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Abstract—Anomaly detection aims to recognize samples with
anomalous and unusual patterns with respect to a set of normal
data. This is significant for numerous domain applications, such
as industrial inspection, medical imaging, and security enforce-
ment. There are two key research challenges associated with exist-
ing anomaly detection approaches: (1) many approaches perform
well on low-dimensional problems however the performance on
high-dimensional instances, such as images, is limited; (2) many
approaches often rely on traditional supervised approaches and
manual engineering of features, while the topic has not been fully
explored yet using modern deep learning approaches, even when
the well-label samples are limited. In this paper, we propose a
One-for-all Image Anomaly Detection system (OIAD) based on
disentangled learning using only clean samples. Our key insight is
that the impact of small perturbation on the latent representation
can be bounded for normal samples while anomaly images are
usually outside such bounded intervals, referred to as structure
consistency. We implement this idea and evaluate its performance
for anomaly detection. Our experiments with three datasets show
that OIAD can detect over 90% of anomalies while maintaining a
low false alarm rate. It can also detect suspicious samples from
samples labeled as clean, coincided with what humans would
deem unusual.

Keywords-Anomaly detection, deep learning, disentangled
learning, latent representation, unsupervised learning

I. INTRODUCTION

As a fundamental and challenging machine learning task,

anomaly detection aims to recognize images with anoma-

lous and unusual patterns with respect to a set of normal

data. Anomaly detection has been applied to a great range

of domains, e.g. identification of defective product parts in

industrial vision applications [1], fault-prevention in industrial

sensing systems [2], detection of anomalous network activity

in intrusion detection systems [3], medical image analysis for

potential diseases detection [4], [5], etc. Anomaly detection

is achieved by constructing a model of normality and then

comparing any input data with that model. Many traditional

machine learning techniques have been implemented to detect

anomalies in data, such as Bayesian networks, rule-based

systems, clustering algorithms, statistical analysis, and Support

Vector Machines.

Anomaly detection techniques can be generally categorized

into three types in terms of the availability of data and

labels: fully supervised, semi-supervised and unsupervised.

In the first scenario, it is assumed that both normal and

anomalous data are available for training, and the problem

is simplified as a standard classification task. In the semi-

supervised scenario, only normal data is labeled and available

for training, and the goal is to classify new data as either

normal or anomalous. The unsupervised scenario or outlier

detection is similar to a clustering problem: no labels are

given for the training set, which could potentially contain

both normal and anomalous data. The goal is to identify the

normal cluster while leaving out the outliers. There are two key

research challenges associated with existing anomaly detection

approaches: (1) traditional algorithms often perform well on

low-dimensional instances but face difficulties when applied

to high-dimensional data such as images or speech; (2) many

approaches often rely on traditional supervised approaches and

manual engineering of features, while the topic has not been

fully explored yet using modern deep learning approaches.

In addition, well-labelled clean and anomalous samples are

limited or nonexistent.

Deep learning omits manual feature engineering and has

evolved into a common solution for handling many high-

dimensional machine learning tasks. Consequently, this paper

aims to investigate the use of deep learning techniques for im-

age anomaly detection. Variational autoencoders (VAE) have

achieved state-of-the-art performance in high-dimensional

generative modeling. In a VAE, two neural networks – the

encoder and the decoder – are pitted against each other. In

the process, the decoder learns to reconstruct samples from a

low-dimensional latent representation learned by an encoder

from a high-dimensional input.

In this paper, we propose a One-for-all Image Anomaly

Detection (OIAD) system based on disentangled learning. Our

key insight is that the impact of small perturbations on the

latent representation can be bounded for normal samples while
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anomaly images are usually outside such bounded intervals.

This is referred to as called structure consistency. A demon-

stration is given in Figure 2 and Section III.B.

Specifically, our algorithm uses only normal instances (also

containing suspicious samples) to train a VAE so as for

learning disentangled latent representations in an unsupervised

manner, where a change in one dimension corresponds to a

change in one factor of variation while being relatively invari-

ant to changes in other factors [6]. The structure consistency

is then used to determine whether an image is normal or

anomalous — that is, whether the reconstruction error based

similarity is changed much after small perturbations are added

to a given latent representation. If the structure consistency

is outside a given threshold interval derived from normal in-

stances, the sample is deemed anomalous. We implement this

idea of structure consistency and evaluate its performance in

anomaly detection. Our experiments with three datasets show

that our technique can achieve state-of-the-art performance on

standard image benchmark datasets and visual inspection of

the most anomalous samples reveals that our method does

certainly recognize anomalies.

In the remainder of this paper Sections II explains the

background, and Section III describes the system design and

our approach. Section IV describes our experimental results.

Section V discusses related work, and Section VI concludes

the work.

II. BACKGROUND

A. Autoencoders and Variational Autoencoder

Autoencoders (AEs) are common deep models in unsu-

pervised learning [6]. It aims to represent high-dimensional

data through the low-dimensional latent layer, a.k.a. bottleneck

vector or code. Architecturally, AEs consist of two parts,

the encoder and decoder. The encoder part takes the input

x ∈ Rd and maps it to z (the latent variable of the bottleneck

vector). The decoder tries to reconstruct the input data from

z. The training process of autoencoders is to minimize the

reconstruction error. Formally, we can define the encoder and

the decoder as transitions τ1 and τ2:

τ1(X) → Z

τ2(Z) → X̂

τ1, τ2 = argmin
τ1,τ2

∥∥∥X − X̂
∥∥∥
2

(1)

The VAEs model has the same structure as the AEs, but is

based on an assumption that the latent variables follow some

kind of distribution, such as Gaussian or uniform distribution.

It uses variational inference for the learning of the latent

variables. In VAEs the hypothesis is that the data is generated

by a directed graphical model p(x|z) and the encoder is to

learn an approximation qφ(z|x) to the posterior distribution

pθ(z|x). The VAE optimizes the variational lower bound:

L(θ, φ;x) = KL(qφ(z|x)||pθ(z))−Eqφ(z|x)[logpθ(x|z)] (2)

The left part is the regularization term to match the posterior

of z conditional on x, i.e., qφ(z|x), to a target distribution

pθ(z) by the KL divergence. The right part denotes the

reconstruction loss for a specific sample x. In a training batch,

the loss can be averaged as:

LV AE = Epdata(x)[L(θ, φ;x)]

= Epdata(x)[KL(qφ(z|x)||pθ(z))]−
Epdata(x)[Eqφ(z|x)[logpθ(x|z)]]

(3)

B. β-VAE and Disentanglement Learning

β-VAE is a modification of the VAE framework that in-

troduces an adjustable hyperparameter β to the original VAE

objective:

L = Eqφ(logpθ(x|z))− βDKL(qφ(z|x)||pθ(z)) (4)

Well chosen values of β (usually β > 1) result in more

disentangled latent representations z. When β = 1, the β-VAE

becomes equivalent to the original VAE framework. It was

suggested that the stronger pressure for the posterior qφ(z|x),
to match the factorized unit Gaussian prior p(z) introduced

by the β-VAE objective, puts extra constraints on the implicit

capacity of the latent bottleneck z [15]. Higher values of β
necessary to encourage disentangling often lead to a trade-

off between the fidelity of β-VAE reconstructions and the

disentangled nature of its latent code z (see Fig. 6 in [15]).

This is due to the loss of information as it passes through the

restricted capacity latent bottleneck z.

We assume that observations x(i) ∈ D; i = 1, cdots,N
are generated by combining K underlying factors s =
(s1, cdots, sK). These observations are modeled using a real-

valued latent/code vector z ∈ Rd, interpreted as the repre-

sentation of the data. The generative model is defined by the

standard Gaussian prior p(z) = N(0; I), intentionally chosen

to be a factorized distribution, and the decoder pθ(x|z) param-

eterized by a neural net. The variational posterior for an obser-

vation is qθ(z|x) =
∏d

j=1 N(zj |uj(x), σ
2
j (x)), with the mean

and variance produced by the encoder, also parameterized by

a neural net. The variational posterior can be considered as

the distribution of the representation corresponding to the data

point x. The distribution of representations for the entire data

set is then given by

q(z) = Epdata(x)[q(z|x)] = 1

N

N∑

i=1

q(z|x(i)) (5)

which is known as the marginal posterior or aggregate pos-

terior, where pdata is the empirical data distribution. A

disentangled representation would have each zj correspond to

precisely one underlying factor sk. The β−VAE objective

1

N

N∑

1

[Eq(z|x(i))[logp(x
(i)|z)]− βKL(q(z|x(i))||p(z))]

is a variational lower bound on Eq(z|x(i))[logp(x
(i))] for

β ≥ 1. Its first term can be interpreted as the negative

reconstruction error and the second term as the complexity



penalty that acts as a regulariser. We may further break down

this KL term as Epdata(x)[KL(q(z|x)||p(z))] = I(x, z) +
KL(q(z)||p(z)); where I(x, z) is the mutual information

between x and z under the joint distribution pdata(x)q(z|x).
Penalizing the KL(q(z)||p(z)) term pushes q(z) towards the

factorial prior p(z), encouraging independence in the dimen-

sions of z and thus disentangling. Penalizing I(x, z), on the

other hand, reduces the amount of information about x stored

in z, which can lead to poor reconstructions for high values

of β (Makhzani Frey, 2017). Thus making β larger than 1,

penalizing both terms more, leads to better disentanglement

but reduces reconstruction quality. When this reduction is

severe, there is insufficient information about the observation

in the latent, making it impossible to recover the true factors.

Therefore, there exists a value of β > 1 that gives the highest

disentanglement but results in a higher reconstruction error

than a VAE.

III. ALGORITHM

A. Overview

We propose One-for-all Image Anomaly Detection (OIAD),

after a VAE-based disentanglement learning model trained

on only normal instances has converged. The encoder has

mapped the high-dimensional training data to low-dimensional

and disentangled latent representation vector (a.k.a. codes).

Given a new sample x, small perturbation is added to selected

latent codes, so as to generate m morphs by reconstructing

m perturbed latent code vectors, called perturbation-based

reconstruction morphs (PR-morphs). If the autoencoder can

well estimate the distribution normal samples and the latent

codes are well-selected, then the average reconstruction losses

over the final set of morphs will assume low average values

for normal samples, and high values otherwise.
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Fig. 1. Scheme of OIAD.

We expect normal instances are resistant to such per-

turbation, while anomalies, by contrast, are sensitive to it.

Consequently, given a test sample x, if the divergence of

the average reconstruction losses evaluation on m PR-morphs,

named structure-consistency, is more than a threshold α, then

it can be inferred that x is anomalous. Our algorithm hinges on

this hypothesis, as illustrated in Figure 1. Two key challenges

need to be addressed by OIAD:

1) How to improve the disentanglement performance for

efficient PR-morph generation, in an interpretable manner?

2) How to improve the discrimination ability of the detector

to recognize anomalies?

To address these issues, two strategies are incorporated in

OIAD algorithm:

1) Representation Learning with improved disentangle-
ment: We first train a disentangle representation model,

Detector-VAE, enhanced from β-VAE [7], on a clean dataset

(containing some suspicious samples). The objective is to

make latent codes more disentangled so that they are easy

to be controlled. Such models consist of two components: an

encoder E : X → Z and a decoder D : Z → X ′, where X is

the input space and Z is the space of hidden representation.

The encoder can map high-dimensional input instance x to

disentangled low-dimensional latent codes z, i.e., one latent

code can only control one certain feature. The decoder is used

to reconstruct the input from the low-dimensional latent code

z. Consequently, it is feasible to select and manipulate a given

latent code that reveals a specific semantic feature, such as

thickness of a digit. The feasibility of feature manipulation

rests with the disentanglement. Therefore, strategies are used

to improve the disentanglement. Details are described in a later

section.

2) Detector with fine discrimination ability: Given a sam-

ple, we first vary a latent code i for n times to obtain m
morphs reconstructed by the decoder. We then record the

average reconstruction loss evaluation on these m morphs,

named structure-consistency. The structure-consistency is used

as a resistance indicator SC(i) for code i. We can change one

or k latent codes simultaneously and obtain a k-dimensional

resistance vector
−→
SC for each instance. We find the resistance

ability of normal instances is significantly better than that

of anomalous instances, bounded within an obvious interval,

as shown in Figure 2. Therefore, a k-dimensional threshold

configuration
−→
θr for all selected m latent codes can be decided

on the normal instance to distinguish normal and anomalous

instances. An instance that meets SC(i) > θ(i), ∀ k, will

be recognized as normal. Otherwise, it will be recognized as

anomalous. One obvious example is the digit ’1’, the structure

consistency is strong (i.e. the structure of the image is not

changed much when a specific feature, such as thickness, is

changed via manipulation of the relevant disentangled latent

code), compared with other classes of digits as anomalies.

B. Demonstration of structure-consistency

The structure-consistency on the handwritten digits of

MNIST [8] is shown in Figure 2, which is used to demonstrate

that the normal images are resistant to such perturbation added

to the latent representation (revealed by low reconstruction er-

ror). By contrast, anomalies are sensitive to such perturbation.

We consider a detector to distinguish ’7’ as the normal from

other classes of digits as the anomalous. A Detector-VAE is



trained on clean ’7’ images to effectively map instance x to

its corresponding latent codes z composed of 20 disentangled

latent codes. One specific latent code of z is selected to

conduct a set of small perturbations, which reveals the degree

of crook. The perturbed latent vector can be reconstructed

to x′ with the help of the decoder. Images of the first row

are PR-morphs of a clean ’7’ instance by changing only one

specific latent variable (fi) and corresponding structure con-

sistency evaluation. Images of the second row are anomalous

images and accordingly PR-morphs and structure consistency

evaluation. The structure consistency values of clean instances

are bound to obvious intervals, 0.4-0.6 for mean squared error

(MSE)-based evaluation, 15-19 for LOSS-based evaluation and

89-93 for SSIM-based evaluation, while structure consistency

values of anomalies are out of such intervals.

0.62/15.86/89.92
0.42/16.91/92.60
0.58/17.89/89.37
0.89/17.61/90.52
0.45/18.55/89.86
0.68/18.72/89.98
0.77/15.13/89.03

Structure 
Consistency
(MSE,LOSS,SSIM)Varying a specific latent code for 100 times on the each same sample

2.89/51.51/76.37
1.65/30.95/79.52
1.42/41.50/83.78
3.05/41.50/70.75
1.64/36.60/80.75
1.74/28.40/75.90
1.06/35.82/82.06
2.39/41.51/78.35
0.12/5.86/96.77

Fig. 2. Structure-consistency of MNIST.

C. Representation with improved disentanglement

In this section, we aim to achieve a disentangled rep-

resentation learning task in the unsupervised setting, with

no auxiliary information. VAE-based autoencoders and their

variations are commonly applied for disentanglement learning.

Specifically, the encoder E, parameterized by qφ(z|x), is

trained to convert high-dimensional data x into the latent

representation bottleneck vector z in the latent space that

follows a specific Gaussian distribution p(z) ∼ N(0, 1). The

decoder pθ(x|z) is trained to reconstruct the latent vector z to

x. The encoder and decoder are trained simultaneously based

on the negative reconstruction error and the regularization

term, i.e., Kullback-Leibler (KL) divergence between qφ(z|x)
and p(z). The regularization term is used to regularize the

distribution qφ(z|x) to be Gaussian distribution whose mean

μ and diagonal covariance
∑

are the output of the encoder. In

order to obtain good disentanglement in latent codes, we apply

two strategies: improving the inner independence of latent

codes and adopting complex prior of latent codes. Specifically,

Total Correlation (TC) [9] is used to encourage independence

in the latent vector z, as given in Equation 2.

TC(z) = KL(q(z)||q̄(z)) = Eq(z)[log
q(z)

q̄(z)
] (6)

As TC is hard to obtain, the approximate tricks used in [10]

is applied to estimate TC. Specifically, a discriminator Dtc
is applied to classify between samples from q(z) and q̄(z).
Thus learning to approximate the density ratio is needed for

estimating TC [10]. Dtc, parameterized by υ, is trained with

other components jointly. Thus, the TC term is replaced by

the discriminator-based approximation as follows:

TC(z) ≈ Eq(z)[log
D(z)

1−D(z)
] (7)

For most existing VAE framework, a standard Gaussian is

used as prior for the latent factor, which is suited for modeling

of nuisance factors. However, it is demonstrated as both

suboptimal and detrimental to performance. Therefore, we ad-

ditionally apply using long-tail distributions to model relevant

factors, as the disentangled latent variables responsible for

major sources of variability. Specifically, the VAE is extended

to a hierarchical Bayesian model by introducing hyper-priors

on the variances of Gaussian latent priors, while maintaining

tractable learning and inference of the traditional VAEs [11].

For relevant factors, it is necessary to have p(zj) different

from N(0, 1). We adopt the complex prior that relaxes the

fixed, identical variance assumption for priors p(zj), defined

as follows:

p(z|β) =
d∏

j=1

p(zj |βj) =

d∏

j=1

N(zj ; 0, β
−1
j ) (8)

Here β > 0 are the precision parameters to be learned from

data. We expect the learned βj to be close to 1 for relevant la-

tent code j. The objective of Detector-VAE is augmented with

a TC [9] term to encourage independence in the latent factor

distribution and a regularizer (β−1
j − 1)2 to avoid redundancy

in the learned relevant variables, defined as follows:

Eqφ(z|x(i))[logpθ(x
(i)|z)+

d∑

1

Epd(x)[KL(qφ(z|x(i))||N(zj ; 0, β
−1
j ))]

+γLTC + η(β−1
j − 1)2

(9)

Note that this is also a lower bound on the marginal log

likelihood Ep(x)[logp(x)]. The first part reveals the recon-

struction error, denoted by LR, evaluating whether the latent

bottleneck vector z is informative enough to recover the

original instance. LR can be defined as the l2 loss between the

original instance and the reconstructed instance. The second

part is a regularization term, denoted by LKL, to push qφ(z|x)
to match the prior distribution p(z). The third part is the TC

term, denoted by LTC , to measure the dependence for multiple

random variables. The last one is the regularizer. The trade-off

parameter η is a proxy to control the cardinality of relevant

factors; small η encourages more relevant factors.

The parameter φ of encoder qφ(z|x) is then trained by LKL,

LR and LTC in terms of −∇φ(LKL + LR + γLTC). The

parameter θ of decoder is updated in terms of −∇θ(LR).
The parameter υ of TC-discriminator is updated in terms of



−∇υ(LT ), i.e. −∇υ
1

2|B| [
∑

i∈B log(Dυ(z
(i))+

∑
i∈B′ log(1−

Dυ(permutedim(z′(i)))]. Here, the permutedim function is to

random permutate on a sample in the batch for each dimension

of its z, similar with [10].

D. Detector with fine discrimination ability

The indicator for anomaly detection should easily dif-

ferentiate normal and anomalous instances, be feasible and

stable to conduct. The discrimination ability of the detector

depends on the naturality of the morphs and the accuracy

of reconstruction error evaluation. Consequently, we apply

two strategies: natural morph generation and feature-wise

reconstruction evaluation.

1) Natural morph generation: The initial step is to find

the normal value range of each code on the normal validation

set, then the morphs are produced via manipulating each code

within its normal value range. As the latent codes are dis-

entangled, independent (all from N(0, 1)) and have semantic

meaning, some latent codes that are well distinguished will be

selected and their normal ranges can be empirically decided

in a human interpretable manner on a validation set. To obtain

the morphs by feature manipulation, we can incrementally

add/reduce a fixed value on the original learned latent codes

within the normal range. However, the modified latent vector

maybe not be on the manifold of normal instances. If that

happens, an unnatural instance will be reconstructed by the

decoder. Hence, we conduct an iterative stochastic search to

make the morphs on the manifold by adding natural noise.

Specifically, we increase the search range by Δr within which

the perturbation for a certain latent code Δzi is randomly

sampled (B samples for each iteration) until we produce

N natural latent code with the value in the normal value

range to reconstruct N natural morphs. We then evaluate the

structure-consistency for this latent code based on the average

reconstruction error. Given a targeted classifier, we decide

a structure-consistency threshold for each latent code on a

validation set containing only normal instances. The threshold

of resistance is decided for each factor using the α-fractile and

1− α-fractile points on the validation set.

2) Feature-wise structured reconstruction evaluation: It is

always hard to decide a well-grained threshold using the pixel-

wise reconstruction error, as too fine-grained threshold leads

to high false-negative error (normal samples to be detected as

anomalies) and too coarse-grained threshold causes the high

true-negative error (anomalies to be detected as the normal).

Instead of the pixel-wise squared error, we use a higher-

level representation of the images, a feature-wise structured

similarity (SSIM), to measure the similarity. Inspired by [12],

[13], the feature-wise metric derived from the properties of

images learned by the discriminator, a.k.a. style error or

content error, is used as a more abstract reconstruction error

to better measure the similarity between the original instance

and reconstructed ones, aiming to improve the utility of

reconstructed instance. That is, we can use learned feature

representations in the discriminator of a pre-trained GAN

as the basis for the VAE reconstruction objective or we

can train a VAE-GAN structure [13] synchronously. In this

work, we apply three different structure consistency evaluation

metrics: mean squared error (MSE)-based, Loss-based and

SSIM-based to measure the difference between original sample

and its reconstructed sample via Detector-VAE, respectively.

The loss here combines the reconstruction error and the KL

divergence values together. The smaller MSE and Loss-based

evaluations are, the better the reconstruction will be, SSIM-

based evaluation in contrast.

IV. EXPERIMENTS

In this section, we demonstrate the efficacy of OIAD for

image anomaly detection on three image datasets, compared

to competing methods. We show experimental evidence that

OIAD outperforms non-parametric as well as available deep

learning approaches on controlled experiments where ground

truth information is available. Additionally, OIAD may be

implemented on large, unlabeled data to detect anomalous

samples that coincide with what humans would deem unusual.

A. Datasets

The performance of OIAD is evaluated on three popular

image datasets. (1) MNIST [8] consists of 28× 28 grayscale

handwritten digit images from 10 classes, i.e., digit 0-9 and

has a training set of 55000 instances and a test set of

10000 instances. (2) Fashion MNIST (FMNIST) dataset [14],

consists of a training set of 60000 examples and a test set of

10000 examples. Each example is a 28× 28 grayscale image,

associated with a label from 10 classes. (3) CIFAR-10 [15]

consists of 60000 color images of size 32×32, divided into 10

classes with 6000 images per class. There are 50000 training

images and 10000 test images.

B. Methods, competitor and setups

For MNIST, FMNIST and CIFAR-10, 70% normal exam-

ples from a given class are chosen for training class-unique

Detector-VAE. In the ground truth information available case,

we randomly select 20% normal images (named CLE, labeled

0) and the corresponding same number of anomalous samples

(named ANO, labeled 1, considering samples from other

classes as anomalies), respectively. These datasets are used

to test the efficiency of the OIAD. An additional 10% normal

instances are chosen as the validation data (named VAL) to

decide thresholds. In the unlabeled case, we randomly select

50% of a given class image (named TEST) to train Detector

and use the rest to detect anomalous samples and then to

be confirmed by humans. We normalized the data between

0 and 1 instead of [0, 255] for simplicity. Table I shows the

architectures of the Detector-VAE for MNIST, FMNIST, and

CIFAR-10.

We select 20-dimensional latent codes to manipulate

MNIST, FMNIST, and 40-dimensional for CIFAR-10. We

generate 100 morphs for each latent factor of instance by

varying each selected latent code for 100 times within ac-

cording normal value range. The morphs were then evaluated

the average reconstruction error compared with their original



samples. For MNIST, FMNIST and CIFAR-10, we decided

the resistance threshold vector, respectively, using the 40%-

fractile and the 1 − 40%-fractile point on the validation

set VAL. This means each detector mistakenly rejects no

more than 40% normal instances in the validation set, i.e.,

α = 40%. Other default hyper-parameters are given as follows:

γ = 40, λlkd = 0.1, η = 0.1.

TABLE I
THE NETWORK STRUCTURES

Encoder Decoder TC-Discriminator
Conv.ReLU 4*4*32 stride 2 Dense.ReLU 128/512 6*Linear.ReLU 1000
Conv.ReLU 4*4*32 stride 2 Dense.ReLU 4*4*64 Linear.ReLU 2
Conv.ReLU 4*4*64 stride 2 Conv.ReLU 4*4*64 stride 2
Conv.ReLU 4*4*64 stride 2 Conv.ReLU 4*4*32 stride 2

Dense 128 Conv.ReLU 4*4*32 stride 2
Conv.ReLU 4*4*1stride 2

We tested the performance of OIAD against three commonly

used non-parametric anomaly detection approaches: 1) KDE

with a Gaussian kernel [16]. 2) One-class support vector

machine (OC-SVM) [17] with a Gaussian kernel (ν = 0.1).

3) Gaussian mixture model (GMM). We allowed the num-

ber of components to vary over {2, 3, · · · , 20} and selected

suitable hyper-parameters by evaluating the Bayesian infor-

mation criterion. Note that feature dimensionality is reduced

before conducting anomaly detection via PCA [18], varying

the dimensionality over {20, 40, · · · , 100}. At last, the best

performance on a small holdout set is used for evaluation. The

experimental setup of competing methods generally follows

OC-SVMs [17]. We also report the performance of deep

anomaly detection approaches: ordinary VAEs and DCAEs

based detectors. For the VAE and DCAE, we scored according

to reconstruction losses, interpreting a high loss as indicative

of a new sample differing from samples seen during training.

In both DCAEs and VAEs, we use a convolutional architecture

similar to that of DCGAN [19].

C. Evaluation on labeled image

We first evaluate the performance of the anomaly detec-

tion for varying structure-consistency thresholds, i.e. α. The

Detector-VAE is trained on data from a single class yc from

MNIST. Then we evaluate the performance of OIAD on 5000

items randomly selected from the test set, which contains

samples from all classes, considering y 	= yc as anomalous. We

expect a high average reconstruction error allocated to images

from anomalous classes and a low score to the normal class.

Here, we test on both CLE and ANO datasets, respectively.

The correct decision is that anomalies are recognized as 1

while 0 for normal ones. The anomaly detection accuracy

(legend as TP) is the proportion of anomaly instances in

ANO to be recognized as an anomaly, i.e. True-Positive. The

normal detection accuracy (legend as TN) is the proportion of

normal instances in CLE to be recognized as normal, i.e. True-

Negative. The overall detection accuracy is the proportion

of all correctly detected instances in both ANO and CLE.

The overall results are shown in Figure 3. The first row

of Figure 3 is the result of training an anomaly detector

for digit 1 of MNIST. When varying the threshold, the TP

increases while TN decreases. We observe that even for a small

resistance threshold, e.g. α = 7% for all MSE-based, LOSS-

based and SSIM-based structure consistency evaluation, it

can detect 100% anomalies. SSIM-based structure consistency

outperforms other metrics, which is also illustrated by the first

subfigure in Figure 4.

Fig. 3. Detection performance with varying resistance thresholds on labeled
images.

Fig. 4. Detection performance with varying reconstructure error metrics and
size of validation datasets.



The second row of Figure 3 is the result of training an

anomaly detector for digit 7 of MNIST. When varying the

threshold, the TP increases while TN decreases as well. Due to

the diversity of the digit 7 writing styles, the TP is not as high

as the first detector. A high TP rate is achieved at the expense

of reducing TN. However, we observe that it is feasible to

find a small resistance threshold, e.g. α = 13% for SSIM-

based structure consistency evaluation, it can detect more than

90% anomalies while maintaining 70% TN rate. Overall, the

performance of SSIM-based structure consistency outperforms

other metrics. The last row of Figure 3 demonstrates the per-

formance of OIAD on FMNIST and CIFAR-10. On FMNIST,

we train a trousers-anomaly detector, considering other types

of icons as anomalies. On CIFAR-10, we train a dog-anomaly

detector and cat-anomaly detector respectively, considering

other types of images as anomalies. These aforementioned

findings are confirmed again. It is interesting to find that the

distinguishability of the OIAD is better on the more complex

image datasets. For instance, a small resistance threshold, e.g.

α = 11% for SSIM-based structure consistency evaluation,

can detect more than 90% anomalies while maintaining 72%
TN rate. Additionally, we also demonstrate the effect of the

size of the dataset to decide the threshold. As shown in the

second subfigure in Figure 4, the relatively small size of the

dataset can provide good thresholds that can achieve a high

TP rate.

In Table II, we report the AUC-ROC on each class-unique

anomaly detection scenarios. In these controlled experiments

we highlight the ability of OIAD to outperform traditional

methods at the task of detecting anomalies in a collection of

high-dimensional image samples. Overall, OIAD shows the

best performance compared to all comparisons. Note that we

achieved such high accuracy without any anomalies required

and only based on threshold vectors that are easy to be decided

experimentally.

TABLE II
AUC-ROC OF ANOMALY DETECTION ON MNIST/CIFAR-10

yc KDE OC-SVM GMM VAE DCAE OIAD

MNIST
1 0.999 1 0.999 0.998 0.992 1
7 0.934 0.952 0.937 0.896 0.941 0.966
Average 0.966 0.975 0.968 0.947 0.966 0.983

CIFAR
cat 0.521 0.523 0.446 0.666 0.546 0.814
dog 0.44 0.516 0.504 0.494 0.642 0.849
Average 0.481 0.512 0.475 0.58 0.594 0.832

D. Evaluation on unlabeled image

Since a high TP rate is achieved at the expense of reducing

the TN, in this section, we will investigate these samples

labeled as normal but to be detected as anomalies. We also

demonstrate the performance of OIAD in a practical setting

where no ground truth information is available. For this, we

first trained a Detector-VAE on a class-specific dataset that is

clean but possibly contains anomalies. We then used the OIAD

to find the most anomalous images within the corresponding

validation sets containing 1000 images. The thresholds are

decided by using the α-fractile and 1 − α-fractile points.

We consider three scenarios: digit 7 anomaly detector on

‘7’ instances only of MNIST, trousers anomaly detector on

trousers only of FMNIST and dog/cat anomaly detector on

dog/cat only of CIFAR-10. The images that are outside the

decided intervals on three scenarios are shown in Figures

5, 6 and 7, respectively. Among the images recognized as

anomalous in these three scenarios, approximately 100% of

them are deemed to be unusual by humans. It shows that our

method has the ability to discern the normal from the unusual

samples. We infer that OIAD is able to incorporate many

significant properties of an image. Samples that are assigned

good structure consistency scores are in line with a classes’

‘Ideal-Form’.

Fig. 5. The anomalous digit ’7’ recognized by OIAD in the unlabeled
scenario for MNIST.

Fig. 6. The anomalous trousers recognized by OIAD in the unlabeled scenario
for FMNIST.

Fig. 7. The anomalous dogs/cats recognized by OIAD in the unlabeled
scenario for CIFAR-10.

V. RELATED WORK

Traditional non-parametric anomaly detection approaches

include kernel density estimation (KDE) [16], mixtures of

Gaussians for active learning of anomalies [20], hidden

Markov models for registering network attacks [21]. However,

non-parametric anomaly approaches suffer from the curse of

dimensionality and are thus commonly insufficient for high-

dimensional data. In addition, they are often fully-supervised,



where a pre-processing step is needed to make the dataset

balanced before applying any classification algorithm
For semi-supervised or unsupervised methods, most of the

existing proposed approaches currently rely either on deep

autoencoders or generative models. Despite autoencoders have

been primarily advanced for dimensionality reduction, they

can be improved to anomaly detection problems. When an

autoencoder is trained on normal instances, it will be trained

to represent the main features in its latent space of normal

instances. When an anomalous input is fed in the network, it is

assumed it cannot be properly represented in the latent space,

and thus the decoder reconstruction will be poor [22], [23].

The other main approach is based on generative models, e.g.

generative adversarial networks (GAN). When GAN is trained

on normal data, the generator learns a “normality model” much

like autoencoders do. If the generator is inverted, a comparison

on the latent representations of normal and anomalous data can

be used to detect anomalies [4], [24]–[26].
The main drawbacks of the existing deep learning anomaly

detection are that (1) it is hard to estimate the data distribution

in a tractable way; (2) well-labeled samples are required to

train the anomaly detector; (3) the granularity of reconstruction

error is hard to decide. Therefore, to the best of our knowledge,

this is the first use of disentanglement learning and structure

consistency for anomaly detection tasks. We believe that the

ability of disentangled latent codes to create better fine gran-

ularity of reconstruction error evaluation can boost anomaly

detection.

VI. CONCLUSION

In this work, we proposed an OIAD technique based on

disentanglement learning. The network is trained once on

normal samples only without the requirement of anomalies,

even the clean samples contain suspicious elements. Improving

the disentanglement performance and feature-wise reconstruc-

tion evaluation are key ingredients to enhance the ability of

anomaly detection of OIAD. We demonstrate that perturbing

the disentangled latent space of the images can be leveraged

for anomaly detection tasks. Experimental results show the

OIAD has state-of-the-art performance, without any anomalies

required and only based on threshold vectors that are easy to be

decided experimentally. As future work, we plan to investigate

the use of OIAD for anomaly detection on text and time-series

data.
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