
DRG2vec: Learning Word Representations from
Definition Relational Graph

Xiaobo Shu, Bowen Yu, Zhenyu Zhang, Tingwen Liu*

Institute of Information Engineering, Chinese Academy of Sciences. Beijing, China
School of Cyber Security, University of Chinese Academy of Sciences. Beijing, China

{shuxiaobo, yubowen, zhangzhenyu1996, liutingwen}@iie.ac.cn

Abstract—Even with larger and larger text data available, en-
coding linguistic knowledge into word embeddings directly from
corpora is still difficult. The most intuitive way to incorporate
knowledge into word embeddings is to use external resources,
such as the largest datasource for describing words - natural
language dictionaries. However, previous methods usually neglect
the recursive nature of dictionaries and cannot capture the high-
order relation. In this paper, we present DRG2vec, a novel
and efficient approach for learning word representations, which
exploits the inherent recursiveness of dictionaries by modeling
the whole dictionary as a homogeneous graph based on the co-
occurrence of entry and word in the definition. Moreover, a tailor-
made sampling strategy is introduced to generate word sequences
from the definition relational graph, and then, the generated
sequences are fed to the Skip-gram model with semantic negative
sampling for word representation learning. Extensive experi-
ments on sixteen benchmark datasets show that leveraging the
recursive dictionary graph indeed achieves better performance
than other state-of-the-art methods, especially exhibits a weighted
average improvement of 8.6% in the word similarity task.

Index Terms—Word embedding, Word similarity, Dictionary,
Graph Representation, Text Classification

I. INTRODUCTION

Continuous distributional word representations have be-
come a common technique across a wide variety of natural
language processing (NLP) tasks, such as neural machine
translation [1, 2] and machine reading comprehension [3, 4].
Most existing embedding models are typically trained based
on co-occurrence information in a large corpus. For instance,
the training objective of Word2vec [5] is to predict adjacent
word(s) given the word or context, i.e., a context window
around the target word. This idea aims to capture semantic
relatedness between words. Unfortunately, semantic related-
ness is not necessarily equivalent to semantic similarity [6].
For example, words such as “expensive” and “cheaper” appear
in near-identical contexts, which means that distributional
models produce very similar word vectors for such words.
Many efforts have been devoted to tackling this issue by
introducing external knowledge like WordNet [7, 8, 9] and
FrameNet [10, 11]. Despite the great success, these approaches
tend to specialize the embeddings to the resource used, while
the construction and maintenance of these resources are time-
consuming and error-prone.

Recently, Tissier et al. [12] leveraged existing natural lan-
guage dictionaries to learn word embeddings and proposed

* Corresponding author: Tingwen Liu.

Car

Vehicle

Taxia car with a driver that you pay to
take you somewhere.

Taxi

a road vehicle, typically with four
wheels powered by an internal
combustion a engine and able to
carry a small number of people.

Car

any means in or by which
someone travels or something is
carried or conveyed; a means of
conveyance or transport.

Vehicle

carried

travels

transport

road

engine

driver

pay

Fig. 1. Toy illustration of the recursive nature of dictionary. The left part is
a glance of dictionary and the right part indicate its corresponding graphical
representation.

a special learning strategy, called Dict2vec. It builds word
pairs from dictionary entries as weak supervision to im-
prove the embeddings and exhibits a statistically significant
improvement against many competitive solutions. Compared
with other external knowledge, dictionary is quite easy to
access with fewer errors and is one of the largest refined
datasources for describing words. After that, Scheepers et al.
[13] proposed a post-process method that tunes pre-trained
word embeddings with definitions and lemmas from WordNet.
Bosc et al. [14] presented a deep auto-encoder model to
generate word definition from word embeddings. However,
although achieving convincing performance, according to our
empirical study, these methods still suffers from one major
drawback: they only focus on the co-occurrences information
based on the terms occurring in the definition of a word, and
neglect the rich relational structure information in dictionaries.
In consideration of the recursive nature of dictionaries - the
fact that words inside a definition have their own associated
definition, it is intuitive to turn a plain dictionary into a
homogeneous word graph. As shown in Figure 1, when viewed
individually, the definition of taxi expresses that taxi is a
car with a driver that you pay to take you somewhere. But
if we look at taxi with a global perspective, this word will
have more semantic information as taxi is also a vehicle
and usually running on the road and its function is to carry
something. Such implicit semantic relations in the multi-hop
neighbors of the given word will be obscured if we only

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

consider the co-occurrences information of neighborhoods like
previous methods.

In this paper, we refer to the relation between one node
with its multi-hop neighbors and direct neighbors in the graph
as high-order and first-order relation respectively. Based on
the above observation, an obvious question is, how can we
leverage the recursive nature of dictionary to inject relations
into word representation learning? More importantly, whether
word representations learned from the dictionary graph could
outperform methods that only utilize plain free text or a few
first order word pairs (Dict2vec)?

We study these problems in this paper and present a novel
word representation learning strategy called DRG2vec based
on Definition Relational Graph (DRG), which is capable of
capturing high-order neighborhoods information. Given a dic-
tionary as input, our target is to extract rich semantic relation
of words by making full use of the definition resource. For this
purpose, DRG2vec first builds an undirected labeled weighted
graph where vertices represent words, and the edge between
two word nodes is assigned a specific weight value, according
to the importance of one node over another, we adopt TF-
IDF value as it. Next, to effectively and fully exploit the
recursive nature of the definitional relation graph, a tailor-made
sampling strategy is proposed for generating word sequences
from DRG with random walk, which balances the effect of
breadth-first-search and deep-first-search algorithm. Finally,
the generated word sequences from DRG and the free-text
from Wikipedia are fed to the Skip-gram model for producing
fixed-length continuous-valued word representations.

The experimental results demonstrate that DRG2vec
achieves significant improvements on twelve word similarity
datasets, and meanwhile is comparable with the state-of-the-art
methods on four text classification datasets. Further analysis
indicates that DRG2vec can fully exploit the recursive struc-
ture of dictionaries with the reasonable definition relational
graph.

II. METHOD

In this section, we detail our DRG2vec approach. Section
II-A introduces the way to build definition relational graph
(DRG). Section II-B introduces a tailor-made sampling strat-
egy to generate sequence based on DRG. In Section II-C, we
review the objective function of Skip-gram, then propose a
novel negative sampling strategy.

A. Graph Construction

In this section, as depicted in Figure 2, we aim to build
a large definition relational graph. Thus, the global word co-
occurrence and definition relation can be modeled explicitly,
which is convenient to introduce the following graph method.

Our design philosophy is motivated by the following ob-
servation: words inside a definition have their associated
definition. In particular, vehicle is in the definition of car,
and vehicle is explained by carried, there is no doubt
that carried has some relevance to the defined word car.
Furthermore, not all the words in the definition contribute

equally to the interpretation, a word needs only a few keywords
to interpret. As in the definition of vehicle, words like
which, means and something are far less effective in
interpretation than travel, carried and transport.
Based on the above observation, to represent the semantic
relevance between words, a dictionary is transformed into
an undirected semantic graph. Formally, consider a graph
G = (V, E), where V = {vi}i=n

i=1 and E ⊆ {eij}i,j=n,i 6=j
i,j=1 are

sets of nodes and edges, respectively. Every node is assumed
to be a word and if vj appears in the definition of vi, an edge
eij ∈ E will be established to connect these two words. By
doing this, words in the graph will connect directly with not
only their definition words, but also the words they interpret.

Up to now, the weights of edges in the graph are all the
same, but as mentioned above, different words have different
importance in a definition, that is, the more important a
word is, the higher its weight should be, and vice versa. To
model such information, we introduce the TF-IDF algorithm to
distinguish the important words. The weight of edge between
vi and vj is defined as the tf-idf value of word pair (vi, vj),
which is computed as:

tf-idf (vi, vj) = tf (vi, vj)× idf (vj) (1)

tf (vi, vj) =
|Nij |∑

vk∈Ni
|Nik|

(2)

idf (vj) = log

(
|N |∑|N |

i=0 sgn(|Nij |)

)
(3)

where N is the set which contains all of the definitions, Ni is
the definition of word vi, and Nij represents word vj in the
definition of word vi. uij is the final weight on edge eij , sgn
denotes the sign function. If two words define each other, we
add tf-idf (vi, vj) and tf-idf (vj , vi) together. The final weight
is defined as:

uij = uji = tf-idf (vi, vj) + tf-idf (vj , vi) (4)

Note that there is no self-loop in the graph, because it makes
no sense to consider the semantic relevance of a word to
itself. Besides, we have also tried multiple alternative methods
for weight calculation, such as Pointwise Mutual Information
(PMI) and Term Frequency (TF), some preliminary experi-
mental results show that tf-idf always works better than other
methods.

B. Sequence Generation

After building the dictionary graph, we aim to learn the
latent semantic embeddings for each node (i.e., each word) in
G. In order to obtain sequence set that can be directly used to
learn word representations, we first generate paths from G by
random walks [15], and each generated path is regarded as a
sentence by treating each node in the graph as a word.

Formally, let nx denote the x-th node in the generated
sequence, given a source node n0, the random walk algorithm
is employed to generate a node sequence from the graph, and

Wheel

Car

SUV

Hatchback

Drive

Automobile

Fare

Taxi

Passenger

Vehicle

Cab

Subcompact

Motor
Tow

Truck

Taxicab

Aircraft

Ground

n2v

Graph

Sit

Sequences

Car Wheel Car Vehicle Motor

Taxi Fare Taxicab Taxi Cab

Vehicle Motor Drive Cab Passenger

Truck Vehicle Drive Vehicle Tow

Fig. 2. Schematic diagram of the definition relational graph (DRG) and sequence generation. For good visualization, we choose 6 words with the highest
weight which directly connected to Car, Taxi or Vehicle (plurals and other tenses of words are filtered out). Different thicknesses of edges in the graph mean
different weights between nodes.

the probability of sampling the node nx+1 based on nx is
defined as follows:

p(nx+1 = vj |nx = vi) =

{
πij/Z, if eij ∈ E
0, otherwise

(5)

where Z =
∑

j πij is the normalization constant for node vi.
By default, πij = uij . Specifically, the random walk algorithm
first starts from an initial node vs, then randomly select an
edge directly connected to vs on the basis of edge weights,
and reach a neighbor node vn. Next, vn will be regarded as a
new source node v′s and the random walk process will restart
all over again, until the iteration is end. By recording all the
nodes in the process of traversal, we can obtain a sequence of
word nodes for training word embeddings.

However, such a random walk strategy based on the above
probability function is approximate to the Depth-First Sam-
pling (DFS) algorithm, because they all tend to traverse
away from the source node, which will lead to the generated
sequences contain more semantic relatedness. On the contrary,
we believe that Breadth-First Sampling (BFS) algorithm can
restrict the travel range around the source node, so that the
semantic similarity among words will be more concerned in
the sequences. Considering that DFS can explore larger parts
of the graph, while BFS plays a key role in characterizing
the local neighborhoods accurately, we follow the idea of
node2vec [16] to balance DFS and BFS and take place of
these algorithms to generate sequence. In fact, node2vec is
an extension of random walk which better controls the depth-
first and breadth-first property of random walks compared with
other variations.

Specifically, instead of directly setting πij = uij in Equation
5, node2vec utilizes a biased transition probability as the
replacement to control how fast the walk explores and leaves
the neighborhood of the source node. Formally, consider a
walk that just traversed edge ehi from vh and now resides at
node vi, it needs to decide on the next step so it evaluates

the transition probabilities πij on edges eij . We set the
unnormalized transition probability as follows:

πij = α(h, j) · uij (6)

α(h, j) =


p−1, if d(h, j) = 0

1, if d(h, j) = 1

q−1, if d(h, j) = 2

(7)

where d(h, j) is the shortest path distance between node vh
and vj . Intuitively, parameters p and q allow our sampling
procedure (approximately) interpolate between BFS and DFS
and thereby reflect an affinity for different notions of node
equivalences [16]. Here, p is named return parameter and q
named in-out parameter, a high value of p (p > 1) ensures
that the walk is less likely to sample a visited node in the
following two steps (unless the next node in the walk had no
other neighbors), while q < 1 will make random walk step far
away from the source node.

C. Learning Word Representations

We directly utilize the widely-used model Skip-gram to
learn word representations from our generated paths, because
Skip-gram has well-balanced effectiveness as well as effi-
ciency [17]. Our objective function is derived from the noise
contrastive estimation, which is a more efficient objective
function than the log-likelihood function:

L = − 1

n

n∑
t=1

|k|≤C∑
k 6=0

ψ+
wt,t+k

+
∑

wi∈N (wt)

ψ−wt,wi
(8)

Here, wt is the target word, wt+k is one of the context words
within window size C. ψ+

wt,t+k
= log σ(vt · vt+k), ψ−wt,wi

=
log σ(−vt ·vj), where σ(x) is the sigmoid function, and vt is
the embedding of word wt. N (wt) is a set that consists of the
sampled noisy context words for the word wt. For each word

wt, standard negative sampling strategy generates N (wt) by
randomly selecting k words from the vocabulary:

N (wt) = {wi}k, wi ∈ Vw\{wt} (9)

However, such a random sampling strategy does not con-
sider semantic relations among words, and the probability
that wi and wt are related is not necessarily zero. With the
semantic path we have generated above, it is possible to better
ensure that this is less likely to occur. More specifically, for a
given word wt and the sampled word sequences, we prohibit a
negative example of wt to be a word that co-occurs with wt in
the word sequences. Finally, the Equation 9 can be modified
to the following form:

N (wt) = {wi}k, wi ∈ Vw\{wt,P(wt)} (10)

where P(wt) is the word set containing all the words showing
up in the same sequence with wt, and P(wt) is set to ∅ when
wt does not belong to DRG. For better identification, we name
such a strategy as semantic negative sampling.

III. EXPERIMENTS

This section first introduces the experimental settings, and
then presents the performance comparison results with base-
line methods as well as case studies to validate the effective-
ness of DRG2vec and the superiority of DRG.

A. Experimental Settings

1) Training Data: The training data we use includes
Wikipedia dump and online Dictionary Resources. The details
are as follows:
• Wikipedia. We utilize the English dump from Wikipedia

updated on March 1, 20191. We run the script offered by
Mahoney2 to remove non-English words and special sym-
bols, convert uppercase letters to lowercase, and finally
we achieve the corpus containing 4.6 billion tokens.

• Dictionary Resources. The online dictionary source we
use is the same as Dict2vec3 [12], which includes En-
glish version of Cambridge, Oxford, Collins and dictio-
nary.com. For each word, we download its definitions in
the above four dictionaries and extract such definitions
from HTML pages with regex. After removing stop words
and punctuation, we concatenate all definitions of each
word. Overall, the Wikipedia dump contains 2.5M unique
words, of which about 150K words’ definition can be
fetched from above online dictionary resources.

2) Implement Details: We follow the same evaluation
protocol as Word2vec and fastText to provide the fairest
comparison against competitors, we use 5 negative samples,
5 epochs, a window size of 5 and a vector size of 100. The
parameters in Dict2vec are the default setting by original paper
(Nw = 4, Ns = 3, βs = 0.8, βw = 0.45). For our method,
the times and depth of random walk are both set to 40. To

1https://dumps.wikimedia.org/enwiki/20190301/
2http://mattmahoney.net/dc/textdata\#appendixa
3https://github.com/tca19/dict2vec

examine how the different choices of parameters affect the
performance, we compare the all round performances of three
different settings: p = 10.0, q = 1.0, p = 1.0, q = 10.0 and
p = 1.5, q = 5.0, which we refer to as DFS-like (DRG2vec-d),
BFS-like (DRG2vec-b) and Trade-off (DRG2vec) respectively.
We run 3 times for each experiment then report the average
results.

3) Baselines: To compare and evaluate our method com-
prehensively, we employ several models as baselines, which
can be divided into two genres. (1) Context-based genre,
we train Word2vec [17] and fastText [18] on the same
corpus described in the section of training data with the
same hyper-parameters 4. For the sake of fairness, we train
Word2vec with the Skip-gram model. (2) Dictionary-based
genre: Dict2vec [12] leverages word pairs extracted from the
definitions weighted differently with respect to the strength of
the pairs to learn word embeddings; CPAE [14] utilizes auto-
encoder model and soft weighting scheme to bring the input
embeddings closer to the encoded definition embeddings. Be-
sides, following previous studies [10, 12], we also retrofit the
learned embeddings with Faruqui’s method to compare another
method using additional resources. The external knowledge we
used here contains the WordNet semantic lexicon [7], pairs
extracted from Dict2vec and our DRG.

4) Evaluation Tasks: Following previous work [12], we
evaluate our method on two kinds of tasks with 16 public
datasets:
• Word Similarity: We follow the standard method for

word similarity evaluation by computing the Spearman’s
rank correlation coefficient between human similarity
evaluation of pairs of words, and the cosine similarity
of the corresponding word vectors. More specifically, the
closer the score is to 1, the closer the embedding is to
human judgment. To improve readability, we multiply the
score by 1000. To evaluate the performance of Word Sim-
ilarity, we use MC-30 [20], RG-65 [21], WS-353-ALL
[22], MEN-3K [23], MT-287 [24], MT-771 [25], RW-
STAN [26], SimVerb-3500 [27], SimLex-999 [28] and
YP-130 [29] classic datasets. Furthermore, WS-353-ALL
is also further divided into two fragments which describe
word similarity (WS-353-SIM) and relatedness (WS-353-
REL) respectively. We also compute the average results
by weighting each score by the number of pairs evaluated
in its dataset in the same way as [30].

• Text classification: Our text classification task includes
four datasets: AG-News 5, Yelp reviews (i.e., Yelp Pol.
and Yelp Full)6, and DBpedia [31]. We make evaluation
by training a neural network composed of a single
hidden layer where the input layer corresponds to the
bag of words of a document, and the output layer is the
probability to belong to each label. The weights between

4We have also tried GloVe [19] with the official implementation on our
training data, but the results are lower than all other baselines (weighted
average score 40.7%), thus we do not report GloVe’s results in the experiment.

5https://www.di.unipi.it/œgulli/AG corpus of news articles.html
6https://www.yelp.com/dataset challenge

the input and the hidden layer are initialized with the
generated embeddings and fixed during training, so that
the evaluation score solely depends on the embedding.
We update the weights of the neural network classifier
with gradient descent. We use the same training data and
test data in all approaches.

B. Experimental Results

1) Word Similarity: Table I (top) reports the Spearman’s
rank correlation scores of all comparison models. From the
results, the first conclusion we draw is that our DRG2vec
method outperforms all baseline methods in terms of the
weighted average score of 12 word similarity datasets (+25.8%
over Word2vec, +24.6% over fastText, +10.2% over Dict2vec,
+8.6% over CPAE). We attribute such substantial performance
gain to two design choices: (1) learning word embeddings
through definition relational graph indeed makes full use of
the structural and semantic information of dictionary, and
could captures high-order neighborhoods information; (2) Our
sequence generation strategy is quite effective to capture the
semantics similarity. Secondly, we notice that dictionary-based
methods (Dict2vec, CAPE and our DRG2vec) outperform
context-based methods (Word2vec, fastText) marginally, which
can be intuitively explained that word definition provides extra
signals to boost the performance of word embeddings. When
compared with other dictionary-based baselines, our DRG2vec
method achieves significant improvements on several datasets,
which is a strong evidence that learning word representation
base on DRG can capture richer semantic information compare
to other “plain” methods. Finally, we also note that the perfor-
mances of BFS-like and DFS-like strategies are comparable.
Specifically, DRG2vec-d outperforms DRG2vec-b on the WS-
353-REL dataset (for word relatedness) while DRG2vec-b
surpasses DRG2vec-d on the WS-353-SIM dataset (for word
similarity), which demonstrates that DFS-like strategy learns
more about semantic relatedness information while BFS-like
strategy encourages the sequences to pay more attention to
similar words. DRG2vec model actually makes a trade off
between DRG2vec-b and DRG2vec-d, thus achieving better
performance.

Beyond that, the Faruqui’s retrofitting method improves
the word similarity scores on all methods for most datasets
(see Table II). It is worth mentioning that when the baseline
methods are retrofitted, their scores are still worse than our
non-retrofitted model (every percentage on the “v.s. our” line
are negative), which means that using our semantic graph is
a sensible way to improve the quality of the embeddings. We
also notice that the weighted average score of our model is
slight increased by retrofitting method with WordNet, which
can be explained that DRG2vec has captured both first-
order and high-order definitional relations, and the addition of
synonyms knowledge can further improve word embeddings.

2) Text Classification: In Table I (bottom), we report the
classification accuracy for these considered datasets. From the
results, we can see that DRG2vec achieves better results on
AG-News, DBPedia and Yelp Full datasets than baselines, and

the performance on Yelp Pol. is very close to that of state-of-
the-art approach. It suggests that incorporating external word
definition knowledge into word embedding by our approach
not only improves intrinsic task, but also benefits extrinsic
tasks, which is consistent with the conclusion of Dict2vec.

C. Effectiveness Analysis

1) Effectiveness of Definition Relational Graph: To further
validate the effective of our constructed definition relational
graph, we extract word pairs from with WordNet, Dict2vec and
DRG7. In Table II, we report the relative percentage changes
of Spearman’s rank correlation score after the Faruqui’s
retrofitting method applied to pre-trained word embeddings
(Word2vec and fastText) with different sources of word pairs.
Compared with WordNet and Dict2vec, pairs extracted from
our DRG improve all three baselines in term of the weighted
average score, which shows that DRG is more effective than
Dict2vec and human-handed WordNet resources in some way.
Notice that when applying retrofitting to our trained word
embeddings (DRG2vec), only WordNet could bring some
improvement. It proves that some relational information in the
WordNet lexicon may be complementary to our definitional
relation.

2) Effectiveness of High-order: To demonstrate the influ-
ence of high-order relation and the effectiveness of our graph-
based approach for capturing high-order relation between
words, we extract word pairs from sequences generated by
random walk, in which the order is defined as the number of
steps far away from the source word, and then use them to
retrofit different kinds of word embeddings.

From Figure 3, we can observe that the performances of
all comparison models except ours generally display a trend
of rising first and then decreasing after second-order, which
indicates that the first two order words (neighborhoods) share
the most semantic relevance with the central word, and higher-
order relation may suffer from the issue of semantic drift.
Nevertheless, when the number of order is less than 5, the
high-order relation can still boost the performance compared
with original words representation, which again confirms the
effectiveness and rationality of our random walk strategy
to capture diverse order semantic relations. One may notice
that the high-order relation can not help trained DRG2vec
embeddings make further progress. The reason behind such
phenomenon is still under investigation, we presume that our
approach has caught the high-order relation of words to some
extent.

3) Effectiveness of Semantic Negative Sampling: In order
to explore the effectiveness of our semantic negative sampling
strategy, we replace the sampling strategy used in Dict2vec and
Word2vec with ours and re-implement their results on the 12
word similarity datasets. Experimental results indicate that our
sampling strategy can significantly improve the average score
of word similarity when using the same model(+1.9% over

7We extract the three highest weight neighborhoods for every word as
word pairs. WordNet: https://github.com/mfaruqui/retrofitting, Dict2vec: https:
//github.com/tca19/dict2vec, DRG: https://github.com/shuxiaobo/DRG2vec.

TABLE I
SPEARMAN’S RANK CORRELATION COEFFICIENTS BETWEEN VECTORS’ COSINE SIMILARITY AND HUMAN JUDGEMENT FOR SEVERAL DATASETS (TOP)

AND ACCURACIES ON TEXT CLASSIFICATION TASK (BOTTOM). WE TRAIN AND EVALUATE EACH MODEL 3 TIMES AND REPORT THE AVERAGE SCORE FOR
EACH DATASET, AS WELL AS THE WEIGHTED AVERAGE FOR ALL WORD SIMILARITY DATASETS.

W2V FT D2V CPAE DRG2vec-d DRG2vec-b DRG2vec

MC-30 786 725 861 858 859 864 876
MEN-3K 699 659 746 705 805 801 804
MT-287 628 600 648 622 700 702 703
MT-771 583 579 675 615 755 763 759
RG-65 704 640 860 806 888 881 895
RW-STAN 343 432 505 483 430 405 464
SimLex-999 318 321 452 518 564 563 569
SimVerb-3500 209 248 417 478 572 570 574
WS-353-ALL 663 587 725 653 768 768 768
WS-353-REL 619 519 637 562 690 684 683
WS-353-SIM 733 693 741 726 810 817 819
YP-130 411 509 635 723 750 747 753

W.average 510 522 666 682 760 754 768

AG-News 831 821 816 810 830 821 834
DBPedia 913 916 924 927 930 910 933
Yelp Pol. 802 818 814 813 813 811 812
Yelp Full 431 449 452 436 451 430 455

0 1 2 3 4 5
Order

500
525
550
575
600
625
650
675
700
725
750
775
800

Sp
ea

rm
an

's
co

rre
la

tio
n

Word2vec
FastText
Dict2vec
CPAE
DRG2vec

Fig. 3. The weighted average scores of word similarity task after retrofitting
pre-trained word embedding by different order word pairs.

Word2vec and +1.3% over Dict2vec, in which the sequence
length walked from graph is set to 40), which suggests
that the negative samples we extract from DRG are more
useful on general approaches. Meanwhile, it also indicates
that our negative sampling method can take full account of
the semantic information among words, so that the model is
endowed with the ability to differentiate unrelated words rather
than simply putting the related words closer.

D. Case Study

In Table III, we present some cases of the most similar word
to intuitively illustrate the characteristics of word embeddings
produced by our approach. In the first case, coffee is a
noun describing things containing coffee beans, it is shown
to be more similar with cocoa and lattes than milk or
some else words. In the second case, good should be closer
to excellent, better or best in the semantic space,
negtive words like bad and poor are antonyms of good, and
there should not be much similarity between them. Overall, our

method can learn the real semantic similarity from definition,
and it confirms that that using refined dictionary knowledge
can actually help to get the real sense of the words.

IV. RELATED WORK

Word Representation. Recently, the context-free pre-
trained word embeddings have been used in kinds of NLP
tasks as the distributed representations of words [32]. The
Word2vec [5, 17], likes Skip-gram (SG) and Continuous-Bag-
Of-Words (CBOW) models, gains further popularity thanks to
its simplicity and effectiveness. Both of them iterate overall
(target, context) pairs from every window of the corpus and
tries to predict target word(s) by given word(s). the difference
is that Skip-gram model predicts the neighborhoods for a given
word, while CBOW predicts the target word using the context.
Considering the great success of Word2vec, there are many
follow-up works based on them. FastText [18] uses a training
algorithm based on Skip-gram, it represents each word as
a bag of character n-grams to capture more semantics and
solve out-of-vocabulary (OOV) problem at the same time. To
capture global information in the corpus, GloVe [19] constructs
a global statistical co-occurrence matrix, and learns word
embedding by factorizing the matrix.

However, all the methods we mentioned above just model-
ing the co-occurrence information into word representation.
With larger and larger text data available on the Internet,
more works concentrate on extracting and encoding linguistic
knowledge into word embeddings directly from external re-
sources [9, 14, 33]. Approaches in this area can be roughly
divided into two categories: pre-training and post-processing.
(1) The pre-training methods used to inject external knowledge
by modifying loss function or text corpus. For example, [9]
include prior knowledge about synonyms from WordNet and

TABLE II
PERCENTAGE CHANGES OF WORD SIMILARITY SCORES FOR SEVERAL DATASETS AFTER THE FARUQUI’S RETROFITTING METHOD IS APPLIED. WE

COMPARE EACH MODEL TO THEIR OWN NON-RETROFITTED VERSION (VS SELF) AND OUR NON- RETROFITTED VERSION (VS OUR). A POSITIVE
PERCENTAGE INDICATES THE LEVEL OF IMPROVEMENT OF THE RETROFITTING APPROACH, WHILE A NEGATIVE PERCENTAGE SHOWS THAT THE

COMPARED METHOD IS BETTER WITHOUT RETROFITTING.

Word Pairs of WordNet Word Pairs of Dict2vec Word Pairs of DRG

FT D2V CPAE Drg2vec FT D2V CPAE Drg2vec FT D2V CPAE Drg2vec

MC-30 vs.self +17.6 +1.5 +5.2 +0.6 +3.4 +4.1 +0.1 +2.7 +11.4 +0.7 +0.9 +0.5
vs.our -2.7 -0.3 +3.0 - -14.4 +0.6 -2.0 - -7.8 -2.6 -0.6 -

MEN-3k vs.self -2.2 -2.4 -3.8 -0.6 -15.4 -0.1 -2.69 -4.3 +5.4 +3.4 +0.4 -0.4
vs.our -20.0 -9.5 -15.6 - -30.8 -9.9 -14.6 - -13.6 -6.7 -6.4 -

MT-287 vs.self -10.8 +3.0 -3.5 -2.3 -13.8 +3.7 +9.00 -1.5 -0.3 +5.9 +7.3 -1.6
vs.our -25.2 -6.7 -14.6 - -27.7 -4.4 -3.5 - -16.4 -2.5 +1.5 -

MT-771 vs.self +6.0 +1.7 -1.9 +1.0 -16.7 +2.1 -2.43 -1.1 +6.7 +4.2 +4.3 -0.6
vs.our -19.4 -9.8 -20.5 - -36.7 -8.2 -20.9 - -18.8 -6.4 -7.6 -

RG-65 vs.self +9.0 -0.2 +2.8 +0.5 -2.8 +4.5 -4.71 -4.8 +6.0 +2.6 +4.2 +0.2
vs.our -6.9 -4.1 -7.3 - -17.0 -2.6 -14.1 - -9.4 -4.4 -4.2 -

RW-STAN vs.self -28.2 -20.0 -31.4 -15.0 -7.8 -19.8 -5.17 -11.8 +1.3 +7.9 +7.2 -0.7
vs.our -41.8 -24.2 -28.6 - -25.3 -24.3 -1.2 - -17.8 +1.8 +13.3 -

SemLex vs.self +24.9 +9.5 +2.8 +8.8 +8.0 +12.9 -5.01 -6.6 +11.5 +5.1 +5.2 -1.5
vs.our -30.3 -14.0 -6.3 - -39.7 -9.2 -13.5 - -37.8 -15.4 -14.4 -

SimVerb vs.self +38.7 +5.2 +6.0 +6.5 +34.2 +18.7 -1.29 -12.1 +27.0 +12.0 +4.6 -1.8
vs.our -41.0 -4.8 -11.6 - -42.9 -18.8 -26.1 - -46.0 -23.4 -31.3 -

WS-ALL vs.self -15.8 -1.1 -12.2 -4.6 -24.3 -2.8 -1.94 -8.0 +3.5 +1.6 -1.2 -0.9
vs.our -36.1 -7.3 -25.3 - -42.6 -6.7 -25.1 - -21.4 -2.4 -8.5 -

WS-REL vs.self -38.5 -3.2 -21.7 -7.5 -40.4 -7.7 -6.37 -8.9 -0.5 +1.7 -2.3 -0.2
vs.our -53.8 -10.8 -35.5 - -55.2 -10.5 -31.1 - -25.3 -1.3 -13.3 -

WS-SIM vs.self +2.5 +7.4 -3.4 -0.8 -12.5 +5.6 -7.30 -3.9 +4.6 +3.2 +1.3 +0.6
vs.our -13.8 -3.5 -14.4 - -26.5 -2.3 -17.8 - -12.1 -4.4 -0.1 -

YP-130 vs.self +14.5 +4.0 +0 +3.5 +23.5 +8.5 -5.94 -5.1 +8.0 +0.6 -0.4 -0.5
vs.our -24.3 -14.2 -3.9 - -18.4 -11.2 -9.6 - -28.6 -17.7 -11.1 -

W.average vs.self +1.3 +0.5 -4.1 +1.6 -4.2 -4.8 -5.71 -7.4 +8.3 +6.3 +3.1 -1.0
vs.our -30.6 -15.8 -14.2 - -34.9 -12.1 -15.6 - -25.7 -10.2 -10.3 -

the Paraphrase Database in a joint model built upon Word2vec.
Prop [34] first construct a relational graph from text corpora
by lexical patterns, then minimizes the difference between the
predicted and the actual co-occurrences. Kiela et al. [35] adds
new contexts from an external thesaurus or a norm association
base in the Skip-gram loss function for optimization, so that
it can specialize the embedding on kinds of relation. (2) The
postprocessing methods improve word embedding by fine-
tuning already trained word embedding with lexical databases.
Faruqui et al. [6, 10] introduce a retrofitting method in which
they postprocess learned vectors with respect to semantic
relationships extracted from additional lexical resources. Vulić
et al. [36] inject external linguistic constraints into the initial
vector space, and the related word pairs are more close in
the transformed Euclidean space, so as to emphasize the
asymmetric relation of lexical entailment. SemGCN [8] builds
a word graph and represent each node (or word) by graph
convolution network, then uses the neighborhoods to predict
the center word.

Finally, we turn to the works most relevant to our
model, which also involves dictionaries and word embeddings.
Dict2vec [12] combines the Skip-gram objective with a cost
for predicting related words, in which the related words
either form strong or weak pairs with the target word in
the definition. CAPE [14] introduces the soft weight-tying
scheme into auto-encoder model and learns word embeddings
by processing dictionary definitions and trying to reconstruct
them. In spite of a similar dictionary resource shared by these
studies, our work is unique in that we find and further make
full use of the recursive nature of dictionary, then model the
whole dictionary as a homogeneous graph to characterize the
neighborhoods accurately.

Network Representation. In the network representation
field, conventional paradigm of node feature generation is
typically based on feature extraction techniques, which involve
some hand-crafted seed features based on network properties
[37, 38]. After that, dimensionality reduction techniques (e.g.,
PCA, IsoMap) are proposed to reduce the cost of extracting

TABLE III
CASE STUDY FOR QUALITATIVE ANALYSIS. GIVEN THE TARGET WORD, WE LIST THE TOP 8 SIMILAR WORDS FROM EACH ALGORITHM SO AS TO

OBSERVE THE DIFFERENCES.

Word2vec Dict2vec CPAE DRG2vec

coffee

tea sugar cocoa tea java bean cocoa coffees
cotton cocoa molasses arabica coffea cacao coffea tea
rice vegetables teas flour chocolate carob lattes decaffeinated
meat milk oatmeal leche coffeepot cocoa chocolate cuppers

good

bad poor better decent better asset excellent better
necessary true pretty luck best upstanding mediocre best
excellent better excellent beneficent goodness worthless marvelously gentilesse
therefore clear bad really wholesomeness virtue reputable unaesthetic

bad

good poor badness wrong worse innocuous appalling badness
luck wrong worse ill unsound evil misfortunes jinx
terrible better dooms execrable unfit noxious abominable misfortunes
happen worse wickedly horrible badly badness appallingly unforgivable

features from networks. However, these methods still suffer
from both computational and statistical performance draw-
backs. In addition, these methods optimize for objectives that
are not robust to the diverse patterns observed in networks
(such as homophily and structural equivalence) and make
assumptions about the relationship between the underlying
network structure and the prediction task. Recently, Inspired
by the Skip-gram model [17], Deepwalk [39] and LINE [40]
established an analogy for networks by representing a network
as a “document”. in which words in documents are represented
as nodes and the random walk strategy is utilized to sampling
ordered word sequences from the network. However, there
are many possible sampling strategies for nodes, resulting in
different learned feature representations. In fact, the key to win
in kinds of tasks across all networks is adapt a better sampling
strategy. Node2vec [16] designed a flexible objective that is not
tied to a particular sampling strategy and provides parameters
to tune the explored sampling space, so that it could balance
the deep-first sampling and breadth-first sampling by random
walk strategy. In this paper, we employ the node representation
approaches to help us mine the structure information of our
definition relational graph (DRG).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented DRG2vec, a novel graph ap-
proach for learning word embeddings using lexical dictionar-
ies. Dictionaries are transformed into a word semantic graph
based on the co-occurrence of entry and word in the definition.
Then a deep random walk strategy is introduced to generate
sequences from the graph, which are then fed to the Skip-gram
model for word representation learning. Experimental results
show that DRG2vec significantly outperforms the state-of-
the-art solutions. They also demonstrate that nature language
dictionary contains more semantic information than handmade
resources in some ways. In the future, we will conduct research
in: (1) how to utilize dictionaries to learn multi-sense word
embedding as dictionary defines every sense of word, (2)
exploring more advanced graph representation methods to
improve the performance of word embedding.

VI. ACKNOWLEDGEMENTS

This work was supported by the National Key Research and
Development Program of China (No.2016YFB0801003) and
the Strategic Priority Research Program of Chinese Academy
of Sciences (No.XDC02040400).

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to
sequence learning with neural networks,” in Proc. of
NeurIPS, 2014.

[3] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading
Wikipedia to answer open-domain questions,” in Proc. of
ACL, 2017.

[4] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural
question generation for reading comprehension,” arXiv
preprint arXiv:1705.00106, 2017.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,”
arXiv preprint arXiv:1301.3781, 2013.

[6] N. Mrkšic, D. OSéaghdha, B. Thomson, M. Gašic,
L. Rojas-Barahona, P.-H. Su, D. Vandyke, T.-H. Wen,
and S. Young, “Counter-fitting word vectors to linguistic
constraints,” in Proc. of NAACL, 2016.

[7] G. A. Miller, “Wordnet: a lexical database for english,”
CACM, 1995.

[8] S. Vashishth, M. Bhandari, P. Yadav, P. Rai, C. Bhat-
tacharyya, and P. Talukdar, “Incorporating syntactic and
semantic information in word embeddings using graph
convolutional networks,” in Proc. of ACL, 2019.

[9] M. Yu and M. Dredze, “Improving lexical embeddings
with semantic knowledge,” in Proc. of ACL, 2014.

[10] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy,
and N. A. Smith, “Retrofitting word vectors to semantic
lexicons,” in Proc. of NAACL, 2015.

[11] J. Ganitkevitch, B. Van Durme, and C. Callison-Burch,
“Ppdb: The paraphrase database,” in Proc. of NAACL,
2013.

[12] J. Tissier, C. Gravier, and A. Habrard, “Dict2vec: Learn-
ing word embeddings using lexical dictionaries,” in Proc.
of EMNLP, 2017.

[13] T. Scheepers, E. Kanoulas, and E. Gavves, “Improving
word embedding compositionality using lexicographic
definitions,” in Proc. of WWW, 2018.

[14] T. Bosc and P. Vincent, “Auto-encoding dictionary def-
initions into consistent word embeddings,” in Proc. of
EMNLP, 2018.

[15] D. Aldous and J. Fill, “Reversible markov chains and
random walks on graphs,” 2002.

[16] A. Grover and J. Leskovec, “node2vec: Scalable feature
learning for networks,” in Proc. of SIGKDD, 2016.

[17] Q. Le and T. Mikolov, “Distributed representations of
sentences and documents,” in International conference
on machine learning, 2014, pp. 1188–1196.

[18] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,
and T. Mikolov, “Fasttext.zip: Compressing text classifi-
cation models,” arXiv preprint arXiv:1612.03651, 2016.

[19] J. Pennington, R. Socher, and C. Manning, “Glove:
Global vectors for word representation,” in Proc. of
EMNLP, 2014.

[20] G. A. Miller and W. G. Charles, “Contextual correlates of
semantic similarity,” Language and cognitive processes,
1991.

[21] H. Rubenstein and J. B. Goodenough, “Contextual cor-
relates of synonymy,” CACM, 1965.

[22] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin, “Placing search
in context: The concept revisited,” TOIS, 2002.

[23] E. Bruni, N.-K. Tran, and M. Baroni, “Multimodal dis-
tributional semantics,” JAIR, 2014.

[24] K. Radinsky, E. Agichtein, E. Gabrilovich, and
S. Markovitch, “A word at a time: computing word
relatedness using temporal semantic analysis,” in Proc.
of WWW, 2011.

[25] G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren,
“Large-scale learning of word relatedness with con-
straints,” in Proc. of SIGKDD, 2012.

[26] T. Luong, R. Socher, and C. Manning, “Better word
representations with recursive neural networks for mor-
phology,” in Proc. of CoNLL, 2013.

[27] D. Gerz, I. Vulić, F. Hill, R. Reichart, and A. Korhonen,
“Simverb-3500: A large-scale evaluation set of verb
similarity,” arXiv preprint arXiv:1608.00869, 2016.

[28] F. Hill, R. Reichart, and A. Korhonen, “Simlex-999:
Evaluating semantic models with (genuine) similarity
estimation,” Computational Linguistics, 2015.

[29] D. Yang and D. M. Powers, Verb similarity on the
taxonomy of WordNet. Masaryk University, 2006.

[30] I. Iacobacci, M. T. Pilehvar, and R. Navigli, “Embeddings
for word sense disambiguation: An evaluation study,” in
Proc. of ACL, 2016.

[31] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyga-
niak, and Z. Ives, “Dbpedia: A nucleus for a web of open
data,” in The semantic web, 2007.

[32] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A
neural probabilistic language model,” JMLR, 2003.

[33] S. K. Jauhar, C. Dyer, and E. Hovy, “Ontologically
grounded multi-sense representation learning for seman-
tic vector space models,” in Proc. of ACL, 2015.

[34] D. Bollegala, T. Maehara, Y. Yoshida, and K.-i.
Kawarabayashi, “Learning word representations from
relational graphs,” in Proc. of AAAI, 2015.

[35] D. Kiela, F. Hill, and S. Clark, “Specializing word
embeddings for similarity or relatedness,” in Proc. of
EMNLP, 2015.

[36] I. Vulić and N. Mrkšić, “Specialising word vectors for
lexical entailment,” arXiv preprint arXiv:1710.06371,
2017.

[37] B. Gallagher and T. Eliassi-Rad, “Leveraging label-
independent features for classification in sparsely labeled
networks: An empirical study,” in International Work-
shop on Social Network Mining and Analysis, 2008.

[38] K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-
Rad, H. Tong, and C. Faloutsos, “It’s who you know:
graph mining using recursive structural features,” in Proc.
of SIGKDD, 2011.

[39] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk:
Online learning of social representations,” in Proc. of
SIGKDD, 2014.

[40] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei,
“Line: Large-scale information network embedding,” in
Proc. of WWW, 2015.

