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Abstract—One-shot image recognition has been explored 

for many applications in computer vision community. However, 

its applications in video analytics is not deeply investigated yet. 

For instance, surveillance anomaly recognition is an open 

challenging problem and one of its hurdles is the lack of accurate 

temporally annotated data. This paper addresses the lack of 

data issue using one-shot learning strategy and proposes an 

anomaly recognition framework which exploits a 3D CNN 

siamese network that yields the similarity between two anomaly 

sequences. This paper also investigates the existing 3D CNNs for 

this task and then proposes a lightweight 3D CNN model that 

efficiently handles one-shot anomaly recognition. Once our 

network is trained, then we can use the powerful discriminative 

3D CNN features to predict anomalies not only for the new data 

but also for entirely new classes. The proposed model is trained 

using temporally annotated test set of UCF Crime dataset. 

Finally, the trained model is used to recognize the anomalies and 

produce temporal automatic labels for the video level weakly 

annotated training set of the dataset. 

Keywords—Artificial intelligence, deep learning, 

convolutional neural network, anomaly recognition, 

siamese network, one-shot learning. 

I. INTRODUCTION  

Surveillance cameras are one of the most reliable sources for 

the investigation of crime/anomaly scenes. However, 

advancements in computer vision and artificial intelligence 

took it one step further by detecting and recognizing the 

anomaly in real-time, helping in instantaneous reporting 

systems [1]. Most of these methods with high performance 

are based on various deep neural network architectures that 

rely on massive amount of annotated video datasets for 
training with powerful computational resources [2]. In 

addition, these models require retraining when there is a need 

for adding a new class in a classification task [3]. These facts 

impose problems on training neural networks. In such 

scenarios, one-shot learning can provide a potential solution 

which discovers how to perform a classification task by only 

looking at a single sample of each possible class even if the 

data is scarce [4]. This kind of learning process under the 

constraint removes the necessity of retraining models for new 

classes and facilitates the learning process in dynamically 

changing data environments [5]. 

 

Figure 1: The proposed framework for one-shot anomaly 

recognition using 3D CNNs siamese network. The sliding 

window shot is compared with different example anomaly 

shots and the one outputs as same is considered as recognized 

anomaly.  

Current methods for one-shot learning are inclined 

towards the meta-learning approaches. The basic idea of meta-

learning is to exploit knowledge obtained from prior learning 

experience to learn more efficiently in future tasks [6, 7]. 

There exist several approaches in the literature that addressed 

the one- and few-shot learning. For instance, one category of 

such approaches is to treat deep neural networks as learners 

for feature encodings and train a separate meta-learner which 

learns how to update rules [8-10] or directly generate weights 

for the inference model [11]. In this way, the meta-learner 

directs the inference model to swiftly adjust its parameters to 
each specific task. On the other hand, instead of learning the 

updated parameters, the MAML [12] focused on finding the 

optimal initial parameters that can achieve a good 

generalization across similar tasks and make the task-specific 

fine-tuning process more efficient. Similarly, some 

approaches demonstrated that neural networks with 

augmented memory capabilities can act as a meta-learner. For 

instance, the method presented in [13] utilized Neural Turing 

Machine as the base model and trained it in such a way that 

the memory can encode and retrieve new information quickly. 
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Anomaly recognition is literally a video analytics task that 

can be analyzed by processing the visual and time series 

information in sequence of video frames. Traditionally, the 

spatiotemporal and motion-based features have attracted 

many researchers as they can effectively capture the salient 
features in visual time series data [14]. For instance, Ullah et 

al. [15] focused on industrial surveillance videos to 

automatically recognize normal and abnormal activities. 

They extracted visual features using optical flow CNN model 

and applied long short-term memory (LSTM) to learn 

different activity sequences. Similarly, Ryoo and Matthies 

[16] investigated local and global motion features to 

recognize interaction-level first-person activities. Their main 

goal was to let the first-person know about the ongoing 

activities in front of him. A TrajectoryNet is presented by 

Zhao and Xiong [17], which integrated the spatial features 

with the temporal dimension using a trajectory convolutional 
operation for anomalous activity recognition. In another 

study, Chong et al. [18] proposed a novel mehod for abnormal 

event identification via spatiotemporal autoencoders. The 

main aim of their method was to learn spatiotemporal features 

using an efficient autoencoder and to allow it to process up to 

140 frames per second. Liu et al. [19] presented an abnormal 

activity grouping and recognition framework using 

hierarchical clustering and multi-task learning. They 

evaluated their method on different realistic datasets and 

outperformed state-of-the-art accuracies with a high margin. 

A max-margin based learning framework using soft labelling 
approach is presented by Hu et al. [20]. In this paper, the 

authors focused on transition problem between two activities 

which negatively effects the accuracy of the trained model. 

This problem is encountered by defining two new labels with 

50% weights for each activity under transition. The final 

decision for the transition part is based on the prediction of 

the learning algorithm. Most of these methods are based on 

handcrafted features or CNN models followed by complex 

process of sequence learning which makes its implementation 

impracticable in the real-time scenarios.  

Metric learning approach become attractive to solve one- 

or few-shot classification problems due to recent good 
empirical results [21-23]. The aim of these approaches is to 

determine similarity or dissimilarity between two input 

samples based on a distance metric. For instance, Koch et al. 

[21] used siamese neural network to extract embeddings from 

two input images and identified whether these images are 

drawn from the same class, converting the distance between 

the obtained embeddings to a probability score. A similar 

work [24] proposed relation network, but the similarity score 

between a pair of inputs were captured by a CNN classifier 

instead of computing with absolute distance. A matching 

network [9] is proposed to learn a classifier for k-shots 
classification task. They exploited an attention mechanism 

over learned embeddings from the train samples to predict 

classes of test samples. 

The above discussed techniques are one of the best neural 

networks assisted approaches for one- and few-shot learning. 

However, they are limited to process single image and not 

suitable for processing sequences of frames for video level 

decision tasks such as anomaly recognition. To the best of our 

knowledge, the proposed approach is the initial brick to 

explore video level anomaly recognition using one-shot 

learning 3D siamese CNN model which is addressed with 

following major contributions: 

• We proposed one-shot anomaly recognition framework 

that takes only one or few annotated example videos per 

class for training. Once the model is trained then its 
powerful discriminative 3D CNN features can be used to 

predict anomalies not only for the new data but also for 

entirely newly added classes without retraining. 

• We investigated and performed extensive comparative 

analysis of the existing pretrained 3D CNNs for one-shot 

learning and proposed a lightweight siamese 3D CNN to 

extract high-level features from sequence of video frames 

for anomaly recognition. 

• Our proposed siamese inference model achieved better 

competence and performance on fewer number of 

trainable parameters (2.8 million) with reduced model 
storage of 33.6 megabytes. These statistics are 90% 

smaller than the siamese network trained using state-of-

the-art 3D CNN model. 

The rest of the paper is structured as follows: Section II 

contains the explanation and technical details of the proposed 

one-shot anomaly recognition. Section III provides a detailed 

discussion on obtained results and comparison with state-of-

the-art. Section IV conclude the paper with key findings, 

limitations and future directions. 

II. PROPOSED METHODLOGY  

In this section, the proposed one-shot learning for a temporal 

sequence level anomaly recognition framework is discussed 
in detail.  

 
Figure 2: A 3-way one-shot learning example for anomaly 

recognition in video sequences. (a) Verification phase where 

the model just learns the difference between two sequences. 
(b) One-shot phase where the model compares the test video 

with different example anomaly shots to recognize the 

anomaly.  



 
Figure 3: The architecture of the proposed 3D CNN for features encoding for our one-shot anomaly recognition framework. 

The output dimensions are given above and the number of filters NF, filter size FS, stride S, and padding P for each layer are 

given below the feature maps.

The proposed procedure for one-shot recognition is divided 

into two main steps. First, we train our siamese 3D CNN 
model to learn the similarity and dissimilarity of two video 

sequences. Next, we exploit the one-shot recognition by N-

way strategy of matching with example shots. The proposed 

framework is visualized in Figure 1 and a 3-way one-shot 

anomaly recognition example is shown in Figure 2. 

A. One-shot recognition overview 

Convolutional neural networks (CNNs) are widely used in 

computer vision for the image and video representation [25-

27], classification, and recognition tasks [28, 29]. But they 

require a lot of labelled data, which is one of the biggest 

limitations. There exist several applications which deal with a 

large number of classes that are dynamically increasing 

overtime. Furthermore, the samples for each class in such 

huge database is not enough in order to train the model 

properly because CNNs require a huge amount of data for 

each class. Due to the above-mentioned issues CNNs training 

is very costly and time-consuming process when a new class 
is inserted to the database. This problem can be tackled by 

using one-shot learning that requires only one or few training 

example for each class [23]. In one-shot learning the network 

does not classify the input (test image or sequence of frames) 

directly, but it requires two inputs in the form of a pair i.e., one 

is the test and second is the reference sample and the network 

tells us the similarity or difference between them [30]. 

Typically, sigmoid function is used to squeeze the similarity 

score in the range of 0 and 1. When the input test and reference 

samples are similar then the similarity score is 1 or closer to 1 

and vice versa. In one-shot learning, the network learns a 

similarity function instead of learning classification. 

The anomaly recognition problem can be considered as a 

binary supervised learning problem. The training dataset 

consists of (𝑥𝑖 , 𝑥𝑗) pairs, where ‘𝑥𝑖’ shows an example shot 

and ‘𝑥𝑗 ’ sliding window shot and for each pair we have a 

labeled similarity score ‘Y’ (0 or 1). The ideal case similarity 

function of one- shot siamese learning is mathematically given 

in Eq. 1 and a better visual understanding is drawn the Figure 

2. 

𝑓(𝑥𝑖 , 𝑥𝑗) = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑒𝑙𝑠𝑒           

  (1) 

N-way one-shot learning method is normally used to 

check the performance of the trained network [21]. An 

example of 3-way one-shot learning is shown in Figure 2. In 

this setup, three example shots are created to test the sliding 

window shots. In a 3-way one-shot learning, sliding window 

shot of a particular class and a set of 3 example shots from 3 

random classes are compared, but the sliding window will be 
similar with only one example shot in the set of 3 classes. In 

Figure 2, we are comparing a sliding window shot from a 

particular class with the set of example shots which are from 

3 random classes, as a result we obtain 3 different similarity 

scores S1, S2 and S3, respectively. If the model is correctly 

trained, it will return the maximum similarity score for the 

shots belonging to the same class and return the minimum 

similarity score for different shots. 

In this paper, we have used siamese network, the term 

siamese means clones or twins. It consists of two CNNs, 

which are exactly the same networks, having the equal number 

of layers, and share the same parameters [31]. It takes pairs of 
16 frames shots as an input, then after feeding a pair to the 

network, it creates two feature vectors using its 3D CNNs for 

each sequence. Then, it finds a distance between feature 

vectors using its matching network which uses the absolute 

distance and sigmoid activation for similarity score. 

B. Encoding shots via 3D CNN 

The features encoding from images using deep CNNs 

reached human level accuracy, however, from video it is still 

truly a difficult task because of the diverse nature of video data 

[32]. For instance, an apple category in image classification 

may have different colors, shapes, and sizes in training 

sample. However, for a road accident in video classification, 

everything in each training sample is totally changed because 

of the sequence of frames being not still images. In this paper, 

we are preforming anomaly recognition which occurs in the 

sequence of frames. In the video analytics literature, 

researchers from computer vision community have encoded 
video frames via 2D [33] or 3D [34] CNNs for various 

applications like human action and activity recognition. The 

siamese network has two encoding nets which provide feature 

vectors for matching the similarity of the inputs. Therefore, 

utilizing the 2D CNNs for frame level representation and then 

providing features to the matching net for the similarity score 

is not a good solution. Because each frame will give a 1000-

dimensional feature vector and collectively it is a very high 

dimensional features which may require extreme 

computations. The 3D CNN is well suited in our case because 

it processes the sequence of frames at once instead of 
processing individual frames. It is end-to-end connected with 

the matching net that helps the optimizer to precisely update 

the parameters of 3D CNN and matching net during training.  



In this study, we investigated two state-of-the-art 3D 

CNNs i.e., C3D [34] and I3D [35] for one-shot anomaly 

recognition using siamese network. The C3D is first popular 

3D CNN model which employs a homogenous structure of 

kernels throughout its convolutional layers. It has eight 
convolutional layers with 3×3×3 filters, five down sampling 

layers with 2×2×2 filters, and two fully connected layers 

followed by a SoftMax classifier. The large filters size and 

more convolutional layers make C3D a very large model of 

305 megabytes and has 79 million trainable parameters. The 

I3D [35] is an inflated 2D pretrained CNN which is expanded 

to the 3D model. On the backend, it utilized the pretrained 

parameters of Inception-V1 [36], that contains nine blocks and 

each block has multiple convolutional and pooling layers. It 

consists of total 22 weighted layers, five down sampling, and 

a SoftMax layer. I3D is also a very large model of 138 

megabytes and 9 million trainable parameters. Since, siamese 
network has two features encoding networks running in 

parallel to processes two sequences at a time. Therefore, the 

parameters become double and models with millions of 

parameters are not efficient. Furthermore, both models 

process the three-channel video frames because they are 

trained for action recognition and three-channel processing is 

also computationally expensive. However, the samples we 

have for anomaly recognition are totally different from each 

other where the color and background information have no 

role for its recognition task and only the motion and temporal 

information are important. So, keeping all these facts in our 
minds we design a lightweight 3D CNN model features 

encoding for our one-shot anomaly recognition. 

Our siamese network consist of twin 3D CNNs which has 

different settings on each layer. It has a total of six 3D 

convolutional, four 3D downsampling, and two fully 

connected layers. The overall architecture of our proposed 

model is visualized in Figure 3. We exploited 64 filters of size 

3×3×3 in the first layer and down sampled the features maps 

using 2×2×1 in only spatial dimension while keep the 

temporal data unchanged. This helps our model to easily learn 

the temporal patterns in the next layer where we applied 128 

3×3×2 filters followed by 2×2×2 max pooling. In the middle 
of the network, we established two consecutive convolutional 

layers of 2×2×2 kernels to learn the representations without 

quickly losing the spatiotemporal information. The hierarchy 

of convolutional layers ends with the output of 256×1×1×2 

followed by two fully connected layers with 512 and 256 

dimensions, respectively. The absolute distance of feature 

vectors from example and sliding window shots are calculated 

and processed via sigmoid activation to calculate the 

similarity score. The rectified linear (ReLU) activation unit is 

used in all convolutional and first fully connected layers. 

Furthermore, the Adam optimizer [37] is utilized for the 
parameter optimization. We processed gray level 16 frames 

sequences via small kernels of different sizes instead of large 

and homogenous nature kernels to reduce the model size and 

to capture the tiny patterns in small respective field. 

C. Shots similarity and recognition decision 

Once our model learns how to encode a pair of video 
sequences into feature vectors through a non-linear 

function  𝑓𝛼  with parameters α, then we compute absolute 

distance D between these vectors using Eq. 2. 

𝐷 = |𝑓𝛼(𝑥𝑖) − 𝑓𝛼(𝑥𝑗)|   (2) 

The obtained distance vector tells us how close two 

samples are to each other in feature space. However, the 

network must be able to decide whether a pair of video 

sequences comes from the same category based on the 

computed distance [38]. Therefore, the last output layer 

consisting of a single neuron employs the sigmoid function to 

obtain the probability of two video sequences belonging to the 

same class or not which can be computed using Eq. 3. 

𝑝(𝑥𝑖 , 𝑥𝑗) = 𝜎(𝑊𝐷)   (3) 

where 𝑊 corresponds to the weights of last layer. However, it 

is still challenging to make a prediction relying merely on the 

similarity score 𝑝 between two inputs. We take a test sequence 

and randomly select single example sequence from all classes 
to match the similarity score between them. Finally, the 

decision of anomaly class is based on the highly similar 

example shot.  

III. EXPREIMENTAL EVALUATION 

The experiments for evaluating our proposed one-shot 

anomaly recognition framework are discussed in this section. 

We performed training and testing on UCF-Crime dataset [39] 

and then an extensive comparisons with state-of-the-art is 

performed including overall accuracy, receiver operating 

characteristic curve (ROC), aera under the curve (AUC), 

number of parameters in model, size of inference model, and 
time complexity. The proposed siamese network for one-shot 

anomaly recognition is implemented and tested in Python 3.6 

on Windows 10 operating system. The deep learning toolbox 

known as “Keras” [40] is used for 3D CNN siamese network 

implementation. The hardware is equipped with Corei7 CPU, 

32-GB RAM, and GeForce-RTX 2080 with 12-GB graphics 

processing unit (GPU).  

A. UCF crime dataset  

UCF-Crime is one of the most recently released anomaly 

recognition benchmark dataset which consists of 128 hours 

videos. This dataset comprises 1900 uncut surveillance videos 

of 14 different categories including Assault, Abuse, Arson, 

Arrest, Burglary, Explosion, Road Accident, Stealing, 

Fighting, Robbery, Shoplifting, Vandalism, and Normal. This 

dataset is well-balanced i.e., half of the videos are anomalous 

events and half of the videos have normal events. This dataset 

is split into training and testing set by the publishing authors 

where the training set consists of 800 normal and 810 
anomalous events while the testing set includes 150 normal 

events and 140 anomalous events. The challenging part of this 

dataset is that its training part is not temporally annotated, and 

the training videos contain a lot of shots having no anomalies. 

However, its testing videos are entirely temporally annotated. 

The one-shot learning requires a fewer number of samples for 

recognition task therefore, we utilized its testing set for 

verification task in one-shot learning. 

B. Data preparation and evaluation metrics  

To train the network, we generated a batch consisting of K 

(less than or equal to the total number of classes) pairs of video 

clips with their target labels at each iteration. The first element 

of all pairs is the same while the second element of the pair is 

randomly sampled without replacement from the dataset.  



 
Figure 4: The comparison using ROC and AUC of the proposed 3D CNN siamese network with the networks constructed using 

state-of-the-art 3D CNNs including C3D and I3D. The experimental strategies are presented in columns i.e., 5-way, 10-way, 

and 14-way. The AUC values for all comparisons are given at the bottom of each graph. 

Table 1: The comparison of proposed 3D CNN siamese network with state-of-the-art models trained for one-shot anomaly 

recognition using overall accuracy, number of trainable parameters, and trained model size. 

Methods 
5-way 

Accuracy (%) 

10-way 

Accuracy (%) 

14-way 

Accuracy (%) 

Trainable Parameters 

(million) 

Model Size 

(MB) 

C3D [34] 35.7 31.5 27.3 96.9  1200 

I3D [35] 36.1 29.7 28.8 15 180.7 

Proposed 38.4 30.8 29.1 2.8  33.6 

 

The target scores are set to either 1 if the elements of a pair are 

from the same class and 0 otherwise. The half of the batch 

contained pairs of videos from the same class and the other 

half with different classes. In validation task, we exploited N-

way strategy. The batch generation process was almost 
identical to the one in training phase with some minor 

differences. Here, we set the number of video pairs to N. In 

our experiments we chose 5, 10 and 14 to validate our model. 

Moreover, the validation batch contained only a single pair of 

elements with the same class label. We expected that pair 

would give us the highest similarity score, treating it as a 

correct prediction. In order to calculate the accuracy of the 

model, we generated batches of random pairs for T trials and 

then find the ratio between the number of correct predictions 

c for batch i and the number of T as given in Eq. 4. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
1

𝑇
 ∑ 𝑐𝑖

𝑇
𝑖=1 ) × 100  (4) 

For visualization of the performance of our classifier, we 

utilized ROC curves and AUC [41]. ROC represents the trade-

off between the true positive rate (TPR) and false positive rate 

(FPR) whereas AUC indicates a degree or measure of 

separability. The ROC curve is plotted with TPR against the 
FPR, being on y-axis and x-axis, respectively. An ideal model 

has AUC near to the 1. 

C. Comparison with state-of-the-art  

We investigated two state-of-the-art 3D CNN models 

including C3D [34] and I3D [35] for sequence of video frames 

features encoding before modeling our own architecture. The 
comparison using overall accuracy, number of trainable 

parameters, and model size is given in Table 1. For 5-way 

evaluation setting, the C3D achieved 35.7%, I3D and 

proposed method reached 36.1% and 38.4% accuracy score, 

respectively. The 5-way is easy evaluation because 

inferencing with only five examples and the probability of  



 

Figure 5: The visual results of the proposed one-shot anomaly recognition with predicted class and its probability scores for 

sequences of 16 video frames. The test video is taken from the UCF-Crime training videos which is weakly labeled as shooting 

class. However, we have generated automatic temporal annotation for each 16 frames sequence.   

making wrong prediction is very low as compare to 10-way 

and 14-way. In 5-way we have choose only five anomaly 

classes for evaluation, in 10-way only ten anomalies, and in 

14-way evaluation we selected thirteen anomaly classes and 
one normal class. For 10-way evaluation the C3D model 

achieved highest accuracy of 31.5%, the I3D and our method 

achieved 29.7% and 30.8%, respectively. The 14-way is very 

important but challenging due to comparison of one sliding 

window shot with 14 examples and then deciding to which 

category it has higher similarity. For this challenging setting, 

we achieved 29.1% accuracy which is 1% greater than I3D 

results and 2% greater than C3D results. The comparison 

using ROC curve and AUC scores are shown in Figure 4. The 

proposed method achieved higher AUC of 0.57, 0.55, and 0.53 

for 5-way, 10-way, and 14-way anomaly recognition 

evaluation using 5-way, 10-way, and 14-way, respectively. 
The AUC for C3D and I3D are approximately 0.50 for all 

three N-way settings. For instance, the C3D achieved AUC of 

0.51, 0.51, and 0.49 for 5-way, 10-way, and 14-way anomaly 

recognition, respectively. The I3D achieved AUC of 0.5, 0.49, 

and 0.48 for 5-way, 10-way, and 14-way anomaly recognition, 

respectively. The overall accuracies of the aforementioned 3D 

CNNs are not deficient because the proposed method achieved 

better performance on 5-way and 14-way and the C3D 

perform well on 10-way anomaly recognition. However, 

comparing them using number of trainable parameters in the 

inference model then the C3D is more expensive because it 
has 96.9 million parameters and required 1.2 GB storage 

capacity. Similarly, the I3D is built from 15 million 

parameters and required 180.7 MB size in memory. The 

original C3D and I3D has fewer number of parameters as 

compare to the statistics we shown in Table 1. Because of 

some additional weights of the matching network in the 

model, therefore, parameters increased from the original C3D. 

In contrast with this the proposed model contains only 2.8 

million parameters and required only 33.6 MB space in 

memory. This make our proposed inference model superior 

from both state-of-the-art 3D CNNs. Furthermore, our model 
can be easily implemented over the resource contained devices 

for real-time anomaly recognition in surveillance. 

D. Performance analysis and discussion 

The visual results for one weakly labeled video are shown 

in Figure 5. The video is annotated as shooting class in the 

dataset. However, inside the video there are multiple shots 

representing different actions. For instance, the first and 

second 16 frames sequences are recognized as normal 

category and truly it is normal, but in the dataset, it is 
mentioned as shooting. In the third and fourth sequence a man 

is approaching the vehicle which are recognized as arson, a 

wrong prediction, however, in the arson category of the 

dataset, there exist several sample videos where man 

approaches the car. In the next three sequences a man come to 

shoot the driver in the car and the driver try to resist which is 

recognized as fighting class and semantically it is not wrong. 

In the final two frames there is casualty which is recognized 

as abuse while abuse category usually contains similar 

scenarios of injures in human and animal. Overall, the 

accuracy of the proposed model is less but it has produced 

semantically very correct results because the dataset is weakly 
labeled and need temporal annotations for better performance 

of anomaly recognition.  

 

Figure 6: Total time required to process a single sequence in 

three N-way settings including 5-way, 10-way, and 14-way.   

The time complexity comparison of the proposed one-shot 

anomaly recognition with C3D and I3D models are given in 

Figure 6. The processing time of surveillance anomaly 

recognition is very important for which our proposed model 

achieved better performance taking only 18, 41, and 58 

milliseconds to process 5-way, 10-way, and 14-way one-shot 
recognition, respectively. On the other hand, the C3D and I3D 

take almost triple and double time from the proposed model. 



As we increased the parameter N, the accuracy of our model 

dropped accordingly because it needs to decide in large 

number of similarity scores. The proposed method achieved 

better performance in terms of accuracy and processing time 

from the state-of-the-art and can be deployed for surveillance 

anomaly recognition.  

IV. CONCULSION 

This paper presents a real-time anomaly recognition 

framework for smart surveillance. The proposed method is 

based on one-shot learning strategy, where we exploited a 3D 

CNN siamese network that yields the similarity between two 

anomaly sequences that gives free hand to add new data as 

well as entirely new classes. We also investigated the 

performance of existing two famous state-of-the-art 3D CNNs 

by implementing it as siamese network. Our proposed siamese 

inference model shows better performance on fewer number 

of trainable parameters (2.8 million) with reduced storage size 
of 33.6 megabytes that make it 90% smaller than state-of-the-

art models. Further, we perform extensive experiments for 

comparative analysis of the existing 3D CNNs on UCF crime 

dataset.  

In future, we aim to explore few-shot recognition and try 

to address the shortcomings of one-shot anomaly recognition. 

Furthermore, spiking neural networks and fuzzy neural 

networks [42] are very hot topics these days and very much 

suitable to be investigated for anomaly recognition task. In 

addition, we intend to optimize and deploy our model on 

resource constrained devices such as nano-Jetson and 
raspberry Pi with neural kit. Furthermore, the current work is 

based on full frame analysis, we plan to analyze multiple 

anomalies by detection and tracking different targets in the 

video. In addition, we are motivated to use multi-view 

surveillance data for precise anomaly recognition in the visual 

sensor network.  
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