings. As long as the
distances of anchor-distant pairs get larger than the distances
of anchor-neighbor pairs by a margin α ≥ 0, the desired
embedding is obtained. The triplet loss, to be minimized, is
defined as [5]

`t=

b∑
i=1

[
‖f(xi

a)−f(xi
n)‖22−‖f(xi

a)−f(xi
d)‖22+α

]
+

(9)

where xi is the i-th triplet sample in the mini-batch, b is the
mini-batch size, [z]+ := max(z, 0), and || · ||2 denotes the `2
norm.
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Fig. 2. The network structure for the proposed loss functions.

3) Contrastive Loss: The contrastive loss uses pairs of
samples which can be anchor and neighbor or anchor and
distant. If the samples are anchor and neighbor, they are pulled
towards each other; otherwise, their distance is increased.
In other words, the contrastive loss performs like the triplet
loss but one by one rather than simultaneously. The desired
embedding is obtained when the anchor-distant distances get
larger than the anchor-neighbor distances by a margin of α.
This loss, to be minimized, is defined as [6]

`c=

b∑
i=1

[
(1−y)||f(xi

1)−f(xi
2)||22+y

[
−||f(xi

1)−f(xi
2)||22+α

]
+

]
(10)

where y is zero and one when the pair {xi
1,x

i
2} is anchor-

neighbor and anchor-distant, respectively.

III. THE PROPOSED LOSS FUNCTIONS

A. Network Structure

Consider any arbitrary neural network as the backbone.
This network can be either a multi-layer perception or a
convolutional network. Let q be the number of its output
neurons, i.e., the dimensionality of its embedding space. We
add a fully connected layer after the q-neurons layer to a
new embedding space (output layer) with p ≤ q neurons.
Denote the weights of this layer by U ∈ Rq×p. We name
the first q-dimensional embedding space as the latent space
and the second p-dimensional embedding space as the feature
space. Our proposed loss functions are network-agnostic as
they can be used for any network structure and topology of
the backbone. The overall network structure for the usage of
the proposed loss functions is depicted in Fig. 2.

Consider a triplet {xa,xn,xd ∈ Rd} or a pair {x1,x2 ∈
Rd}. We feed the triplet or pair to the network. We denote
the latent embedding of data by {oa,on,od ∈ Rq} and
{o1,o2 ∈ Rq} while the feature embedding of data is denoted
by {f(xa), f(xn), f(xd) ∈ Rp} and {f(x1), f(x2) ∈ Rp}. The
last layer of network is projecting the latent embedding to the
feature space where the activation function of the last layer is
linear because of unsupervised feature extraction. Hence, the
last layer acts as a linear projection f(x) = U>o.

During the training, the latent space is adjusted to extract
some features; however, the last-layer projection fine-tunes the

latent features in order to have better discriminative features.
In Section IV-D, we show the results of experiments to
demonstrate this.

B. Fisher Discriminant Triplet Loss

As in neural networks the loss function is usually mini-
mized, we minimize the negative of Fisher criterion where we
use (5) as the criterion:

minimize
U

− J = tr(U>SW U)− tr(U>SB U). (11)

This problem is ill-defined because by increasing the total
scatter of embedded data, the inter-class scatter also gets
larger and this objective function gets decreased. Therefore,
the embedding space scales up and explodes gradually to
increase the term tr(U>SB U). In order to control this issue,
we penalize the total scatter of the embedded data, denoted
by ST ∈ Rd×d:

min
U

tr(U>SW U)−tr(U>SB U)+ε tr(U>ST U), (12)

where ε ∈ (0, 1) is the regularization parameter. The total
scatter can be considered as the summation of the inter- and
intra-class scatters [19]:

ST := SB + SW . (13)

Hence, we have:

tr(U>SW U)− tr(U>SB U) + ε tr(U>ST U)

= tr
(
U>(SW − SB + εST )U

)
(13)
= tr

(
U>((ε+ 1)SW + (ε− 1)SB)U

)
(a)
= (2− λ) tr(U>SW U)− λ tr(U>SB U), (14)

where (a) is because (0, 1) 3 λ := 1−ε. It is recommended for
ε and λ to be close to one and zero, respectively because the
total scatter should be controlled not to explode. For example,
a good value can be λ = 0.1.

We want the inter-class scatter term to get larger than the
intra-class scatter term by a margin α > 0. Hence, the FDT
loss, to be minimized, is defined as:

`fdt=
[
(2− λ) tr(U>SW U)−λ tr(U>SB U)+α

]
+

(15)

where we defer the mathematical definition of intra- and inter-
class scatter matrices in our loss functions to Section III-D.

C. Fisher Discriminant Contrastive Loss

Rather than the triplets of data, we can consider the pairs
of samples. For this goal, we propose the FDC loss function
defined as

`fdc=(2−λ) tr(U>S̃W U)+
[
−λ tr(U>S̃B U)+α

]
+

(16)

where the intra- and inter-class scatter matrices, which will
be defined in Section III-D, consider the anchor-neighbor and
anchor-distant pairs.



D. Intra- and Inter-Class Scatters

1) Scatter Matrices in FDT: Let the output embedding of
the backbone, i.e. the second-to-last layer of total structure, be
denoted by o ∈ Rq . We call this embedding the latent embed-
ding. Consider the latent embeddings of anchor, neighbor, and
distant, denoted by oa, on, and od, respectively. If we have a
mini-batch of b triplets, we can define Rq×b 3 OW := [o1

a −
o1
n, . . . ,o

b
a − ob

n] and Rq×b 3 OB := [o1
a − ob

d, . . . ,o
b
a − ob

d]
where oi is the i-th sample in the mini-batch. The intra- and
inter-class scatter matrices are, respectively, defined as

Rq×q 3 SW :=

b∑
i=1

(oi
a − oi

n)(o
i
a − oi

n)
> = OW O>W , (17)

Rq×q 3 SB :=

b∑
i=1

(oi
a − oi

d)(o
i
a − oi

d)
> = OB O>B . (18)

The ranks of the intra- and inter-class scatters are min(q, b−1).
As the subspace of FDA can be interpreted as the eigenspace
of S−1W SB , the rank of the subspace would be min(q, b−1) =
b− 1 because we usually have b < q. In order to improve the
rank of the embedding subspace, we slightly strengthen the
main diagonal of the scatter matrices [20]

SW := OW O>W + µW I, (19)

SB := OB O>B + µB I, (20)

where µW , µB > 0 are small positive numbers, e.g., 10−4.
Hence, the embedding subspace becomes full rank with q ≥ p.

2) Scatter Matrices in FDC: As in the regular contrastive
loss, we consider the pairs of anchor-neighbor and anchor-
distant for the FDC loss. Let y be zero and one when the
pair {xi

1,x
i
2} is an anchor-neighbor or anchor-distant pair,

respectively. The latent embedding of this pair is denoted by
{oi

1,o
i
2}. The intra- and inter-class scatter matrices in the FDC

loss are, respectively, defined as

S̃W :=

b∑
i=1

(1− y)(oi
1 − oi

2)(o
i
1 − oi

2)
> + µW I

= ÕW Õ
>
W + µW I, (21)

S̃B :=

b∑
i=1

y(oi
1 − oi

2)(o
i
1 − oi

2)
> + µB I

= ÕB Õ
>
B + µB I, (22)

where ÕW :=[{oi
1−oi

2 | y = 0}] and ÕB :=[{oi
1−oi

2 | y=1}].
Note that in both FDT and FDC loss functions, there exist

the weight matrix U and the intra- and inter-class scatter
matrices. By back-propagation, both the last layer and the
previous layers are trained because U in loss affects the last
layer, and the scatter matrices in loss impact all the layers.

IV. EXPERIMENTS

A. Datasets

For the experiments, we used three public datasets, i.e.,
MNIST and two challenging histopathology datasets. In the

following, we introduce these datasets. The MNIST images
have one channel, but the histopathology images exhibit color
in three channels.

MNIST dataset – The MNIST dataset [21] includes 60,000
training images and 10,000 test images of size 28×28 pixels.
We created a dataset of 500 triplets from the training data to
test the proposed loss functions for a small training sample
size.

CRC dataset – The first histopathology dataset is the Col-
orectal Cancer (CRC) dataset [22]. It contains tissue patches
from different tissue types of colorectal cancer tissue slides.
The tissue types are background (empty), adipose tissue,
mucosal glands, debris, immune cells (lymphoma), complex
stroma, simple stroma, and tumor epithelium. Some sample
patches of CRC tissue types can be seen in Fig. 4. We split
data into train/test sets with 60%–40% portions. Using the
training set, we extracted 22,528 triplets by considering the
tissue types as the classes.

TCGA dataset – The second histopathology dataset is The
Cancer Genome Atlas (TCGA) dataset [23]. TCGA Whole
Slide Images (WSIs) come from 25 different organs for 32
different cancer subtypes. We use the three most common sites,
which are prostate, gastrointestinal, and lung [23], [24]. These
organs have a total of 9 cancer subtypes, i.e., Prostate ade-
nocarcinoma (PRAD), Testicular germ cell tumors (TGCT),
Oesophageal carcinoma (ESCA), Stomach adenocarcinoma
(STAD), Colonic adenocarcinoma (COAD), Rectal adenocar-
cinoma (READ), Lung adenocarcinoma (LUAD), Lung squa-
mous cell carcinoma (LUSC), and Mesothelioma (MESO). By
sampling patches from slides, we extracted 22,528 triplets to
test the proposed losses with a large triplet sample size. The
anchor and neighbor patches were selected from one WSI,
but we used four ways of extraction of the distant patch, i.e.,
from the same WSI but far from the anchor, from another
WSI of the same cancer subtype as an anchor, from another
cancer subtype but the same anatomic site as anchor, and from
another anatomic site.

B. Visual Comparison of Emebddings

In our experiments, we used ResNet-18 [25] as the back-
bone in our Siamese network structure (see Fig. 2). In our
experiments, we set q = 300, p = 128, b = 32, and α = 0.25.
The learning rate was set to 10−5 in all experiments.

Embedding of MNIST data – The embeddings of the
train/test sets of the MNIST dataset in the feature spaces of
different loss functions are illustrated in Fig. 3 where λ = 0.1
was used for FDT and FDC. We used the Uniform Manifold
Approximation and Projection (UMAP) [26] for visualizing
the 128-dimensional embedded data. As can be seen, both
embeddings of train and test data by the FDT loss are much
more discriminating than the embedding of triplet loss. On the
other hand, comparing the embeddings of contrastive and FDC
losses shows that their performances are both good enough as
the classes are well separated. Interestingly, the similar digits
usually are embedded as close classes in the feature space,
and this shows the meaningfulness of the trained subspace.



Fig. 3. Embedding of the training and test sets of MNIST dataset in the feature spaces of different loss functions.

Fig. 4. Embedding of the CRC test data for different loss functions (top row: CRC, bottom row: TCGA).

For example, the digit pairs (3, 8), (1, 7), and (4, 9) with the
second writing format of digit four can transition into each
other by slight changes, and that is why they are embedded
close together.

Embedding of histopathology data – For embedding of the
histopathology data, we performed two different experiments.
In the first experiment, we trained and tested the Siamese
network using the CRC data. The second experiment was to



TABLE I
ACCURACY OF 1-NN SEARCH FOR DIFFERENT LOSS FUNCTIONS.

MNIST CRC TCGA-CRC
triplet 82.21% 95.75% 95.50%
FDT (λ = 0.01) 82.76% 96.45% 97.60%
FDT (λ = 0.1) 85.74% 96.05% 96.40%
FDT (λ = 0.8) 79.59% 95.35% 95.95%
contrastive 89.99% 95.55% 96.55%
FDC (λ = 0.01) 78.47% 94.25% 96.55%
FDC (λ = 0.1) 89.00% 96.40% 98.10%
FDC (λ = 0.8) 87.71% 97.00% 97.05%

train the Siamese network using TCGA data and test it using
the CRC test set. The latter, which we denote by TCGA-
CRC, is more difficult because it tests generalization of the
feature space, which is trained by different data from the
test data, although with a similar texture. Figure 4 shows
the embeddings of the CRC test sets in the feature spaces
trained by CRC and TCGA data. The embeddings by all losses,
including FDT and FDC, are acceptable, noticing that the
histopathology data are hard to discriminate even by a human
(see the sample patches in Fig. 4). As expected, the empty
and adipose data, which are similar, are embedded closely.
Comparing the TCGA-CRC embeddings of contrastive and
FDC losses shows FDC has discriminated classes slightly
better. Overall, the good embedding in TCGA-CRC shows
that the proposed losses can train a generalizing feature space,
which is very important in histopathology analysis because of
the lack of labeled data [27].

C. Numerical Comparison of Embeddings

In addition to visualization, we can assess the embeddings
numerically. For the evaluation of the embedded subspaces,
we used the 1-Nearest Neighbor (1-NN) search because it
is useful to evaluate the subspace by the closeness of the
projected data samples. The accuracy rates of the 1-NN search
for the embedding test data by different loss functions are
reported in Table I. We report the results for different values
of λ ∈ {0.01, 0.1, 0.8} in order to analyze the effect of this
hyper-parameter. As the results show, in most cases, the FDT
and FDC losses have outperformed the triplet and contrastive
losses, respectively. Moreover, we see that λ = 0.1 is often
better performing. This can be because the large value of λ
(e.g., 0.8) imposes less penalty on the total scatter, which
may cause the embedding space to expand gradually. The very
small value of λ (e.g., 0.01), on the other hand, puts too much
emphasis on the total scatter where the classes do not tend to
separate well enough, so they do not increase the total scatter.

D. Comparison of the Latent and Feature Spaces

As explained in Section III-A, the last layer behaves as a
linear projection of the latent space onto the feature space. This
projection fine-tunes the embeddings for better discrimination
of classes. Figure 5 shows the latent embedding of the MNIST
train set for both FDT and FDC loss functions. Comparing
them to the feature embeddings of the MNIST train set in Fig.

Fig. 5. The latent embedding of MNIST training for (a) FDT and (b) FDC.

3 shows that the feature embedding discriminates the classes
much better than the latent embedding.

V. CONCLUSIONS

In this paper, we proposed two novel loss functions for
training Siamese networks. These losses were based on the
theory of the FDA, which attempts to decrease the intra-class
scatter but increase the inter-class scatter of the projected data.
The FDT and FDC losses make use of triplets and pairs
of samples, respectively. By experimenting on MNIST and
two histopathology datasets, we showed that the proposed
losses mostly perform better than the well-known triplet and
contrastive loss functions for Siamese networks.
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