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Abstract—We propose Hybrid Pooling Networks (HPN) for
few-shot learning, where a classifier must learn to recognize new
classes not seen in the training set, given only few examples
from each new class. HPN learns deep similarity metrics between
labeled and unlabeled instances, consisting of two independent
networks named Bilinear Pooling Network (BPN) and Element-
wise Interaction Network (EIN). By using bilinear pooling, BPN
produces a combination of the inputs containing comprehensive
information about pair-wise similarities. In EIN, we apply “align-
ment” on features, making feature-wise interactions on input
images. This operation contributes to capturing finer similari-
ties. Both of BPN and EIN bring significant improvements on
miniImageNet and Omniglot few-shot datasets. We incorporate
the two networks to form HPN by simply averaging their outputs,
showing much better performance. Besides, all of our models are
easily extended to zero-shot learning. Experiments on CUB and
AWA2 demonstrate that our approaches can achieve state-of-the-
art performance on zero-shot tasks.

I. INTRODUCTION

Deep learning models have achieved impressive results in
areas such as image classification [1], [2], natural language
processing [3], and speech recognition [4]. However, these
models require extensive, incremental training on large scale
datasets. By contrast, large amounts of labeled data are difficult
to obtain in those fields which need much professional knowl-
edge (e.g. labeling medical images). Although data augmen-
tation and regularization techniques can alleviate overfitting,
they do not solve this problem. Besides, even children can
acquire a new concept with few examples in a short time
while deep learning models seem too “stupid” to learn well
with limited data. Motivated by the learning ability of human
and the drawbacks of deep learning on sparse data problems,
few-shot [5]–[10] and zero-shot [11]–[16] learning have been
actively pursued recently.

In few-shot learning, the model is expected to categorize
unseen data with very few labeled samples provided for
each class. Similarly, zero-shot learning aims to recognize
those unseen objects, given only a high-level description each
class. Training a conventional classifier on very small amounts
of labeled data is unrealistic because of severe overfitting.
Therefore, instead of attacking overfitting directly, researchers
have explored ways to leverage a distribution of similar tasks,
inspired by human learning [17]. This defines a learning
setup named “meta-learning” where the input-output pairs of
a model are no longer given by instances and their associated
labels, but by instance pairs and their associated similarity.
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In most contemporary approaches, transferrable knowledge is
first learned in the training set whose label space is disjoint
with the test set, including appropriate representations [8],
[10], good initial configurations [18], and nonlinear similarity
metrics [7], [9]. Then in the test set, models learn to fine-
tune on the specific problem [18] or calculate the similarity
between pairs directly [7]–[10].

However, most works on few-shot learning either use com-
plicated models which imitate the process of human cogni-
tion [6], [19] or implement the inference mechanisms [20],
[21], or need to fine-tune on each specific target problem [18].
Recently, research related to metric and embedding learn-
ing has made significant progress [5], [7]–[10], [17]. These
works learn similarity metrics essentially, which first gain
the representations of input images via a CNN, and then
learn a way to combine the representations of labeled and
unlabeled images to propagate the label information toward
the target images. Among them, some works use fixed linear
distance metrics (e.g. Euclidean, cosine or Mahalanobis) [5],
[8], [10], [17] while the others [7], [9] apply nonlinear metrics
to calculating the similarity. Although these nonlinear metrics
have some advantages over the former, their improvements are
not obvious.

In this paper, we propose two networks, Bilinear Pooling
Network (BPN) and Element-wise Interaction Network (EIN)
which use nonlinear metrics, to learn similarity between
image pairs on few-shot tasks. Experimental results in our
works show better performance than the previous works using
nonlinear metrics. The two networks differ in the way of
incorporating the representations of images and processing the
combination. In BPN, we use bilinear pooling [22] to get the
joint representations of image pairs. This pooling method is
capable of making comprehensive interactions between all the
elements of two inputs, which contributes to finding global
similarities. The key operation of EIN is aligning two feature
vectors such that the same kind of features can be packaged
together to make further processing. In this way, EIN concen-
trates on the comparison of the same kind of features only.
This feature-by-feature way can capture subtler similarities
and differences than BPN. By fusing the two complemen-
tary networks further, our eventual two-stream model, named
Hybrid Pooling Networks (HPN, see Figure 1), achieves
fantastic performance on miniImageNet and Omniglot few-
shot benchmarks. Besides, with minor modifications on our
models, they can be transferred on zero-shot tasks as well,
which beat other works on CUB and AWA2.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Overall, our contribution is two-fold. First, we propose
EIN and BPN respectively, which are applicable to both few-
shot and zero-shot learning. Second, we observe that the
two networks have complementary properties to some extent,
urging the formation of HPN which improves the performance
further. Evaluation on four benchmarks proves that our models
have great advantages over other approaches.

II. RELATED WORK

The concept of one-shot or few-shot classification was first
proposed by [20]. Early works on few-shot learning usually
utilized generative models to make complex iterative inference
on targets [20], [21]. With the success of image classification
on large-scale datasets by using deep models, generalizing
deep learning approaches to few-shot classification has aroused
interest. Inspired by the fact that children are able to rapidly
learn the concept of “zebra” because they have already ob-
tained other knowledges, e.g. recognizing a horse, many of
recent approaches extract some transferrable knowledge from
a set of auxiliary tasks, contributing to few-shot learning task
without directly learning from few examples which may easily
lead to overfitting. This strategy is called meta-learning [23],
[24], referring to a scenario where an agent learns at two
levels, each associated with different time scales. One level
is rapid learning occuring within a task, e.g. when learning to
accurately classify within a particular dataset. Another level
accrue knowledge gradually across tasks, which can guide
rapid learning in a specific task and capture the way that task
structure varies across target domains [25].
Imitating Human Memory An important property of
human-level learning is using memory to interact with en-
vironment. Some approaches try to imitate human memory
by leveraging external or internal memories (e.g. recurrent
neural networks) [6], [19]. Given a new example, their models
compare it to historic information stored in the memory such
that a memory is retrieved by calculating a weighted sum
over all the elements, which can be used for prediction. After
getting the ground truth of this example, memory will be
updated according to it. However, as the number of new
examples increases, which means long-term learning, it is
difficult to store all the useful information and erase redundant
ones reliably. By contrast, instead of imitating the learning
mechanism of human by using complex RNN models and
external memories, our models only consists of CNNs and
fully-connected layers.
Fine-Tuning Between Tasks The knowledge about “horse”
in a human brain can be transferred to what about “zebra”
with few modifications. Another category of approaches lever-
age fine-tuning on few-shot problem. An approach named
MAML [18] meta-learns initial values of neural network
weights which is conducive to fine-tune on few-shot tasks.
Specifically, they sample individual tasks from a given multi-
ple task training set, then a base neural network model learns
to fine-tune to solve each target problem. The success at each
task will update parameters in the base model respectively,
which essentially drives the production of an initial condition

easily to fine-tune. Although their method is model-agnostic,
it still need to fine-tune on each specific target task. In our
approach, there is no need to do any fine-tuning operations
toward target problem.
Learning Similarity Learning the similarity between image
pairs seems more directly when labeled data is limited. This
type of method is relevant to distance metric learning [26].
In early studies, Koch et al. [5] used a deep siamese network
for few-shot learning, which was first proposed by Bromley et
al. [27] to perform signature verification. Deep metric learning
has made progress by using different forms of loss since then.
In particular, training is performed with triplet loss to enforce
a distance ranking in [28]. Kihyuk [29] used multi-class N-
pair loss to train the whole model, which improves upon the
triplet loss by pushing away multiple negative examples jointly
at each update and has been utilized in most metric-based few-
shot learning works. Vinyals et al. [10] presented an end-to-
end trainable kNN model by using cosine distance, with an
attention mechanism over a learned embedding of the labeled
data to predict the categories of the unlabeled points. Snell
et al. [8] extended this work by using euclidean distance
as a similarity metric and they builded a prototype repre-
sentation for each class, showing significant improvements.
More recently, applying nonlinear metrics to few-shot tasks
has been of interest. Sung et al. [9] proposed a relation module
which concatenates the feature maps of two images and send
this concatenation to CNNs to learn the similarity. Garcia
and Bruna [7] introduced an approach named graph neural
networks, where the input samples form the nodes of the graph
and edge weights are computed as a nonlinear function of
the absolute difference between node features. Despite some
novelty, these approaches do not show obvious improvements.

Our work is most related to the above approaches based
on nonlinear metrics. We argue that neural networks could be
more powerful in finding pair-wise similarities by using appro-
priate pooling methods. Bilinear pooling, which is used in our
BPN, has been applied on fine-grained visual recognition [30]
and visual question answering [31] recently, which shows great
performance in their fields. Our experiments demonstrate that
this method also has advantages on both few-shot and zero-
shot tasks. In addition, we propose a novel technique named
element-wise convolution utilized in EIN, applying to few-shot
tasks. Both BPN and EIN are competitive compared to other
methods. In particular, EIN performs much better than BPN on
fine grained few-shot tasks (see Section IV-C), which proves
that EIN can capture finer similarities and differences.

III. METHOD

A. Problem Set-up

The aim of few-shot recognition is to classify images whose
categories can not be seen before, only with few labeled
images as examples in each class. If there are K labeled
examples for each of C unseen classes, the target few-shot
task is called C-way K-shot.

Few-shot classification is different from conventional clas-
sification that the K × C images are not suitable for training
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Fig. 1. Hybrid Pooling Networks architecture for few-shot learning.

directly, which easily leads to overfitting. A more effective
way is to form an “episode” during training which mimics the
test procedure [10]. Specifically, training set has its own label
space which is disjoint with the test set. During one episode
in the training procedure, K × C labeled images as above
mentioned are sampled from training set, as well as several
unlabeled images for each of C classes as query data. At the
time of test, the same procedure will be performed except
the data set is replaced by the test set. Formally, the K × C
labeled images are called support set while the unlabeled ones
are named as query set.

B. Bilinear Pooling Network

Bilinear models were first introduced by Tenenbaum and
Freeman [22] to separate style and content. The key operation,
bilinear pooling, takes the outer product of two vectors x1 ∈
Rn1 and x2 ∈ Rn2 (e.g. x1x2T ), allowing a multiplicative
interaction between all the elements of both vectors, which
produces a very comprehensive combination. It has been
considered for semantic segmentation and fine grained recog-
nition using both hand-tuned and learned features, showing
its great advantages in this field. Inspired by Fukui et al. [31]
utilizing bilinear pooling to incorporate representations from
two different modalities (e.g. textual and visual information) in
VQA, we exploit bilinear pooling as one of our incorporating
method in both few-shot and zero-shot tasks.

The main difference between few-shot and zero-shot learn-
ing is that the inputs of the former are the same modalities
(image pairs) while the latter has different ones (images and
attribute vectors). Therefore, there are some differences in
solving few-shot and zero-shot problems.
Few-shot For few-shot tasks, a CNN consisting of a hier-
archy of convolutional and pooling layers is used as feature

extractors (see Figure 2). We compute the outer product
between two sets of feature maps instead of feature vectors.
In this way, each element in the pooling result is produced
by two feature maps, thus a multiplicative interaction emerges
between the feature maps of both sets. Besides, it also avoids
the high dimension by directly applying outer product for two
flattened feature vectors. Let xi, xj ∈ Rc×h×w denote the
output of the CNN for two images, where c is the number of
the feature maps and h,w are the height and the width of it.
We flatten every feature map in xi, xj to form xi

′, xj
′ ∈ Rc×l,

where l = h × w. Then the bilinear pooling matrix can be
calculated as: ψi,j = xixj

T ∈ Rc×c. After flattening ψi,j to
a c × c length vector, we use it as features sent into fully-
connected layers (see Figure 1).
Zero-shot In zero-shot learning, the inputs are images and
attribute vectors. We apply L2-normalization on the original
attribute vectors, and then get the outer product between the
normalized vectors and the image representations to form the
pooling features. Except that, the processing of the other parts
is the same as what in few-shot learning.

C. Element-wise Interaction Network

In this section, we demonstrate Element-wise Interaction
Network (EIN) for few-shot and zero-shot learning. The basic
idea of EIN is to align two vectors to learn their similarities.
Before this operation, we need the input feature vectors share
the same length. For few-shot, embeddings are inherently
equal in length because images are processed by the same
feature extractors. For zero-shot, we can project images and
attribute vectors into the same embedding space. Therefore,
the specific methods of EIN are partly different for few-shot
and zero-shot learning.
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Fig. 2. Convolutional blocks for feature extraction. “BPN” only denotes batch normalization in this figure.

Few-shot We propose an incorporating method specifically
for single modality, which named element-wise convolution
and is used in EIN for few-shot learning. Note that the feature
extractors of EIN share the same architecture with BPN. First,
we get two feature vectors v1, v2 ∈ Rn of the input image
pairs via the CNN. Then, the two vectors are concatenated to
form a matrix of size 2 × n. We treat it as a single channel
image, using a 2D CNN to extract local features of this matrix,
after which a hierarchy of 1D convolutional and pooling layers
are connected to extract local sequential feature further (see
Figure 1).

The two vectors can be processed in this way because image
pairs are fed into the same feature extractors, and each feature
map at the top of the feature extractors can be explained as a
kind of feature of the image, thus two feature maps from the
same position (i.e. extracted by the same filter) in the two sets
of feature maps represent the same kind of feature. As depicted
in Figure 3, a pair of feature maps extracted by the same
filter is visually more similar if their original images come
from the same class. By flattening feature maps to vectors and
combining two vectors element by element, the same features
are aligned. Unlike using fixed metrics that feature vectors
are solely compared in an element-wise way [8], [10], we
apply a 2D convolutional layer to learning similarity between
same kinds of features in the element-wise combined matrix,
followed by three 1D convolutional layers. Since CNN is good
at extracting local features, we argue that a 2D CNN is able
to capture local similarities between two sets of features, and
by adding 1D CNNs, the local similarities can be extracted
further.

Zero-shot We can in principle project attribute vectors into
visual embedding space and use element-wise convolution as
in few-shot learning. However, because they still come from
handcrafted features which are far from features learned by
CNNs, the performance of such a model is not satisfactory.
In spite of that, the projection for attribute vectors can still
bring some properties which may make the attribute embed-
dings weakly aligned to image embeddings. We thus apply
a common method in VQA [32] to replacing element-wise

images feature maps

feature vectors

Fig. 3. Visualization of feature maps and vectors. We sample three images
in miniImageNet dataset, where the first two belong to the same class. We
resize these images to 128×128 and get the feature maps through a randomly
selected filter in the last convolution of our feature extractors (see Figure 2).
We depict the first 20 elements in the feature vectors after flattening them.

convolution, namely element-wise product which does not
call for same modalities. By projecting attribute vectors into
visual embedding space, it simply makes inner product of an
embedded attribute vector and an image representation as the
incorporating feature. We use this method in EIN for zero-shot
learning, which show its great performance.

D. Hybrid Pooling Networks

BPN allows comprehensive interactions among feature el-
ements, while EIN focuses on the comparison between the
same kinds of features. We devise our eventual architecture
accordingly, fusing the two networks because of their comple-
mentary properties, namely Hybrid Pooling Networks (HPN),
as shown in Figure 1. In order to show the two streams are
greatly complementary, we just simply average the outputs
of them to see how much improvement the fused model can
make.
Few-shot Unlike conventional multi-class classification us-
ing cross entropy as loss function after a softmax layer, we
add a sigmoid activation to the output of the model, which
maps onto the interval [0, 1]. Thus the final output is si,j , a
scalar denoting the similarity between image xi and xj , and
naturally a mean square error loss function is used.



For C-way 1-shot, we sample Q query images each class.
Since there are N = C2×Q image pairs sent into our model
and we have C classes, the loss is called C-class N-pair
loss [29]:

J(φ) =
1

N

C∑
i=1

C×Q∑
j=1

(I(yi == yj)− si,j)2 (1)

Where φ denotes the parameters in the networks, and yi is the
label of xi. Let B(ei, ej) denote bilinear pooling and E(ei, ej)
denote element-wise convolution for two image embeddings.
The similarity score can be computed as equation 2, where F
is the fusion method.

si,j = F(B(ei, ej), E(ei, ej)) (2)

Note that we just use averaging as the fusion method in our
model, because we do not rely on the capability of ensemble
methods to improve the performance, although various ensem-
ble approaches are applicable.

For C-way K-shot, where K > 1, em,n is the embedding
(feature maps or feature vector) of the nth image in the mth
class. We construct a prototype [8] for each class:

cm =
1

K

K∑
n=1

em,n (3)

Then the classification is performed for an embedded query
image by simply finding the most similar class prototype,
which can be considered as a C-way 1-shot task.
Zero-shot Instead of providing a support set of training
images, zero-shot learning gives a manually annotated attribute
vector or a textual description [33] for each class. Therefore,
they are totally different from images (i.e. different modali-
ties). As discussed in Section III-B and Section III-C, we use
the zero-shot version of BPN and EIN to perform zero-shot
experiments.

Let vi denote the attribute vector of the ith class, the
similarity score for each embedded image ej will be:

si,j = F(B(vi, ej), Ep(f(vi), ej)) (4)

Where f is the embedding network to project attribute vectors
into visual space and Ep denotes the element-wise product
module.

E. Network Architecture

The overview of our network for few-shot learning is shown
in Figure 1. As most previous works on few-shot learning
use four convolutional blocks as feature extractors without
fine tuned [5], [8]–[10], we follow their architectures so as to
fair comparison. More specifically, each convolutional block
contains a 64-filter 3 × 3 convolution, a 2 × 2 max-pooling
layer, a batch normalization layer and a rectified linear unit.
We depict an example above (Figure 2), where the input image
is sampled from miniImageNet resized to 84×84. In BPN, we
use the feature maps of the last convolutional block. In EIN,
these feature maps are flattened as the input. Note that BPN
and EIN do not share the parameters of the feature extractors.

attribute
vector

image

Bilinear 
pooling

Element-wise 
product

score
fusion

fc1
ReLU

DNN

fc2
ReLU

EIN

BPN

Fig. 4. Architecture for zero-shot learning. Where DNN is an pre-trained
network on ImageNet (e.g. Densenet or Resnet).

In BPN, we use the bilinear pooling vector (see Sec-
tion III-B) as the input of two fully-connected layers whose
dimensions of the output are 8 and 1, with a ReLU non-
linearity layer after the first fully-connected layer. For EIN
with element-wise convolution, we use one 2D and three 1D
convolutional blocks, where the setting of 2D one is the same
as what in the Figure 2. Each 1D convolutional block consists
of a 64-filter 3 convolution, a 2 max-pooling layer, a batch
normalization layer and a rectified linear unit. The output of
the last convolutional block is flattened and sent to two fully-
connected layers whose hidden length and output dimension
are the same as what in BPN. Both of the above two networks
apply a sigmoid activation to their output layer, producing
similarity scores in range of 0 to 1.

Our zero-shot learning architecture is shown in Figure 4.
A deep neural network (DNN) pre-trained on ImageNet is
utilized to extract image features. For a given attribute vector
vi ∈ Rl1 and an embedded image ei ∈ Rl2 , we send them to
BPN to get the outer product of them, generating a l1 × l2
incorporating feature. For another stream, we use two fully-
connected layers to project attribute vectors into visual space,
after that we compute the inner product between embedded
attribute vectors and image features, producing another differ-
ent incorporating feature. Finally, a fusion method is applied
to fusing the above two outputs, which is the same as the one
in the few-shot learning.

IV. EXPERIMENTS

For few-shot learning, we evaluate our approaches on Om-
niglot [21] and miniImageNet [10], [34]. For zero-shot learn-
ing, we perform experiments on Caltech-UCSD Birds-200-
2011(CUB) [35] and Animals with Attributes 2 (AwA2) [36].
In addition, we conduct one-shot experiments on CUB to eval-
uate our models on fine-grained tasks. Note that all the models
are trained from scratch on each dataset without additional
data, except a pre-trained DNN in zero-shot learning.

A. Few-shot Classification

1) miniImageNet: The miniImageNet dataset is derived
from ILSVRC-12 dataset [37], originally proposed by Vinyals
et al. [10]. This dataset contains 60,000 color images divided
into 100 classes, each having 600 images. In our experiments,
we use the splits proposed by Ravi and Larochelle [34]



Model Fine Tune 5-way Acc.
1-shot 5-shot

MATCHING NETS [24] N 43.56 ± 0.84% 55.31 ± 0.73%
META NETWORK [19] N 49.21 ± 0.96% -
MEAT-LEARN LSTM [34] N 43.44 ± 0.77% 60.60 ± 0.71%
MAML [18] Y 48.70 ± 1.84% 63.11 ± 0.92%
PROTOTYPICAL NETS [8] N 49.42 ± 0.84% 68.20 ± 0.66%
GRAPH NEURAL NETS [7] N 50.33 ± 0.36% 66.41 ± 0.63%
RELATION NET [9] N 50.44 ± 0.82% 65.32 ± 0.70%
BPN N 53.29 ± 0.62% 68.34 ± 0.61%
EIN N 52.78 ± 0.72% 68.29 ± 0.64%
HPN N 55.17 ± 0.61% 71.26 ± 0.69%

TABLE I
FEW-SHOT CLASSIFICATION ACCURACIES ON miniIMAGENET. ALL

ACCURACY RESULTS ARE AVERAGED OVER 600 TEST EPISODES AND ARE
REPORTED WITH 95% CONFIDENCE INTERVALS. FOR EACH TASK, THE

BEST-PERFORMING METHOD IS HIGHLIGHTED. ‘-’: NOT REPORTED.

like most works. 100 classes are divided into 64 training,
16 validation, and 20 test classes in their splits, where the
16 validation classes are used for monitoring generalization
performance only.
Training We train BPN and EIN respectively and then
combine the two networks to form HPN. We just average the
score produced by the two networks as the final prediction for
the similarity of a certain image pair, although other choices
are possible.

Following most few-shot learning works, we conduct 5-
way 1-shot and 5-way 5-shot classification on this dataset.
In addition to K support images in K-shot task, we sample
15 query images each class for 1-shot learning and 10 query
images each class for 5-shot learning. All the images are
resized to 84× 84.
Results At the time of test, we follow [9] that we batch
15 query images per class in each episode for evaluation in
both 1-shot and 5-shot task. The classification accuracies are
computed by averaging over 600 randomly generated episodes
from the test set.

The results are shown in Table I. HPN achieves state-
of-the-art performance on both 1-shot and 5-shot accuracy.
Note that BPN and EIN beat all the previous methods on
5-way 1-shot task respectively, and their results are only
slightly lower than prototypical networks [8] on 5-shot task.
However, prototypical networks are trained by applying a
method that they use far more than 5 classes (i.e. numbers of
way � 5) to train and only 5 classes to test, which makes
training much harder than test. If not using this trick and
making the numbers of way the same in training and test like
us, they only got 46.14 ± 0.77% for 1-shot evaluation and
65.77 ± 0.70% for 5-shot as they reported. We can conclude
that BPN and EIN are superior to other models, and after
fusing them, the performance can be much better because of
their complementary properties.

2) Omniglot: Omniglot consists of 1623 kinds of handwrit-
ten characters (i.e. 1623 classes) collected from 50 alphabets.
Each class consists of 20 different samples. we follow the
procedure of [8]–[10], resizing all the images to 28× 28 and
augmenting data by rotating original images 90◦, 180◦ and

270◦. We use 1200 characters plus rotations (i.e. 4800 classes)
for training and 423 characters plus rotations (i.e. 1692 classes)
for test.
Training The training procedure of Omniglot is similar to
miniImageNet. As there are 20 samples in each class, we
provide 19 query images for 1-shot tasks and 15 query images
for 5-shot tasks.
Results We conduct 5-way 1-shot, 5-way 5-shot, 20-way 1-
shot and 20-way 5-shot experiments on this dataset. Following
previous work [8], [9], classification accuracies on Omniglot
are computed by averaging over 1000 randomly generated
episodes from the test set. From Table II, most of recent
models can achieve nearly 100% in above mentioned tasks,
for this dataset is extremely simple which consists of single-
channel character images, similar to images in MNIST. Since
the intra-class variations of this dataset are too small and
the content of the images are simple, the improvements of
our approaches are limited. Despite that, EIN beats all the
other models and BPN shows its superiority over previous
works as well. More simple images result in more simple
features and lower intra-class variations make these features
more similar such that a CNN is easy to learn local similarity
on a combination of two feature vectors in EIN. Although
BPN performs worse than EIN, they can still complement
each other. By fusing the two networks, HPN achieves state-
of-the-art performance especially on 20-way 1-shot, which is
the hardest task among the above four.

B. Zero-shot Classification

1) Datasets: Our experiments are performed on two zero-
shot datasets: CUB [35] and AWA2 [36]. CUB (Caltech-
UCSD Birds-200-2011) dataset contains 11,788 images of
200 bird species, divided into 150 seen classes and 50 un-
seen classes respectively. For each class, a continuous 312-
dimension attribute vector is provided. AWA2 (Animals with
Attributes 2) is a coarse-grained dataset consisting of 37,322
images of 50 classes of animals, which is divided into 40
seen classes and 10 unseen classes respectively. AWA2 uses
85 binary and continuous class attributes.

There are two kinds of splits for these datasets. One is called
standard splits (SS) in [36], which has been used in most
works. Under this splits, however, some of the test classes
also exist in the ImageNet, which is used to train the image
feature extractors (e.g. Resnet) for zero-shot learning, violating
the assumption that training and test classes are disjoint. To
solve this problem, Xian et al. [36] propose proposed splits
(PS) which ensures that the test classes do not appear in
the ImageNet. Therefore, we follow PS for more reasonable
comparison.

2) Experiments Details: As discussed in Section III-E, we
still use two networks in zero-shot learning by simply replace
element-wise convolution with element-wise product in EIN.
All the image features in both CUB and AWA2 are extracted
by ResNet101 [46]. We compute the outer product of a class
attribute vector and an image feature vector to get the bilinear
pooling feature. A Multi-Layer Perceptron (MLP) is utilized



Model Fine Tune 5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

SIAMESE NETWORK [5] Y 97.3% 98.4% 88.2% 97.0%
MATCHING NETWORK [10] Y 97.9% 98.7% 93.5% 98.7%
MATCHING NETWORK [10] N 98.1% 98.9% 93.8% 98.5%
CONVNET WITH MEMORY [38] N 98.4% 99.6% 95.0% 98.6%
PROTOTYPICAL NETWORK [8] N 98.8% 99.7% 96.0% 98.9%
META NETWORK [19] N 98.9% - 97.0% -
MAML [18] Y 98.7 ± 0.4% 99.9 ± 0.1% 95.8 ± 0.3% 98.9 ± 0.2%
GRAPH NEURAL NETWORKS [7] N 99.2% 99.7% 97.4% 99.0%
RELATION NETWORK [9] N 99.6 ± 0.2% 99.8 ± 0.1% 97.6 ± 0.2% 99.1 ± 0.1%

BPN N 99.6± 0.2% 99.6 ± 0.1% 98.1 ± 0.2% 99.3 ± 0.1%
EIN N 99.7 ± 0.1% 99.9 ± 0.1% 98.3 ± 0.1% 99.5 ± 0.1%
HPN N 99.8 ± 0.1% 99.9 ± 0.1% 98.6 ± 0.2% 99.6 ± 0.1%

TABLE II
FEW-SHOT CLASSIFICATION ACCURACIES ON OMNIGLOT. ALL ACCURACY RESULTS ARE AVERAGED OVER 1000 TEST EPISODES AND ARE REPORTED

WITH 95% CONFIDENCE INTERVALS. FOR EACH TASK, THE BEST-PERFORMING METHOD IS HIGHLIGHTED. ‘-’: NOT REPORTED.

Model CUB AWA2

DAP [12] 40.0% 46.1%
IAP [12] 24.0% 35.9%
CONSE [39] 34.3% 44.5%
SSE [40] 43.9% 61.0%
DEVICE [41] 52.0% 59.7%
SJE [42] 53.9% 61.9%
ESZSL [43] 53.9% 58.6%
SYNC [44] 55.6% 46.6%
SAE [45] 33.3% 54.1%
RELATION NET [9] 55.6% 64.2%
DEM [16] 51.7% 67.1%

BPN 58.3% 70.6%
EIN 58.6% 72.2%
HPN 60.4% 72.6%

TABLE III
ZERO-SHOT CLASSIFICATION ACCURACIES ON CUB AND AWA2.

for projecting attribute vector to visual space such that the
inner product between image representations and the attribute
vectors can be calculated. The hidden length of this MLP is
1,024 and the output dimension is 2,048 which is equal to the
length of the top-layer pooling units of ResNet101. At last,
we fuse the outputs of BPN and EIN with the same method
used in our few-shot model, i.e. averaging.

Results We compare our model against various zero-shot
models in Table III. EIN and BPN show their better perfor-
mance than others respectively. By fusing the two streams,
HPN further improves the results, outperforming existing
models by a big margin on both CUB and AWA2 datasets.
Compared to the EIN using element-wise product , HPN has
increased by nearly 2% on CUB but only increase 0.4% on
AWA2 after combining the two networks. This is because
AWA2 is simpler than CUB, which is a coarse-grained dataset
while CUB is a fine-grained one. Besides, AWA2 only has
10 unseen classes during test while CUB contains 50 ones.
Therefore, the improvement of fusion is limited on AWA2.

C. CUB One-shot Trial

On few-shot learning tasks, our model show great per-
formance on miniImageNet and Omniglot. However, these
datasets are coarse-grained, of which the difference between
classes is obvious. To see the performance on a fine-grained
dataset, we conduct 1-shot experiments on CUB, which may
clarify the superiority of our networks with nonlinear metrics
more clearly.

We still use PS in zero-shot learning to split the dataset
into 100 training, 50 validation, and 50 test classes, where the
validation set is only used for monitoring generalization per-
formance. Since Prototypical Nets [8] are the best-performed
linear-metric approaches and Relation Net [9] is the state-
of-the-art method with nonlinear metric, We do the same
experiments with them as baselines. Note that we set the same
number of the way to train and test for all the models.

The results are reported at Table IV. Models based on
nonlinear metrics beat Prototypical Nets using linear metric
by a large margin, which is more obvious than what in
miniImageNet. Although the result of Relation Net on 5-way
task is very close to BPN, it performs much worse when
the number of way increases, which demonstrates that BPN
is superior to Relation Net on harder tasks. In contrast to
the results of miniImageNet, EIN performs the best among
all the approaches except HPN in CUB, whose results are
much higher than BPN in all the tasks, demonstrating its
superiority to capture subtle similarities and differences. In
addition, further improvements of the averaging fusion of BPN
and EIN appear in HPN as expected.

V. CONCLUSION

In this paper, we have proposed Hybrid Pooling Networks,
a competitive model for few-shot and zero-shot learning,
composed of Bilinear Pooling Network and Element-wise
Interaction Network. In the two streams of the model, Bilinear
Pooling Network can generate a comprehensive combination
between two inputs which share the same modality or not;
Element-wise Interaction Network relies on the alignment
of the similar features. For inputs with the same modality,



Model Metric 1-shot Acc.
5-way 10-way 15-way 20-way

PROTOTYPICAL NETS [8] linear 53.72 ± 0.93% 34.74 ± 0.63% 26.64 ± 0.47% 22.94 ± 0.39%
RELATION NET [9] nonlinear 61.68 ± 0.88% 42.64 ± 0.54% 33.23 ± 0.46% 29.27 ± 0.45%

BPN nonlinear 62.34 ± 0.97% 47.01 ± 0.62% 37.34 ± 0.45% 32.43 ± 0.46%
EIN nonlinear 67.89 ± 0.92% 51.51± 0.79% 42.60 ± 0.67% 37.14 ± 0.65%
HPN nonlinear 68.94 ± 0.92% 53.21± 0.83% 45.06 ± 0.79% 39.79 ± 0.85%

TABLE IV
ONE-SHOT CLASSIFICATION ACCURACIES ON CUB. ALL ACCURACY RESULTS ARE AVERAGED OVER 600 TEST EPISODES AND ARE REPORTED WITH

95% CONFIDENCE INTERVALS. FOR EACH TASK, THE BEST-PERFORMING METHOD IS HIGHLIGHTED.

EIN captures local similarities via CNNs. For multimodal
case, inner product is used for element-wise interaction. The
two networks have been capable of outperforming other ap-
proaches on various few-shot and zero-shot classification tasks.
After fusing BPN and EIN, HPN brings the state of the art to
a new level. Overall, HPN is an effective, simple and flexible
approach for few-shot and zero-shot learning.
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