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Abstract—Point-of-interest (POI) recommendation has become
an important service to help users discover attractive locations.
A variety of available check-in data make it possible to build a
personalized POI recommender system, but the extreme sparsity
of check-in data poses a severe challenge for POI recommen-
dation. Recent studies mainly utilize social information, categor-
ical information and/or geographical information to supplement
the highly sparse check-in data. However, these studies often
apply shallow methods for the extra information and provide
considerably limited improvements on POI recommendation.
In this paper, we propose a fine-grained POI recommendation
framework, called FGRec to capture the intrinsic influences of
social, categorical and geographical information on the check-in
behaviors of users. First, we study the social influence in depth by
exploiting the multi-hop social friends and top-n nearest neighbor
friends, not only the direct friends (i.e., 1-hop friends). Second,
we investigate the categorical influence by factorizing both user-
POI and user-category matrices simultaneously over the same
user embedding space, rather than simply using the popularity
of POI categories. Third, we explore the geographical influence
by integrating two types of distance (i.e., the distance between
user homes and POIs and the distance among POIs) into a unified
probability distribution over check-in POIs, instead of modeling
them separately. Finally, experimental results on two large-scale
real-world datasets demonstrate the effectiveness and superiority
of the proposed method.

Index Terms—POI recommendation,
Location-based social network

Intrinsic influence,

I. INTRODUCTION

Recent years have witnessed the rapid prevalence of
location-based social networks (LBSNs), such as Foursquare,
Yelp and Facebook Places. These LBSNs have attracted mil-
lions of users to check in point-of-interests (POIs), e.g., restau-
rants, cinemas and tourists spots, and share their experiences
of visiting these POIs with friends. LBSNs have accumulated
various data including historical check-ins of users on POls,
social links between users, categories of POls, and geograph-
ical information of user homes and POIs. These data bring
unparalleled opportunities for developing a personalized POI
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recommender system, which is a crucial demand in location-
based services [1], [2].

It is still a challenging task to build an effective POI
recommender system in LBSNs, because the recommendation
performance is severely affected by the extreme sparsity of
check-in data. To address this challenge, current studies mainly
utilize three types of information to supplement the highly
sparse check-in data: (1) Social information. Most works
incorporate social links between users into POI recommen-
dation based on collaborative filtering (CF) methods, e.g.,
friend-based CF [3], [4], [5], matrix factorization with social
regularization [6], and friend-based matrix factorization [7].
However, these CF methods purely focus on using the direct
friends of users (i.e., 1-hop friends) and overlook the effect
of multi-hop friends. For example, the friends of friends (i.e.,
2-hop friends) of a user may also affect the check-in behaviors
of the user. (2) Category information. Existing methods [8],
[9], [10], [7] often aggregate the popularity of categories
for users or POIs and integrate the popularity into CF for
deriving the similarity of users or the relevance score of users
on POIs. Nonetheless, these existing methods are relatively
simple in utilizing the category information and may not
capture the preference of a user on a given POI category.
(3) Geographical information. Most methods [3], [6], [5],
[11], [12], [13], [14] employ the geographical information
by estimating the check-in probability distribution over the
distance between user homes and POIs and/or over the dis-
tance among POIs. Nevertheless, these methods model the
two distance distributions separately and may not catch the
interaction of the two types of distance.

To address the limitations of existing methods using social,
categorical and geographical information, in this paper we
concentrate on deeply modeling the intrinsic influences of
the three types of information. (1) Social influence. Beside
using the direct friends of a user, this study also leverages
multi-hop social friends and top-n nearest neighbor friends,
i.e., a set of users who are geographically close to the user’s
home and have not socially connected with this user. To
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clarify this motivation, we analyze the check-in data collected
from Foursquare and Yelp (see TABLE III in Section IV for
details) and plot the common check-in ratio between users
and their friends in Fig. 1; the common check-in ratio is
measured by iiaﬁj} , where £; and L; are the set of check-in
locations of user ¢ and user j, respectively. From Fig. 1(a),
the shorter the hop between users, the higher the common
check-in ratio. Obviously, the k-hop friendship (k > 1) has
an impact on users’ check-in behaviors. From Fig. 1(b), the
closer to the user, the higher the common check-in ratio, which
indicates that the neighbor friends have a greater impact than
the distant friends. (2) Categorical influence. To investigate
the impact of POI categories on users’ check-in behaviors,
we plot the distribution on the number of POI categories
visited by a user on the two check-in datasets in Fig. 2.
Based on Fig. 2, the number of POI categories visited by most
users is relatively small and concentrated, which indicates that
users have unique preferences on POI categories. In other
words, users usually like several fixed categories of POlIs.
(3) Geographical influence. To study the influence of the two
types of geographical distance (i.e., the distance between user
homes and POls and the distance among POls), we estimate
the distribution of activity ranges of users in the two datasets.
Specifically, Fig. 3(a) depicts the distribution of the activity
range measured by the max distance of the user’s home to
her visited POIs, while Fig. 3(b) shows the distribution of
the activity range measured by the max distance of all pairs
of POIs visited by the same user. According to Fig. 3, most
users’ activity ranges are relatively centralized, which is in
line with the human mobility pattern because people tend to
check in nearby locations [3], [6], [15], [16].

Thus, we are motivated to propose a Fine-Grained POI
Recommendation framework by capturing the three types of
intrinsic influences (i.e., social, categorical and geographical
influences), called FGRec consisting of three modules corre-
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spondingly: (1) Social module. FGRec adaptively captures the
impact of multi-hop social friends and top-n nearest neighbor
friends by designing a novel collective friends model (CFM);
CFM combines friend-based CF with a network representation
learning technique which captures the friendship between
any two users by embedding complex social relations into a
low-dimensional vector space. (2) Category module. FGRec
leverages the categorical influence by devising a joint Poisson
factor (JPF) model for simultaneously factorizing user-POI
matrix and user-category matrix over the same user embedding
space. The user-category matrix has much higher density than
the user-POI matrix and thus greatly enhances the learning on
the user embeddings. (3) Geography module. FGRec takes
full advantage of the geographical influence by developing a
personalized Gaussian kernel model (GKM); GKM estimates
a unified probability distribution on the two types of distance,
i.e., the distance between user homes and POIs and the
distance among POlIs.

The main contributions of this study can be summarized:

o We deeply study the impact of multi-hop social friends
and top-n nearest neighbor friends on the user check-in
behaviors. Modeling such fine-grained social correlations
effectively alleviates the sparsity problem and assists to
make accurate recommendations.

o« We concurrently factorize user-POI matrix and user-
category matrix by sharing the user embedding space. In
comparison with the extremely sparse user-POI matrix,
the higher density of the user-category matrix signifi-
cantly enhances the learning on the user embeddings.

o We unify a probability model for the distance between
user homes and POIls and the distance among POls.
The unified model can capture the interaction of the two
types of distance and improve the geographical influence
modeling for POI recommendation.

o« We conduct extensive experiments on two large-scale
real-world datasets to evaluate the performance of our
framework. The experimental results show that our frame-
work outperforms other state-of-the-art methods.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the proposed
model in detail. Section IV reports the experimental results.
Finally, we draw some conclusions of this study in Section
V.



II. RELATED WORK

Many traditional collaborative filtering (CF) technologies
have been proposed for POI recommendation. Memory-based
CF is very popular and well-known. It can be classified into
user-based CF and item-based CF. User-based [3] first finds
similar users to the target user based on their historical check-
ins using a similarity measure, such as Cosine similarity or
Pearson correlation. Then the preference from the user on
an unvisited POI can be derived by computing a weighted
combination of historical check-ins on the same item from
similar users. In contrast, item-based works according to the
user’s preferences on other similar items. Matrix factorization
(MF) [6], [11], [7], [17], [18], [19], [1], [20], [21] has
also become a popular model in POI recommendation as
it can learn the latent factors that represent users’ inherent
preferences over an item’s multiple dimensions.

Efforts have also been made to utilize social, categorical
and geographical influences for improving the performance
of recommendation. (1) Social influence. The information of
friends is widely used in POI recommender systems [3], [22],
[4], [23], [6], [24]. Friend-based CF [3] and MF with social
regularization [6] are two effective CF algorithms in LBSNs.
Besides, Zhang et al. [8] designed a model to estimate the
social check-in frequency by using a power-law distribution.
Li et al. [7] developed a POI recommendation framework that
mainly exploits potential locations learned from users’ friends
to improve recommendation accuracy. Manotumruksa et al.
[12] proposed a personalized ranking framework with social
correlations and geographical influences for POI recommenda-
tion. However, existing methods of modeling social influence
[3], [8], [12], [6] overlook the impact of multi-hop social
friends and top-n nearest neighbor friends. (2) Categorical in-
fluence. Categorical influences are often used to express users’
preferences for POI categories in existing works [8], [10], [7],
[25]. Zhang et al. [8] employed a power-law distribution to
model the popularity of POI categories for capturing the cate-
gorical influence. Li et al. [25] transformed one-hot represen-
tation of POI categories to a latent vector as its embedding for
next POI recommendation. These existing methods of utilizing
category information [8], [10], [7], [25] are relatively simple,
and few of these methods directly capture the preference of
the user on a given POI category. (3) Geographical influence.
Some studies [3], [6], [5], [26], [27], [28], [29], [30], [31],
[32] have pointed out that geographical influence can be
used to improve the performance of POI recommendation.
In particular, several representative models, such as power-
law distribution [3], multi-center Gaussian distribution [6],
and kernel density estimation [5], are proposed to capture the
geographical influence in POI recommendation. Most of the
above algorithms do not simultaneously consider the two types
of geographical distance (i.e., the distance between user homes
and POIs and the distance among POls), which are important
for determining whether users travel far or not.

In this paper, we address the aforementioned limitations
by deeply modeling the three kinds of information. Our

TABLE I
MATHEMATICAL NOTATIONS
Symbol Size Meaning

e m X n  user-POI check-in matrix
FY m X q  user-category check-in matrix
c* m X n  user-POI expected count matrix
cY m X q  user-category expected count matrix
f{} R check-in frequency of user ¢ on POI j
fie R check-in frequency of user ¢ on category c
cy; R expected count of user ¢ on POI j
ci.’i R expected count of user ¢ on category c

framework differs from the above approaches in three aspects.
First, we propose a novel collective friends model in capturing
the social influence, which takes full advantage of the impact
of multi-hop social friends and top-n nearest neighbor friends.
Second, we design a joint Poisson factor model to learn
categorical influence by simultaneously factorizing user-POI
matrix and user-category matrix by sharing the same user
embedding space. Third, we present a personalized Gaussian
kernel model to integrate the distance between user homes and
POIs and the distance among POIs into a unified model.

III. PROPOSED MODEL

In this section, we first define the problem of POI rec-
ommendation, then present the unified POI recommendation
framework, and finally propose fine-grained models for cap-
turing intrinsic influences.

A. Problem Definition

We define U = {uj,us,...,u,,} as a set of users, where
each user u; checked in a set of POIs £;, denoted as £; =
{l1,12,...,1, }, where each POI has a geographical coordinate
l; = {lon;,lat;} on the longitude and latitude and a set of
categories Z; = {z1,22,...,2¢}. For convenience, we term
i as user u;, j as POI [; and c as category z., unless stated
otherwise. Each check-in action (¢, j, t) indicates user i checks
in location j at time ¢ and all check-in actions are expressed
as C'. In addition, we use SF; and N F; to represent the user’s
social and neighbor friends, respectively. Some key notations
used in this paper are listed in TABLE 1.

Given the geographical coordinates of POIs, user-POI
check-in matrix F'*, user-category check-in matrix F", social
friends SF;, and neighbor friends NFj, the task of POI
recommendation is to predict the preference score 7; ; for user
1 to an unvisited POI 7, and then return the top-N POIs with
the highest recommendation score r; ; to user 4.

B. Architecture

To better address the challenge of recommendation aris-
ing from the check-in data sparsity, we propose the fine-
grained POI recommendation framework (named FGRec) by
integrating the three types of intrinsic influences (i.e., social,
categorical and geographical influences). Fig. 4 depicts the
overall architecture of FGRec consisting of social, category
and geography modules based on the collective friends model
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Fig. 4. The architecture framework of FGRec

(CFM), joint Poisson factor (JPF) model and Gaussian kernel
model (GKM), respectively.

As shown in the previous studies [4], [8], [5], the product
rule is simple and effective in integrating different factors,
in which it is not required to normalize each factor because
the normalization cannot affect the ranking of results. In this
paper, we apply the product rule to integrate the above intrinsic
influences. In the future work, we will explore more compre-
hensive integration methods, e.g., factorization machine and
deep learning techniques, which is not the focus of this paper.

The recommendation score r; ; for user ¢ to the unvisited
POI j can ultimately be expressed as follows:

ri; =psprr(i,J) - perm (3, 7) - Parm (i, 4), (1)

where pypr(i,7), porm(i,j), parm(i,j) are the relevant
recommendation scores based on social, categorical and geo-
graphical influences, respectively.

C. Modeling Social Influence

In LBSNS, the social link represents the social friendship of
users. In this paper, we design a novel collective friends model
(CFM), which combines friend-based collaborative filtering
with a network representation learning technique, to capture
the social influence by deeply leveraging the information of
multi-hop social friends and top-n nearest neighbor friends.

The major novelty of the proposed model lies in adaptively
capturing the impact of multi-hop social friends and top-n
nearest neighbor friends for POI recommendation. Two types
of friend correlation weights can be automatically learned.
Based on the weighted method, the relevant recommendation
score based on social influence can be written as:

perm (i, J) = V1p(§ISEF;) + ap(jIN F;), 2

where 11 and v, are correlation weights, and p(j|SF;) and
p(j|NF;) are friend influence strengths. Since the two kinds
of friends may overlap, the sum of weights is not equal 1.

Accordingly, the process of CFM consists of three steps:
correlation weight estimation, influence strength computation,
and parameter inference.

Step 1: Correlation weight estimation. We first investigate
the check-in patterns between users and their two types of
friends. We further plot the distribution of co-occurrences as
the number of observed check-ins of all users increases in
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TABLE 11
CHECK-IN FEATURES

Feature  Description
Nx Number of X
N Number of check-ins from X
N§ Number of common check-ins from X
N%° Number of unique check-ins from X

Fig. 5. The z-axis represents the number of observed check-
ins of all users, and the y-axis denotes the ratio of co-
occurrences. It can be seen from the figure that the curve of co-
occurrences increases with the increase of observed check-ins
at the beginning, and eventually tends to stabilize. The reason
for this trend may come from two parts: (1) in the early time,
users have few friends and historical records when they are
LBSN new users; (2) as time goes on, users’ friends and co-
occurrences will increase, and finally become stable. Hence,
it motivates us to set the correlation weight as an activation
function, which considers a set of features capturing check-in
behaviors between users and their friends:

Vo= f(WlE,),0< 1, <1, 3)

where o € {1,2} (o = 1 for social friends (SF) and o = 2
for neighbor friends (NF) ), w, is a weight vector, and f,
is a feature vector. In this study, we define four features in
TABLE II, where X is SF or NF, Nx is the number of X,
N¥ represents the number of check-ins from X, N5 denotes
the total number of common check-ins between the user and
X and N¥° indicates the number of unique check-ins from
X.

f(e) is a real-valued and differentiable function that guar-
antees the range of v, limited in [0,1]. In this case, a sigmoid
function is often used, which can approximately capture the
characteristic:

1
T
SO lo) = g @

Step 2: Influence strength computation. The influence
strength can be computed by the combination of the friend-
based collaborative filtering [3] and the network representation
learning technique [33]. For social friends, we have

. . x
ZSESFL' SILS 8,7
)
ZsGSFi Sliws

where SI; ; is the friend similarity between the user 7 and
the friend s, and fJ; is the check-in frequency of friends s

p(j|SF;) =

®)



on POI j. We define SI; s using a Gaussian kernel function,
which fully captures the impact of multi-hop social friends:

. 2
||g’l 2g8|| ), (6)

SI; s = exp(—

o

where o is a scale parameter that can be tuned by a local

scaling technique, g; € R* and g, € R* are two low-

dimensional vectors learned by the network representation

learning technique, which can effectively learn user node

representations by capturing the impact of multi-hop social

friends. In this paper, we employ the Struct2vec representation

learning algorithm [33]. This way is friendly to the user with
fewer friends.

For neighbor friends, the definition of p(j|N F;) is similar to
Equation (5). We calculate the friend similarity with SNI; ; =
Iigﬁ} where £; and L are the set of check-ins of i and
s, respectively. Here, we choose the top-n nearest neighbor
friends as N F;.

Step 3: Parameter inference. Let © = {w;,ws} denotes
all parameters to be learned, where w is the weight parameter
vector of social friends, and w, represents the weight parame-
ter vector of neighbor friends. In CFM, the product of check-in
probabilities over on the whole set of user-POI interaction can
be defined as follows:

P(C|O) =

II perai.i), (7)

(i,5,t)eC

All parameters are learned by using maximum likelihood
estimation (MLE) method, which can be converted to the
following minimization problem.

min Y~ P (ClO) + A (|wil2+ [wall), (8
i,5,teC

where )\ is regularization parameter that avoids overfitting. In
this paper, a Stochastic Gradient Descent (SGD) method is
employed to solve Equation (8).

D. Modeling Categorical Influence

The user’s category preference for POIs typically reveals
some intrinsic characteristics of the user. For instance, a foodie
is very interested in POIs related to food. To directly model
the categorical influence, we propose a joint Poisson factor
(JPF) model that simultaneously factorizes user-POI matrix F'*
and user-category matrix F'Y by sharing the user embedding
space. In this model, the accuracy of learning user embedding
can be improved by introducing the user-category matrix with
much higher density. These studies [34], [6] have verified
the fact that Gaussian distribution outputs poor performance
when applied to the check-in frequency data. Thus, we turn to
Poisson distribution. To demonstrate its effectiveness, we plot
the check-in frequency distribution of a randomly selected user
in Yelp and Foursquare in Fig. 6. From the figure, we observe
that Poisson distribution is more suitable for fitting check-in
frequency data. This observation is consistent with [6].

More specifically, for each observed check-in frequency
in ¥, we assume that it follows the Poisson distribution

Probability Density

L X
10 15 20 25 5 8
Check-in frequency

(a) Yelp

10 12 14 16 18 20
Check-in frequency

(b) Foursquare

Fig. 6. The check-in frequency distribution in Yelp and Foursquare

with the mean cf; 1n C* o fE ~ Pozsson( ). In the same
way, we can get ~ Pozsson( ) The matrix C* is
factorized into two matrlces U € Rde and L € R™*9,
and CY is decomposed into U € R™*? and Z € RI*4,
Column vectors u;, I; and z. represent user-specific, POI-
specific and category-specific latent feature vectors, respec-
tively. Each element w; in u;, I, in I, and 2 in 2. are
assumed to follow the Gamma distribution as the empirical
priors [6]: w;, ~ Gamma(ay, Bv), Lix ~ Gamma(ar, BL),
zek ~ Gamma(agz, Bz), where ay, oy, az, Bu, B, Bz > 0.
Further, the expected counts cfc = 22:1 Uik Zek = uiTzc and
Cl‘rj = ZZ:l uikljk = uflj

The log of posterior distribution over U,L and Z can
be derived by utilizing the method of maximum a posterior
(MAP) [34]:

p(U;L’Z|C$7CyvaU7aL7aZ7ﬁUaﬂL7BZ) OCP(Fxlcr)
p (FY|CY) p (Ulaw, Bu) p (Llar, BL) p(Zlaz, Bz)

Finally, we get the objective function of JPF model:

L(U,L,Z;F* FY) ZZ “inct; — cf)
=1 j=1
m q
+ZZ lnc )
i=1 c=1
m d
+ 3N (aw — Din(uin/Bu) —ua/Bu)  (10)
i=1 k=1
n d
+ZZ ar — 1)in(ljx/Br) — lix/BL)
j=1k
q d1
+ ZZ az — Din(zex/Bz) — 2ek/Bz),
c=1 k=1

where parameters U, L and Z, can be learned by minimizing
L(U,L,Z; F* FY). We use the stochastic gradient ascent to
update g, L, and 2.

The predicted score based on categorical influence can be
computed as follows:

pipr(i,j) =g (11)

5+—Zu Zo)u Tl ,

CEZ

where u] 1 is the preference of user i for POI j, u! z. denotes
the preference of user i for category ¢, § is a weight tuning



TABLE III
STATISTICAL INFORMATION OF THE TWO DATASETS

Statistical item Yelp Foursquare
Number of users 30,887 2,551
Number of POIs 18,995 13,474

Number of categories 624 10

Number of check-ins 860,888 124,933
Number of social links 265,533 32,512
User-POI matrix density  0.14% 0.291%

parameter and g(x) = 1/(1+exp(—x)) is the logistic function,
which bounds the range of predictions to [0,1].

E. Modeling Geographical Influence

The user’s activity range is a key factor in determining
whether the user travels far or not. In this paper, there are two
types of geographical distance to be taken into consideration
for capturing the geographical influence. (1) Home-POI: the
geographical distance between users’ home and POIs. The
reason we consider is that the distance restricts users’ check-in
activity ranges. (2) POI-POI: the distance among POIs. The
behind reason is that users are very interested in nearby POIs
of a POI they liked (i.e., geographical clustering phenomenon
or geographical proximity among POIs), even if it is far
away from home. In view of the above geographical nature,
we design a personalized Gaussian kernel model (GKM) to
estimate a unified probability distribution by capturing the
interaction of the two types of distance.

Therefore, the geographical relevance score based on geo-
graphical influence can be obtained:

i) = L Suce e~ W)
KM\ - 3. - ) )
dist(j, h;) doler 2ol exp(f% L — Ik]]?)
(12)
where ||.|| denotes the Euclidean norm in the geographical

space, > <D ier, exp(—%t||l, — 1]|?) is the normaliza-
tion constant, dist(j, h;) is the distance between user’s home
h; and POI j, L represents a set of all POIs in LBSNs, and
T; is an adaptive bandwidth that depicts user ¢ activity area:
Y; = max {||l — hil|*} .1k € L;. The first term of Equation
(12) is the check-in distance cost between the user’s home
and the POIL. The second indicates the contribution of user’s
mobility patterns. That is, the user is likely to choose nearby
POIs of the POI checked in.

IV. EXPERIMENTS
A. Datasets

In this paper, we use two large-scale real-world datasets:
Yelp [22] and Foursquare [7], which are publicly available on
the web. In the two datasets, each check-in record includes
a user identity, location identity and check-in timestamp. In
addition, each location is associated with its latitude, longitude
and category information. The datasets also provide social
links between users. We adopt the recursive grid method [35]
to estimate users’ home location because top-n nearest neigh-
bor friends are used in our model. We empirically filter out

those users who have fewer than 10 check-in POIs and those
POIs which are visited by less than 10 users. The statistics of
the datasets are shown in TABLE III. In our experiments, we
divide each dataset into training set, validation set, and testing
set in terms of the check-in time instead of choosing a random
partition method. For each user, the earliest 70% check-ins are
selected for training, the most recent 20% check-ins for testing,
and the next 10% for validation.

B. Evaluation Metrics

We employ four standard metrics to quantify the recom-
mendation performance: precision (Pre@ N), recall (Rec@N),
mean average precision (MAP@N) and normalized dis-
counted cumulative gain (NDCG@ N) [22]. Pre@N refers to
the ratio of recovered POIs to the top-N recommended POls,
Rec@N measures the ratio of recovered POIs to the set of
visited POIs in the testing data and MAP@N defines the
arithmetic mean of top-/N average precision over all users.
NDCG@ N measures the quality of ranking recommended. Its
value is O to 1 and the higher value means better recommen-
dation results.

C. Compared Methods

To illustrate the effectiveness of our recommendation frame-
work, we compare it with the following state-of-the-art meth-
ods.

o PMF: PMF [36] is a matrix factorization model that
employs Gaussian distribution on check-in data.

« PFM: PFM [34] is a probabilistic factor method that
applies Poisson distribution to check-in data.

o Geosoca: Geosoca [8] is a personalized POI recommen-
dation method consisting of three modules Geo, So and
Ca, which are used to capture geographical, social and
categorical correlations, respectively.

o iGSLR:iGSLR [5] is a well-known POI recommendation
algorithm for capturing geographical and social influ-
ences.

o GS2D: GS2D [4] is a typical recommendation model that
utilizes social and geographical influences.

e SG: SG [3] is a fusion approach for exploiting social and
geographical influences.

o FMFMGM: FMFMGM [6] is a fused matrix factoriza-
tion framework with the multi-center Gaussian model.

e GE: GE [31] is a graph-based POI recommendation
method that can capture multi influences simultaneously.

« EDHG: EDHG [37] is a heterogeneous graph-based
recommendation method that learns correlations between
users and POlIs.

D. Parameter settings

For all baselines, we select the optimal parameter configu-
ration reported in their studies. In our experiments, parameters
w; and wy are automatically learned from check-in data
according to Equation (8), and the remaining parameters are
tuned through cross-validation. The regularization parameter
A in Equation (8) is set to 0.05 and the scale parameter o
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in Equation (6) is set to 0.1. In Yelp dataset, parameters ¢
in Equation (11), d in Equation (10) and top-n of neighbor
friends are set to 4, 50 and 5, oy = ar = az = 40 and
Bu B Bz 0.2, in Equation (10). In Foursquare
dataset, parameters §, d and top-n are set to 2, 40 and 10,
ay = ap = az =40 and Sy = B = Bz = 0.35. The effect
of latent factor dimension d will be detailed later.

E. Experimental Results

1) Performance Comparison: Fig. 7 and 8 depict the overall
performance comparison on Foursquare and Yelp, respec-
tively. From the results on both datasets, our framework
FGRec always achieves the best performance. Fig. 7 shows
Pre@N, Rec@ N, MAP@N and NDCG@N of all methods
on Foursquare dataset. By observing the results, we find that
FMFMGM is significantly better than other baselines. This
may be attributed to the multi-center check-in distribution uti-
lized in FMFMGM. iGSLR and GS2D have almost equivalent
performance. Because the basic ideas behind them are the
same, and they all use the kernel density estimation technique.
GE has the worst performance. The reason is that it suffers
from the check-ins data sparsity. Our framework FGRec sig-
nificantly outperforms the second best approach FMFMGM.
The reasons are two-fold: one is that the accuracy of leaning
user embeddings is improved in the category module; another
is that the impact of users’ activity ranges is captured in
the geography module. Compared to Geosoca using the same
information, our framework also presents absolute superiority.
For instance, the Pre@5, the Rec@5, the MAP@5 and the
NDCG@5 are improved by around 168%, 152%, 146% and
105%, respectively. The reasons are threefold: (1) FGRec takes
full advantage of the impact of multi-hop social friends and
top-n nearest neighbor friends, while Geosoca only employs
1-hop social friends’ check-ins. (2) Simultaneously factorizing
user-POI matrix and user-category matrix can enhance the

accuracy of learning user embeddings. When the category
information is sparse, Geosoca that uses a power-law dis-
tribution is greatly affected. However, our category module
can maintain good robustness because it exploits two different
types of check-in sources to mutual compensate. (3) FGRec
fully takes two important geographical distances (i.e., the
distance between users’ home and POIs and the distance
among POls) and users’ activity ranges into account in the
geography module, but Geosoca only considers the distance
among POIs. One obvious difference between Fig. 7 and Fig. 8
is that, FMFMGM has the best performance in Fig. 7, while
EDHG is the best in Fig. 8. The reason is that less social
information on Foursquare data largely affects the performance
of EDHG. The rest of the results in Fig. 7 is roughly similar
to that in Fig. 8.

2) Performance of Modules in FGRec: Here we study
the recommendation quality of the three modules. Due to
limited space and similar results, we only present the results
on Pre@N and Rec@N in Fig. 9. In order to demonstrate
the effectiveness of three modules (JPF, CFM and GKM)
of FGRec, PMF, PFM, Ca, So and Geo are added here for
comparison. Based on the results, we can see that JPF performs
better than PMF and PFM. The possible reason is that the
category information assists to improve the performance. PMF
reports the lowest performance among all methods, because
it is developed for explicit feedback data, and not suitable
for the implicit feedback data. By comparing JPF to Ca, we
can see the performance of JPF is better than that of Ca
with an absolute advantage. One possible explanation is that
JPF enhances the learning on the user embeddings by jointly
factorizing user-POI and user-category matrices, while Ca only
relies on the categorical popularity. Once category data are
sparse, its performance will be unstable.

We further observe that CFM gives the best performance
among the three modules in FGRec. This tells us that infor-
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mation of social friends and neighbor friends affects users’
check-in choices and plays a key role in enhancing the quality
of POI recommendation. This finding is consistent with [7].
The performance of So is still not as good as CFM. One
possible reason is that CFM fully exploits the information of
multi-hop social friends and top-n nearest neighbor friends,
while So model only considers 1-hop friends. We also find
that the performances of GKM are slightly superior to Geo.
One possible explanation is that GKM integrates the distance
between user homes and POIs and the distance among POIs
into a unified model. The interaction of two types of distance
in GKM assists to make more accurate recommendation.
Furthermore, GKM exhibits the worst recommendation quality
across three modules of our framework. We think that its
instability results in the poor performance. This situation is
reasonable in reality, because the distance among POIs could
exceed the ranges of users’ activity.

3) Impact of Data Sparsity: In order to verify the ef-
fectiveness of our model on the sparse data, we randomly
reserve % (x = 50,70,90,100) of check-ins from each
user’s visited records. This way generates the check-in data
with different sparsity. The smaller the reserved ratio x is, the
sparser the check-in data are. Fig. 10 shows the Pre@5 and the
Rec@5 of all the methods on Yelp and Foursquare data under
different data sparsities. From Fig. 10, we can observe that the
performance of all methods is increasing with the increase of
the density of check-in data (from left to right). This is because
all algorithms rely on the number of users’ check-ins. When
the data become sparser, FGRec always performs better than
the second best result given by FMFMGM or EDHG in terms
of Pre@5 and the Rec@5. This shows that our framework
is very effective in compensating the check-in data sparsity
by taking full advantage of the information of social, category
and geographical. Thus, FGRec shows greater strength than all
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Fig. 11. The influence of latent factor dimension d on Foursquare data

state-of-the-art methods under various data sparsity scenarios.

4) Study of Influence of Latent Factor Dimension d:
Here, we study the influence of d. In our experiment, we
set d to 10, 20, 30, 40, 50, 60, 70, and 80, respectively.
Due to limited space, we only show the recommendation
performance of FGRec on Foursquare dataset. Fig.11 shows
that the recommended quality for different values of d. Based
on the results, we can find that the performances in the Pre@5
and Rec @5 have similar behaviour with the varying value of d.
It is observed that the performance increases with the increase
of the d at the beginning, then hits the highest recommended
quality when d = 40, and eventually tends to decline. So we
finally choose the optimal parameter d=40.

V. CONCLUSIONS

In this paper, we propose a fine-grained framework (FGRec)
for POI recommendation, which addresses the challenge aris-
ing from the user-POI matrix sparsity. In our framework,
we model the user’s preference for an unvisited POI by
simultaneously considering three types of intrinsic influences
(i.e., social, categorical and geographical influences): (1) We
propose the novel collective friends model that adaptively



captures the impact of multi-hop social friends and top-n
nearest neighbor friends. (2) We design the joint Poisson factor
model that simultaneously factorizes user-POI matrix and user-
category matrix by sharing the user embedding space to cap-
ture the categorical influence. (3) To acquire the geographical
influence, we present the personalized Gaussian kernel model
by fully leveraging users’ activity ranges from the perspective
of home-POI and POI-POI. Extensive experimental results on
Foursquare and Yelp clearly show that FGRec significantly
outperforms the state-of-the-art methods in terms of various
metrics.
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