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Abstract—Healthcare predictions aim at predicting diseases of
the next visit to hospital with historical Electronic Health Records
(EHR), which is a key research field in personalized healthcare.
Previous research has demonstrated that learning meaningful
medical ontology representations within the healthcare prediction
model can alleviate the data insufficiency problem and thus
is beneficial to this task. There are two main pathways of
learning medical ontology representations. The first is through
pre-defined knowledge graph such as the ICD tree, and the
second is through the co-occurrence of diseases within each visit.
Majority of existing works formalize their model under only one
pathway, and fail to utilize the mutual benefits between them.
To exploit these benefits, we propose JMRL, an end-to-end and
accurate model for healthcare predictions with Joint Medical
ontology Representation Learning. JMRL not only utilizes the
joint information from both knowledge graph and co-occurrence
statistics, but also make use of the mutual benefits between
them in an advanced way with two explicit feedback strategies.
Experimental results on the MIMIC-III dataset demonstrate
the superiority of our model over all existing state-of-the-art
approaches.

Index Terms—medical ontology representation, healthcare pre-
dictions, joint learning

I. INTRODUCTION

Electronic Health Records (EHR) are temporal sequential
data of patient medical visits, consisting of diagnosis codes,
medications and lab examination results. With the widespread
adoption of EHR, there is a rapid growth in the volume and
diversity of healthcare data, which motivates the research in
applying clinical decision models to increase the quality of
healthcare services [1]. Among all the tasks in the healthcare
field, predicting patients’ next illness with previous records is
still a challenging one, and has become a popular research
field for decades [2], [3].

The task of healthcare predictions is to predict a patient’s
next diagnosis codes with diagnosis codes of previous visits
to hospital. The temporal feature of this task makes Recurrent
Neural Network (RNN) a natural choice to model the sequen-
tial relations among different visits. For instance, Dipole [3]
applies bidirectional RNN with different attention strategies.
RETAIN [4] utilizes a reverse time attention mechanism to
calculate the importance of each diagnosis code that has
appeared in former visits for current prediction.

One key problem of this task is how to model the highly
discrete diagnosis codes, which are the input to the model.
Besides, a well-learned representation of medical ontologies
will greatly benefit downstream tasks such as automatic di-
agnosis [5], mortality prediction [6] and healthcare question
answering [7].

Traditional methods use one-hot coding [8], which is highly
sparse and requires huge amounts of data for model training,
leading to data insufficiency problems. Human designed fea-
ture representations are adopted in [9], but this method suffers
from scalability problems. Med2Vec [2] is the first to utilize
a code embedding matrix and embeds each medical code to
a non-negative real-valued high-dimensional vector, but this
method still regards each medical code as totally independent.
To utilize the intrinsic relationship between medical codes,
GRAM [10] introduces the hierarchical structure of the ICD-
9 tree as an external knowledge graph, and applies graph-based
attention mechanism to learn robust medical code embeddings
with ancestors. KAME [11] extends GRAM [10] by directly
exploiting medical knowledge in the whole prediction process.
MMORE [12] enables each non-leaf medical code in the ICD-
9 tree to possess multiple ontological representations, which
adds to the diversity of code expressiveness.

In addition to the utilization of external knowledge graph
such as the ICD-9 tree, the co-occurrence statistics of medical
codes are also explored to mine the relationship between med-
ical codes. The theoretical foundation behind co-occurrence
statistics is that medical codes that often co-occur tend to be
close in the embedding space. Skip-gram [13] is adopted by
[2] to utilize the co-occurrence information within each visit
to hospital. CBOW [13] and time-aware attention mechanism
are employed in [14], where each medical code is assigned a
weight distribution within a time period.

Although previous works have made great contributions to
medical ontology representation learning, they focus solely on
either knowledge graph or co-occurrence statistics, or model
them jointly in an inefficient or inappropriate manner. GRAM
[10] utilizes GloVe [15] to initialize the embedding matrix for
graph-based attention. Med2Vec [2] imposes topological and
co-occurring regulations on the same vector space, which is
highly probable to raise conflicts during training.

To solve these problems and explore the mutual benefits be-
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tween knowledge graph and co-occurrence statistics, we pro-
pose JMRL, an end-to-end and accurate model for healthcare
predictions with Joint Medical ontology Representation Learn-
ing. First, our model adopts two separate embedding spaces for
topological feature and co-occurrence feature, which prevents
the potential conflicts during the training process. Second, we
incorporate our model with two explicit feedback strategies
between the two feature spaces to bond them together. As a
result of the feedback strategies, the topological embedding
space can benefit from the improvement of the co-occurrence
embedding space and vice versa. In addition, our method
adopts an attentive Gated Recurrent Unit (GRU) to better
aggregate the information from previous visits and give more
accurate predictions.

We evaluate our model on the public available MIMIC-III
[16] dataset, and compare it with a number of competitive
baselines. Experimental results indicate that our method can
not only increase the prediction accuracy, but also improve the
quality of medical ontology representations. We also conduct
an ablation analysis to further verify the internal mechanisms
of our proposed model.

II. PROPOSED MODEL

In this section, we first introduce and give the definitions
related to EHR data and medical ontologies. Then, we present
the detailed descriptions of our proposed model JMRL, includ-
ing co-occurrence embedding, knowledge graph embedding
and attentive prediction module. The two explicit feedback
strategies are explained in knowledge graph embedding and
co-occurrence embedding separately. The initialization of em-
bedding matrices is introduced in the end. The overall structure
of JMRL is shown in Fig. 1.

A. Basic Notations

We denote the entire set of diagnosis codes from the EHR
dataset as c1, c2, · · · , c|C| ∈ C, and |C| is the total number
of unique medical codes. In our experiment, we only consider
diagnosis codes as medical codes for consistence with previous
works such as [2], [10] and [11]. The ICD-9 tree, which is a
directed acyclic graph (DAG), contains the hierarchy of var-
ious medical concepts with the parent-child relationship, and
the specificity of medical concepts increases with depth. Only
the leaf node in the ICD-9 tree represents a medical code in C.
We define the non-leaf nodes as {c|C|+1, c|C|+2, · · · , c|C|+|C′ |},
where |C′ | is the number of non-leaf nodes in the ICD-9 tree.

The EHR data is a temporal sequence of patients’ visits
to hospital. For the p-th patient with T (p) visits to hospital,
his/her EHR can be represented by a sequence of visits
P1, P2, · · · , PT (p) . Each visit Pt is a subset of medical code set
C, and it can be represented as a binary vector xt ∈ {0, 1}|C|,
where the i-th element is 1 only if Pt contains the medical
code ci.

Here we define two basic embedding matrices E ∈
R

(
|C|+|C

′
|
)
×kE and V ∈ R

(
|C|+|C

′
|
)
×kV to be the medical

ontology representations to be learned from the DAG and co-
occurrence statistics respectively, where kV and kE are the

dimensions of embeddings. We use ei and vi to represent the
basic knowledge graph embedding and basic co-occurrence
embedding of medical code ci.

For simplicity, we describe our model in the following parts
for one patient with T visits to hospital.

B. Co-occurrence Embedding

The foundation of training co-occurrence embedding is
similar to learning word embeddings, where frequently co-
occurring medical codes should be close in the embedding
space. Previous methods simply optimize on each pair of
medical codes that co-occur within the same visit. They fail
to notice a fact that it is normal for people to carry different
diseases at the same time though they are not closely related
from the medical view, e.g. bronchitis and diarrhea. As a result,
simply optimizing over all pairs of medical codes within the
same visit is not accurate.

To solve this problem, we improve upon previous works by
adding weights to different pairs of medical codes within the
same visit. This modification also contains the first feedback
strategy in our model.

The co-occurrence loss for training is as follows. To in-
troduce the feedback from knowledge graph embedding
matrix E, we use the knowledge graph embedding ei and ej
to calculate the weight of code pair (ci, cj).

Lco =
1

T

T∑
t=1

∑
i:ci∈Pt

∑
j:cj∈Pt,j 6=i

βij · (1− p(ci|cj))

where βij = σ
(
eTi ej

)
, p(ci|cj) = σ

(
vTi vj

) (1)

where σ denotes sigmoid activation function. The weight
βij depicts the degree of relevance between medical code ci
and cj , and it bonds the two embedding spaces together. If the
knowledge graph embedding is optimized during the training
process, it will guide the co-occurrence loss Lco to be more
reasonable and accurate.

The co-occurrence loss Lco only considers leaf nodes in the
DAG. In order to propagate the information from leaf nodes
to non-leaf nodes, we utilize the parent-children relationship
in the DAG with the self-attention mechanism [18].

For each non-leaf node ci, its final co-occurrence repre-
sentation v

′

i is the weighted summation of its children and
the feature vector of itself vj . The propagation process is
conducted from nodes with larger depth to nodes with smaller
depth to ensure proper calculation order:

v
′

i =
∑

j∈N (i)

γjvj + vi

where γj = Softmax
(
(vjW

Q)(vjW
K)T√

dk

)
(vjW

V )

(2)

where WK ∈ RkV ×dk ,WQ ∈ RkV ×dk , WV ∈ RkV ×kV

are parameter matrices and dk is the dimension of queries and
keys. N (i) represents the set of neighboring nodes of node
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Fig. 1. Overview of the proposed JMRL model. The left ICD-9 tree indicates knowledge-graph embedding, and the right part represents co-occurrence
embedding. The brown dotted line on the top represents the #1 feedback from co-occurrence embedding to knowledge graph embedding, and the red dotted
line on the bottom represents the #2 feedback from knowledge graph embedding to co-occurrence embedding. The red node in the knowledge graph embedding
stands for the node that graph attention networks are working on. It is noticeable that though we omit many nodes for simplicity, the ICD-9 tree is not a
binary tree. The black dashed line in the ICD-9 tree indicates the relationship extracted from KnowLife [17].

i. After this process, we get the final representation of co-

occurrence feature V
′ ∈ R

(
|C|+|C

′
|
)
×kV .

C. Knowledge Graph Embedding

Previous works generally utilize the parent-children rela-
tionship and use the basic embeddings of ancestor nodes to
generate a robust representation of the leaf node, which stands
for a medical code. However, considering only the parent-
children relationship will ignore the potential connections with
adjacent non-ancestor nodes. In our model, we use Graph
Neural Networks (GNN) to better capture the relationships
among nodes in the knowledge graph.

We formalize the final representation of nodes’ topological
feature as the output of multiple Graph Attention (GAT) [19]
layers. GAT can integrate the information from neighboring
nodes with respect to their attention weights. We make use
of this property and modify GAT’s structure to establish the
second feedback strategy.

As we adopt multiple GAT layers, we demonstrate the
calculation process at an arbitrary layer l for simplicity. For
node ci, we first calculate its attention weight with neighboring
node cj ∈ N (i) as follows:

α
(l)
ij =

exp
(
e
(l)
ij

)
∑

k∈N (i) exp
(
e
(l)
ik

) (3)

where e
(l)
ij is the pair-wise un-normalized attention score

between node ci and cj . To introduce the feedback from co-
occurrence embedding matrix V , we compute e(l)ij via the
following feed-forward network:

e
(l)
ij = LeakyReLU

(
W (l)

e

(
z
(l)
i ||z

(l)
j

))
where z(l)k =Wz

(
h
(l)
k ||v

′

k

)
k ∈ {i, j}

(4)

where We and Wz are parameter matrices, || denotes
concatenation, v

′

k is the final representation of co-occurrence
embedding for node ck, and h(l)i is the output vector for node
ci at layer l− 1. We define h(1)i = ei. The co-occurrence em-
bedding v

′

k is fed into the knowledge graph embedding as part
of the input, which bonds the two embedding spaces together.
If the co-occurrence embedding matrix V is optimized during
the training process, it will guide the GAT layer to assign
attention weights more precisely and efficiently.

Next, we aggregate the information from neighboring nodes
to get layer l’s output h(l+1)

i . We add shortcut connections
between adjacent GAT layers to prevent the information
smoothing problem:

h
(l+1)
i =

∑
j∈Ni

α
(l)
ij h

(l)
j + h

(l)
i (5)

After multiple GAT layers, we get the final topological



representations E
′ ∈ R

(
|C|+|C

′
|
)
×kE .

D. Attentive Prediction Module

After we get E
′

and V
′
, the final representations of both

knowledge graph embedding and co-occurrence embedding,
we concatenate them row-wisely as the final representations of
medical ontologies, i.e., S = E

′ ||V ′
. Given a patient’s visits

to hospital P1, P2, · · · , PT with their vector representations
x1, x2, · · · , xT , we first transfer them with the final medical
ontologies representations, i.e. at = STxt.

Next, we apply a GRU layer to mine the temporal informa-
tion between different visits:

h1, h2, · · · , hT = GRU(a1, a2, · · · , aT ) (6)

The dimension of the hidden state hi is dh. When predicting
the diagnosis codes of the tth visit with the previous (t − 1)
visits, we aggregate the previous information attentively as
follows:

at =

t−1∑
i=1

ρi ∗ hi

where ρi =
exp (Wahi)∑t−1
j=1 exp (Wahj)

(7)

where Wa is a multi-layer perceptron. The final prediction
ŷt is calculated via another linear layer:

ŷt = Sigmoid (Woat + bo) (8)

where Wo ∈ R|C|×dh and bias bo ∈ R|C| are learnable
parameters.

We optimize over predicting all visits except the first one,
and the objective function for optimization is as follows:

L = Lpre + λLco where

Lpre =
−1
T − 1

T∑
t=2

(
yTt log(ŷt) + (1− yt)T log(1− ŷt)

) (9)

where λ ∈ (0, 1) is a hyper-parameter for adjustment during
experiments. The whole training procedure is described in
Algorithm 1. For simplicity, we consider only one patient in
a mini-batch of training data in the algorithm.

E. Embedding Initialization

A proper initialization of the embedding matrices E and V
can greatly benefit the training process. For basic knowledge
graph embedding matrix E, we use the average vector of
pretrained fastText [20] embeddings of each medical code’s
description from the CCS-multi-level diagnosis hierarchy1 to
initialize it. For initializing the basic co-occurrence embedding
matrix V , we follow the original settings described in [10] with
GloVe.

Algorithm 1 JMRL Training Algorithm
Input: Training dataset with N patients, and each patient

with Ti visits to hospital. The DAG structure of ICD-9
hierarchy (for GAT layer).

1: Initialize basic knowledge graph embedding E, basic co-
occurrence embedding V and other model parameters.

2: repeat
3: X ← random patient from the training dataset with T

visits
4: Calculate the co-occurrence loss Lco with Eq. (1)
5: Calculate the final representations of co-occurrence

feature V
′

with Eq. (2)
6: Calculate the final representations of topological feature

E
′

with Eq. (3)-(5)
7: Initialize the total prediction loss Lpre = 0
8: for visit Vt, t ∈ [1, T − 1] in X do
9: Calculate prediction ŷt+1 with E

′
and V

′
in Attentive

Prediction Module with Eq. (6)-(8)
10: Calculate prediction loss for Vt+1 and add it to Lpre

11: end for
12: Calculate the total loss L with co-occurrence loss Lco

and next illness prediction loss Lpre

13: Update model parameters with loss L and optimizer
14: until model convergence

III. EXPERIMENTS

In this section, we first introduce the MIMIC-III [16] dataset
that we conduct experiments on, including dataset statistics
and data pre-processing methods. Then, we compare our
proposed model JMRL with several state-of-the-art baselines
in terms of the prediction accuracy for diagnosis prediction of
the next visit to hospital. The ability of model to handle data
insufficiency situations are also explored. Besides, we conduct
ablation analysis with several modifications to our model
to verify the effects of the two explicit feedback strategies
designed in our model.

A. Dataset and Pre-processing
MIMIC-III [16] is a large and publicly-available dataset

containing more than 60, 000 de-identified intensive care unit
admission records. In our experiment, we aim to learn mean-
ingful representations of diagnosis codes and improve the
accuracy of healthcare prediction simultaneously.

During the data pre-processing procedure, we filter out
patients with less than two visits to the hospital. After data
pre-processing, we extract 7537 patients with an average of
2.65 visits to hospital. The average number of diagnosis codes
in each visit is 12.90. We randomly divide the dataset into the
training, validation and test dataset by a ratio of 0.8:0.1:0.1,
and use the validation dataset to tune the hyper-parameters.

B. Baseline Approaches
To validate the predictive performance of our proposed

model, we compare it with the following models:

1https://bioportal.bioontology.org/ontologies/ICD9CM



TABLE I
RESULTS OF VISIT-LEVEL PRECISION@K WITH TWO DIFFERENT VALUES OF k AND VARYING SIZE OF THE TRAINING DATASET FROM 20% TO 100%. THE

RATIO INDICATES THE SIZE OF THE UTILIZED TRAINING DATASET.

Model k=10 k=20
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

RETAIN [4] 0.5834 0.6017 0.6342 0.6591 0.6702 0.6012 0.6883 0.7221 0.7402 0.7526
Dipole [3] 0.5809 0.6102 0.6219 0.6614 0.6764 0.5876 0.6988 0.7337 0.7347 0.7507

GRAM [10] 0.6271 0.6674 0.6902 0.6951 0.7078 0.7051 0.7449 0.7617 0.7662 0.7716
KAME [11] 0.6113 0.6772 0.6941 0.7001 0.7119 0.6882 0.7329 0.7631 0.7704 0.7731

MMORE [12] 0.6205 0.6613 0.7011 0.7052 0.7093 0.6957 0.7413 0.7682 0.7704 0.7721
JMRL 0.6362 0.6855 0.7118 0.7174 0.7225 0.7182 0.7591 0.7709 0.7816 0.7839

JMRL+ 0.6481 0.6903 0.7095 0.7181 0.7233 0.7229 0.7633 0.7717 0.7799 0.7821

RETAIN [4]. RETAIN is an interpretable prediction model
with a two-level attention mechanism.

Dipole [3]. Dipole utilizes bidirectional RNN to predict next
illness with three different attention mechanisms.

GRAM [10]. GRAM is the first model to utilize the hierar-
chy of external medical knowledge, and it employs graph-
based attention to learn robust representations of medical
codes.

KAME [11]. KAME extends GRAM by directly exploiting
medical knowledge in the whole prediction process. The direct
application of ancestor nodes can increase prediction accuracy
and interpretability.

MMORE [12]. MMORE extends GRAM by allowing non-
leaf nodes in the DAG to possess multiple semantic meanings,
which enables nodes with the same ancestor to possess rela-
tively different meanings.

To verify the effect of initialization, we test our model both
with and without initialization. We use JMRL to denote our
model with no initialization and JMRL+ to denote our model
with initialization.

C. Experiment Settings

We adopt the CCS-multi-level diagnosis hierarchy1 to build
the knowledge graph. In order to introduce more relationships
among medical ontologies in the DAG, we extract expert med-
ical knowledge from KnowLife [17] such as the relationship
of cause and is caused by. Besides, we add edges between
nodes that have the same nearest ancestor to encourage more
information transmission between nearby nodes.

All experiments are implemented with the PyTorch [21]
framework. For all models, we use Adam [22] optimizer with
an initial learning rate of 0.001 and mini-batch size of 64.
The dimensions of both knowledge graph embedding and co-
occurrence embedding are set to 300. The number of GAT
layers is set to 4 and λ is set to 0.2 after multiple experiments.
For baseline models, we strictly follow the experiment settings
provided in the original paper.

To improve the training convergence and predictive perfor-
mance, we follow the settings of previous works [10]–[12]
and group the label set into 169 different groups with the
CCS-multi-level diagnosis hierarchy1 as the real label set for

prediction. The 169 groups can still preserve the sufficient
granularity for each diagnosis.

D. Evaluation Metrics

The task of healthcare prediction is similar to the task of
personalized recommendations [23]. Therefore, we adopt two
commonly-used metrics to fully evaluate the performance of
our proposed model, namely visit-level precision@k and code-
level accuracy@k, where k is a parameter.

Visit-level precision@k is used to evaluate coarse-grained
model performance from the visit level. It is defined for each
visit as follows:

precision@k =
# of true positives in top k

min (k, |yt|)
(10)

Code-level accuracy@k is adopted to evaluate the fine-
grained model performance at the code level. We calculate
accuracy@k for each code in the real label set for prediction
as follows. Given a visit Vt, we get 1 if the target diagnosis
code is in the top-k predictions and 0 otherwise. We average
across all visits in the dataset to get the value of accuracy@k
for each code.

We take the average value over the test dataset as the final
value of precision@k, and take the average value over the
specified label space according to code frequency as the final
value of accuracy@k.

E. Results and Discussions

In the experiment, we want to explore two aspects of our
model. The first is whether our model can provide accurate
predictions of the next visit illness with different values of k.
The second is whether our model can surpass baseline models
with insufficient data such as 20% or 40% of the original
training dataset. For code-level accuracy@k, as the size of
the true label set is large (169), we divide the true label set
into 5 categories by the percentile of their frequencies in a
non-decreasing order in the training dataset and calculate the
average value of each category to better demonstrate the model
performance.

Table I shows the result of next visit illness prediction with
different values of k and varying sizes of the training dataset.
To mimic the situation of data insufficiency, we test all models



TABLE II
RESULTS OF CODE-LEVEL ACCURACY@K WITH TWO DIFFERENT VALUES OF k. THE RATIO INDICATES THE PERCENTILE OF CODE FREQUENCIES IN THE

TRAINING DATASET. FOR EXAMPLE, THE COLUMN OF 0− 20% REFERS TO THE AVERAGE VALUE OF CODE-LEVEL ACCURACY@K AMONG CODES WHOSE
PERCENTILE OF FREQUENCIES IN NON-DECREASING ORDER ARE WITHIN THE RANGE OF 0% TO 20%.

Model k=10 k=20
0-20% 20-40% 40-60% 60-80% 80-100% 0-20% 20-40% 40-60% 60-80% 80-100%

RETAIN [4] 0.0014 0.0089 0.1125 0.1715 0.5663 0.0032 0.0278 0.1526 0.4398 0.7862
Dipole [3] 0.0041 0.0143 0.1016 0.1823 0.5765 0.0041 0.0327 0.1496 0.4366 0.7824

GRAM [10] 0.0069 0.0548 0.1911 0.3289 0.6158 0.0128 0.1095 0.3607 0.6337 0.7850
KAME [3] 0.0052 0.0482 0.2117 0.3432 0.6289 0.0098 0.1113 0.3552 0.6449 0.7901

MMORE [12] 0.0041 0.0511 0.1852 0.3522 0.6201 0.0107 0.1225 0.3662 0.6452 0.7861
JMRL 0.0104 0.0725 0.2352 0.3617 0.6388 0.0286 0.1428 0.3789 0.6501 0.8007

JMRL+ 0.0152 0.0787 0.2331 0.3591 0.6402 0.0355 0.1501 0.3722 0.6513 0.7986

with varying sizes of the original training dataset. From the
results we can observe the following facts. The first is that
our proposed model JMRL can exceed all baselines with a
clear margin under different settings of k. Second, JMRL can
better adapt to the environment of data insufficiency compared
with other baselines. This is natural because JMRL can absorb
information from both knowledge graph and co-occurrence
statistics. The feedback strategies also enable the network to
learn faster with limited data. Another noticeable point is that
a good initialization can greatly benefit the training procedure
of our model when data is extremely limited such as only
20% of the original training dataset. However, the promotion
from initialization will gradually disappear as the volume of
training data increases. The last thing is that GRAM, KAME
and MMORE share similar prediction performance, which
indicates that digging deeper solely in the knowledge graph
embedding will not bring about apparent improvements.

Table II shows the result of code-level accuracy@k with
different values of k. We can see that our model performs
better on infrequent codes compared with baselines. The
reason for the relatively poor performance of infrequent nodes
is that they appear too few times in the training dataset. For
JMRL, the joint utilization of knowledge graph constraints
and co-occurring constraints enables the model to assign sim-
ilar embeddings to codes with strong connections regardless
of their infrequency, thus improving the chances that these
infrequent codes are ranked within the top-k predictions.

F. Ablation Analysis

To verify the effects of the two feedback strategies that
we propose in our model, we modify our model and conduct
multiple experiments as follows:

1) JMRL: We keep the original settings of our model
unchanged, where both feedback strategies are kept.

2) JMRL-1: We remove the first feedback strategy from
our model, which is the feedback from co-occurrence
embedding to knowledge graph embedding.

3) JMRL-2: We remove the second feedback strategy from
our model, which is the feedback from knowledge graph
embedding to co-occurrence embedding.

TABLE III
RESULTS OF VISIT-LEVEL PRECISION@K IN ABLATION ANALYSIS.

Model Ratio of Training Dataset Size
20% 40% 60% 80% 100%

JMRL 0.7182 0.7591 0.7709 0.7816 0.7839
JMRL-1 0.7039 0.7512 0.7632 0.7723 0.7781
JMRL-2 0.6977 0.7472 0.7656 0.7698 0.7739

JMRL-1-2 0.6813 0.7301 0.7574 0.7615 0.7652
GRAM [10] 0.7051 0.7449 0.7617 0.7662 0.7716

4) JMRL-1-2: We remove both feedback strategies from
our model. The two embedding spaces are totally inde-
pendent in this setting.

For simplicity, we set k to be 20 and only vary the size of
the training dataset. The results of the ablation analysis are
shown in Table III.

From the results we can see that the two feedback strategies
are truly important in our proposed model. Removing either
the first or the second feedback strategy will result in obvious
decrease in prediction accuracy. However, it is noticeable
that with only one feedback strategy, our model can still
maintain some advantages over baseline models. If we remove
both feedback strategies at the same time, the performance
will drop below that of GRAM or KAME, which indicates
that simply applying knowledge graph embedding and co-
occurrence embedding at the same time but independently
will not lead to improvements of model performance. Only
by bonding the two embedding spaces together with explicit
feedback strategies between each other, as in our proposed
model, can the prediction accuracy be truly improved.

IV. CONCLUSION

In this paper, we propose JMRL, an end2end and accurate
model for healthcare predictions with Joint Medical ontology
Representation Learning. To make full use of the informa-
tion from healthcare data, we adopt both knowledge graph
embedding and co-occurrence embedding. Besides, we design
two explicit feedback strategies between the two embedding



spaces to explore the mutual benefits between them. Exper-
imental results on the public MIMIC-III dataset demonstrate
that compared with the state-of-the-art baselines, our model
can improve the accuracy of next illness prediction, adapt
better to the data insufficiency environment and perform better
on infrequent codes. Besides, we conduct ablation analysis
to further verify the effects of two feedback strategies that
we design in our model. The results from ablation analysis
indicate that the two feedback strategies in our model are
essential and removing either of them will lead to performance
decrease.

In the future, we will explore how to better model the
co-occurrence property, and take the time interval between
adjacent visits into consideration.
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