
A Classification Surrogate Model based
Evolutionary Algorithm for Neural Network

Structure Learning
Wenyue Hu, Aimin Zhou, and Guixu Zhang

Shanghai Key Laboratory of Multidimensional information Processing
School of Computer Science and Technology, East China Normal University, Shanghai, China

51184506013@stu.ecnu.edu.cn, {amzhou,gxzhang}@cs.ecnu.edu.cn

Abstract—Designing neural networks often requires a large
number of artificial intelligence experts. However, such manual
processes are time-consuming and require numerous resources.
In this paper, we try to search neural network structures auto-
matically for the image classification task. Moreover, considering
the huge computational cost of neural architecture search (NAS),
we attempt to apply a classification surrogate model based
multi-objective evolutionary algorithm to search neural network
architectures (CSMEA-Net). The algorithm combines two objec-
tives, i.e., minimizing the validation error and the computational
complexity measured by the number of floating-point operations
(FLOPs) to achieve Pareto Optimality. In addition, we improve
the components of the cell-based search space. The performance
of network architectures discovered by our method is evaluated
on CIFAR-10 and CIFAR-100 datasets. The experimental results
show that the proposed approach can find a higher-performance
neural network architecture compared with both hand-crafted
as well as automatically-designed networks.

Index Terms—convolutional neural network, neural archi-
tecture search, multi-objective evolutionary algorithms, image
classification

I. INTRODUCTION

Current convolutional neural networks (CNNs) have a great
number of hyper-parameters and parameters in convolutional
and pooling layers, which are inefficient to be set manually
by human experts. Therefore, some methods that optimize the
hyper-parameters of CNNs, such as Grid Search (GS), Random
Search (RS) [1], Bayesian-based Gaussion Process (BGP) [2],
and Sequential Model-Based Global Optimization (SMBO)
[3] have come up gradually. However, these architecture-
search methods are only used for optimizing some pre-defined
parameters of a fixed CNN structure, such as the kernel size
and the number of channels in each layer. It is not flexible
because it still needs engineers to design the whole network
structure manually. Later, neural architecture search (NAS) [4],
which can automatically search for the optimal architecture
has been drawing the growing attention of researchers. The
widely used methods contain reinforcement learning (RL) [5],
evolutionary algorithm (EA) [6], [7], and gradient descent
(GD) [8]. Though many architectures found in these automatic

This work is supported by the National Nature Science Foundation of China
(Nos. 61731009, 61673180) and the Science and Technology Commission
of Shanghai Municipality (No. 19511120600). (Corresponding author: Guixu
Zhang.)

search algorithms have already achieved greater performance
than state-of-the-art manually-designed CNNs, there are two
limitations of current approaches. Firstly, some RL and EA
methods require massive computational resources. Second,
the gradient-based method just focuses on a single objective,
which minimize the error metric in a specific task.

In this paper, we present a novel NAS method to address
the aforementioned problems. To balance the limited compu-
tational resources and the predictive performance in a specific
task, we use a multi-objective evolutionary algorithm (MOEA)
as the searching approach to evolve and optimize the network
architecture. We also attempt to integrate K-Nearest Neighbors
(KNN) [9] into the selection procedure of a MOEA in order
to reduce the computational cost and speed up the training
time. The main contributions of our work are demonstrated as
follows:

• We develop a discrete scheme to encode a neural net-
work structure and reproduce the next population, which
takes inspiration from the classification based preselec-
tion (CPS) strategy for multi-objective evolutionary opti-
mization [10]. We use KNN as a classification surrogate
model to learn and evaluate the discrete chromosomes’
performances.

• We improve the current neural architecture search space
by adding several novel components to the NASNet [5]
search space in order to further enhance the accuracy of
the ultimate model. Besides, we redesign the architecture
of the final neural network. We also use a new nonlin-
earity activation function h-swish [11] to substitute ReLU
for increasing training accuracy and computational speed.

• Within only 4 days on 1 GPU, our method discovers a
competitive neural network architecture with respect to
higher accuracy and less resource consumption compared
with hand-designed networks such as DenseNet [12],
single-objective and multi-objective EA-based networks,
and RL-based networks.

The rest of this paper is organized as follows. Section
II describes the background and related work about image
classification and the development of neural networks. Sec-
tion III presents our method of network representation and
optimization, which includes the proposed search space and

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

how to encode and decode a neural network. Section IV
demonstrates a classification surrogate model based multi-
objective evolutionary algorithm to search a set of CNN
architectures. Section V presents the experimental setting and
the results of the proposed algorithm. Then we analyze these
results. In section VI, we sum up this paper and discuss future
work.

II. RELATED WORK

Image classification can be described as the task of classify-
ing images into several pre-defined classes. It is an elemental
application in computer vision, which lays the foundation for
other computer vision tasks such as image restoration [13] and
object detection [14].

There are usually two-stage approaches to deal with the
image classification problem. First, extracting features from
images as the input of a trainable classifier. The design of the
feature extraction stage has a great influence on the perfor-
mance of classification tasks, which traditionally is regarded
as a challenging task. CNNs were useful architectures to
overcome these challenges. Moreover, Deep CNNs (DCNNs)
that were supported by large data sets and GPUs brought the
renaissance to neural networks. Krizhevsky et al. [15] used
a DCNN to achieve first place in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) 2012.

Szegedy et al. [16] proposed an inception DCNN architec-
ture, GoogLeNet, which won both the ImageNet classification
and detection challenges in 2014. He et al. [17] put forward
deep residual networks (ResNets), which showed state-of-
the-art accuracy for some challenging recognition tasks on
ImageNet and MS COCO competitions. Though ResNets had
more than 100-layer depth, ResNets solved the degradation
problem by identity mappings. Residual Inception networks
[18] combining residual connections and inception architecture
achieved better performance than other similarly Inception
Networks on the ImageNet classification (CLS) challenge.

Generating neural network architectures automatically has
aroused great interest in recent years. Generally speaking,
these methods can be divided into reinforcement learning
(RL), evolutionary algorithm (EA), gradient descent (GD) and
some other approaches.

The MetaQNN method [19] applied a Q-learning method
to search connections in convolutional layers, pooling layers,
and fully connected layers. Zhong et al. [20] also used a Q-
learning strategy to explore the design of a computational
block, which was then repeated several times to build an entire
network. Zoph and Le [21] applied a policy gradient method
to train a recurrent neural network controller to generate the
whole network at the same time. NASNet [5] repeated several
normal cells and reduction cells to construct a neural network.
Considering the trade-off between prediction accuracy and
energy consumption, Hsu et al. [22] extended the NASNet
method to the multi-objective domain. However, multiple
linear optimizations of different scalarized objectives were
confirmed to be not as efficient as simultaneous approaches
[23].

Multi-objective evolutionary algorithms have been little
used for NAS. Kim et al. [24] proposed Neuro-Evolution
with Multi-objective Optimization (NEMO), an algorithm uti-
lizing NSGA-II [23] to minimize inference time and error
metric; however, their methods only explored some hyper-
parameters and the number of output channels of each layer
on a small set of some architectures. The encoding way of
NSGA-Net [25] was similar to the binary encoding scheme
of Genetic CNN [7], and NSGA-Net used NSGA-II as the
searching algorithm. However, the computational space of
binary encoding was square about the number of nodes. Dong
et al. [26] proposed Platform-aware Progressive search for
Pareto-optimal Net (PPP-Net), which automatically generated
neural networks with a pre-dened number of replicated blocks.
Elsken et al. [12] demonstrated an evolutionary algorithm
LEMONADE for multi-objective architecture search and used
network morphisms operators to generate children networks.

Most of the aforementioned methods require huge com-
putational resources because they need to train and validate
thousands of neural network. A possible way of reducing such
computational burden is to estimate an architecture’s perfor-
mance by learning curve extrapolation (e.g., [3]). However,
there are barely surrogate models in MOEAs applied to NAS.
We attemp to speed up evaluation by using a surrogate model
to predict the performance of a trained model.

III. REPRESENTATION AND OPTIMIZATION OF NEURAL
NETWORK STRUCTURE LEARNING

This section introduces the overall procedure of neural
network structure optimization, including the definition of
operation search space, and the encoding and decoding strat-
egy to represent a neural network. Our method consists of
two stages, i.e., architecture search stage and architecture
evaluation stage. The flow diagram of the neural network
structure learning is shown in Fig. 1.

Fig. 1: The flow diagram of network structure optimization

In the first stage, all individuals in the first generation
are randomly initialized. We propose an approach to encode
each neural network architecture into a discrete chromosome,
which represents an individual in a population. Then we
define some useful operations in the search space so as to
make the evolutionary algorithm explore network architectures
more efficiently. Each individual can be decoded to a normal
convolutional cell and a reduction convolutional cell, which
are the compositions of a whole neural network. Then we train
every neural network roughly, that is, training fewer epochs
in the first stage. The test accuracy is regarded as the fitness
value to indicate the performance of each individual. Returning
these evaluation results to the multi-objective evolutionary

algorithm, and the algorithm applies crossover and mutation
to generate the next population. These steps in the process
will be executed circularly until exceeding a given maximum
number of the function evaluations and obtain a set of network
candidates with great performance. In the second stage, we
pick an individual in the final population, train it from scratch
and report its performance on the test set.

A. Operation search space

Based on the cell-based search space, we explore two types
of computation cells as the building blocks of the overall
architecture. The normal cells preserve the image size of the
input feature map, while the reduction cells reduce the image
size by a factor of two. We define the computational operations
in TABLE I.

TABLE I: Computational operations of search space

index operation

0 zero
1 3× 3 max pooling
2 3× 3 average pooling
3 skip connection
4 3× 3 depthwise-separable convolution
5 5× 5 depthwise-separable convolution
6 3× 3 dilated convolution
7 5× 5 dilated convolution
8 1× 7 then 7× 1 convolution
9 3× 3 linear bottleneck and inverted residual convolution

First of all, in order to reduce computation cost and model
size, we replace the traditional convolution layers with the
depthwise separable convolution, the linear bottleneck and
inverted residual structure, and the dilated convolution.

The depthwise separable convolution can be regarded as two
separate layers: a depthwise convolution for spatial filtering
and a 1 × 1 pointwise convolution for feature generation.
Meanwhile, we use linear bottleneck and inverted residual
convolution which applies linear convolution to expand a low-
dimensional representation to a high dimension, to filter it with
a depthwise convolution, and to project the features back to
a low-dimensional representation. Besides, we utilize dilated
convolutions to expand the receptive field without losing
resolution or coverage. Because the h-swish activation function
has the characteristics of no upper bound and lower bound,
smoothness and no monotony, which is better than ReLU in
deep neural networks, we substitute the ReLU function with
h-swish in deeper layers to improve the accuracy of neural
networks. The h-swish and ReLU6 are defined as:

h-swish[t] = t
ReLU6(t+ 3)

6
(1)

ReLU6 = min(max(0, t), 6) (2)

Each cell is organized by several nodes to form a directed
acyclic graph (DAG). Assume that every node is a feature
map in neural networks and every connected edge is related
to several pre-defined operations. So each edge will perform
an operation on its connected node.

Especially, there are three characteristics of the final net-
work architecture. Firstly, we connect the two types’ cells by
such a pattern: each cell gets the outputs of the two previous
cells as input. Reduction cells locate at the

⌊
1
3

⌋
and

⌊
2
3

⌋
depth

of the final neural network, and the rest are normal cells.
Secondly, we embed the Squeeze-and-Excitation module into
every cell to use global information in order to selectively
emphasize the important feature map and surppress less useful
information for the purpose of improving the representational
power of a network. Last, motivated by deep pyramidal resid-
ual networks, we gradually increase the channel dimension of
each cell instead of down-sampling sharply.

B. Encoding and decoding strategy

Assume that a neural network architecture u is composed
by m cells. Each cell has n nodes and we can encode a
cell to a chromosome of length 4n, such as x is a string
of [x1, x2, x3, x4, ..., x4n−3, x4n−2, x4n−1, x4n]. For example,
using [x4i−3, x4i−2], [x4i−1, x4i] denote two inputs of the i-th
node. The x4i−2 and x4i−1 value range from 0 to 9 denoting 10
pre-defined operations, while x4i−2 and x4i−2 range from 0 to
i denoting the previous nodes before node i. x4i−3 represents
the index of the first operation op4i−3, and x4i−2 represents
the index of the first input feature map. As shown in Eq. (3),
we apply add operation to the two inputs op4i−3(x4i−2) and
op4i−1(x4i).

node[i] = add(op4i−3(x4i−2), op4i−1(x4i)) (3)

Fig. 2: Normal cell learned on CIFAR-10

Fig. 3: Reduction cell learned on CIFAR-10

Fig. 2 and Fig. 3 show an example of the normal convolu-
tional cell and reduction convolutional cell. h[i − 1] and h[i]
(green color nodes) are the output of previous cells. The inputs
of feature maps (blue color nodes) are the outputs of previous
nodes. Each edge (line with arrow) having an operation name
annotated above the line indicates an operation of the pre-
defined search space as TABLE I described. In decoding
scheme, mapping every pairwise tuples as a group of input.

For example, for an encoding string, the pairwise tuple [[3, 1],
[9, 0]] can be decoded to [[skip connection, 1], [LinearBot-
tleneck 3× 3, 0]], which means applying the operation 3× 3
linear bottleneck and inverted residual convolution to h[i] and
applying skip connection to h[i− 1]. Then more feature maps
are constructed by taking them as two new inputs and adding
them together. Finally, the feature maps that remain unused as
input are concatenated to form the output of the cell.

As shown in Eq. (4), one of the objectives in our seraching
algorithm is to minimize the fitness value and the other one is
to minimize the complexity of the neural network. Training
each neural network u to obtain the tness function value
fit1(x) = NN(u) and the complexity fit2(x) = Flops(u).

minimize fit1(x) = NN(u)

minimize fit2(x) = Flops(u)
(4)

IV. EVOLUTIONARY ALGORITHM FOR NEURAL NETWORK
SEARCH

In this section, we present the multi-objective evolutionary
algorithm based on preselection [10] to evolve a set of
competitive network structures. CPS-MOEA [10] particularly
focuses on real-parameter optimization. However, in view of
the representation of neural network architecture, we modify
the reproduction operators in CPS-MOEA in order to make
them more suitable for discrete chromosomes.

In traditional evolutionary algorithms, the selection operator
depends on the real calculated objective values of offspring in
each generation to select a certain number of promising can-
didates. Similarly, the validation accuracy of every candidate
network can be regarded as an indicator to reflect the offspring
performance in NAS. Usually, generating more offspring so-
lutions is more likely to find the best solution. However,
training a deep neural network requires a large amount of
time and computational resources. So the fitness evaluation
of an individual is extremely expensive. We attempt to use
a classifier as the surrogate model to learn the approximate
performance of each network architecture for eliminating bad
offspring and retaining good ones.

A. Classifier Training

In each generation, our algorithm divides the population C
into two clusters and maintains two additional populations:
C+ consists of

⌊
N
2

⌋
positive solutions, and C− contains⌊

N
2

⌋
negative solutions to train a classifier. In multi-objective

optimization, Pareto domination can be used to judge the
good and bad solutions: labelling a non-dominated solution
x as Class(x) = +1; labelling a dominated solution x as
Class(x) = −1.

In this paper, we choose the K-Nearest Neighbor (KNN)
as the classifier to solve the classification problem. Let
{〈x, Class (x)〉} be a set of training data, where x is a feature
vector representing for the encoding of network structure
and Class(x) is its corresponding label ∈ {−1,+1}. Their
relationship can be denoted as label = Class(x). As shown
in Eq. (5), The target of KNN is that taking C+ and C−
as the training dataset to find an approximate relationship

label = Ĉlass(x) in order to replace the real relationship.
xi denotes the ith closest feature vector, according to the
Euclidean distance.

KNN(x) =

{
+1

∑K
i=1 Class

(
xi
)
≥ 0

−1 otherwise
(5)

B. Offspring Reproduction

In Line 8 of Algorithm 1, the next generation is created
by the slight mutation and two-point crossover to transform
architectures of existing candidates. The two-point crossover
operator illustrated in Fig. 4 is a specific case of a n-point
crossover technique. Two random points are chosen on the
parental chromosomes and the genetic material is exchanged
at these points to exchange information between individuals
during the search. The mutation operator removes one bit of
a chromosome and replaces it by a different bit in a randomly
chosen position. In our search space, the mutation can change
the current operation or feature map in each cycle by choosing
one of the two at random. For a better explanation, we
name them as feature map mutation and operation mutation,
an example shown in Fig. 5. The feature map mutation will
replace the chosen feature map with another feature map in
the same cell as the input of the next node. The operation
mutation will modify the existing operation with a random
choice from the pre-defined list of operations.

Fig. 4: Illustration of the two-point crossover

Fig. 5: Illustration of the two mutation operators

C. Algorithm Framework

The whole algorithm framework is shown in Algorithm 1.
In Line 3, the algorithm will stop when the current number of
generation g exceeds a given maximum number of generation
gmax. In Line 5, C+ = NDS

(
C,
⌊
N
2

⌋)
means using the

nondominated sorting scheme [23] to choose the best
⌊
N
2

⌋
solutions from the population C of size N and reserve them
in C+, and C− contains the remaining half. In Line 8-
16, a size of M offspring solutions Y are generated by the
reproduction operator. Afterward, KNN is used to predict their
corresponding labels. Then the individuals with label = +1
are selected as the offspring solutions and stored in set G.
In Line 18-21, the newly generated non-dominated G+ and
dominated G− solutions are used to update C+ and C−
respectively. In Line 24 and 25, picking an individual from
the Pareto Frontier of the final population, and then refining
it to get the fitness function value.

Algorithm 1 Main framework of CSMEA-Net

1: Initialize the population C =
{
x1, x2, . . . , xN

}
with the

proposed gene encoding strategy;
2: Set the current generation g = 1;
3: while g ≤ gmax do
4: Decode each xi in C and evaluate it to get the fitness;
5: Set C+ = NDS

(
C,
⌊
N
2

⌋)
and C− = C\C+;

6: Train a classifier k = Ĉlass(x) with dataset C+∪C−;
7: Set G = ∅;
8: for x in C do
9: Generate M offspring Y =

{
y1, y2, . . . , yM

}
;

10: Set Y ′ =
{
y ∈ Y |Ĉlass(y) = 1

}
;

11: if Y ′ is empty then
12: Y ′ = Y ;
13: end if
14: Randomly choose y ∈ Y ′ as the offspring solution;
15: Set G = G ∪ {y};
16: end for
17: Update C = NDS (C ∪G,N);
18: Set G+ be the non-dominated solutions in G;
19: Set G− be the dominated solutions in G;
20: Update C+ = NDS

(
C+ ∪G+,

⌊
N
2

⌋)
;

21: Update C− = NDS
(
C− ∪G−,

⌊
N
2

⌋)
;

22: Update g = g + 1;
23: end while
24: Pick an individual xi from the Pareto Frontier of the final

population C;
25: Refine xi to get the fit(xi)
26: return fit(xi);

V. EXPERIMENTS AND RESULTS

A. Benchmark Dataset

We choose CIFAR-10 and CIFAR-100 as the benchmark
datasets to test our method. The CIFAR-10 dataset consists of
60,000 color images with the size of 32 × 32 in 10 classes.

80 percent of the whole dataset are used for training, and
the rest are used for testing. The CIFAR-100 dataset has the
same image size and format as the CIFAR-10 dataset, while
it contains 100 classes.

B. Implementation Details

The experiments are carried out in two stages: architecture
search stage which trains every architecture to get a rough test
result; architecture evaluation stage which trains the selected
network with more epochs. We set the number of nodes to
5 and the number of operations to 10 in each cell. The
initial population is generated by uniform random sampling.
Considering the convention of evolutionary algorithm and the
high computational cost of our experiment, the population size
is set as N = 40 and the maximum number of generations
gmax is 30. Based on empirical experience, the number of
nearest points K in KNN is set as 3. The number of generated
offspring solutions for each individual is set as M = 3 in the
preselection procedure of CPS-MOEA.

When training neural networks during searching stage,
we use standard stochastic gradient descent (SGD) back-
propagation algorithm and a cosine annealing learning rate
schedule [27]. The initial learning rate is 0.025, the training
epochs are 25, and the batch size is 76. In the architecture
evaluation stage, we use the same configuration, except in-
creasing the training epochs to 600. We train the selected
architecture which is composed of 10 cells from scratch with
all the training data and evaluate it on the test set.

C. Results Analysis

Our algorithm aims at minimizing two objectives: the vali-
dation accuracy on CIFAR-10 and CIFAR-100; the number of
multiply-add operations (FLOPs) that means the total count
of operations in the forward pass of each evolved network.
We pick the last 4 stages of the bi-objective Pareto Frontiers
obtained by CSMEA-Net to plot in Fig. 6, which clearly shows
a gradual improvement of the whole population. To compare
the network searched from our algorithm with other hand-
crafted and automated architectures, we choose the network
with the lower classification error from the final Pareto Frontier
(the knee point marked with black frame in Fig. 6) and train
with the entire CIFAR-10 and CIFAR-100 training set. The
chosen neural network results in 2.51% test error on the
CIFAR-10 test set with 2.42 Millions of parameters and 16.28
MFLOPs. Fig. 7 plots the classification accuracy of our model
within 600 epoches. It can be seen that the accuracy quickly
increases before 100 epochs. Between 100 and 600 epochs, the
accuracy gradually enhances and has a little range fluctuation.
Finally, it converges to 97.49 percent.

TABLE II presents a summary that compares our network
with state-of-the-art hand-designed and automated methods.
During the neural network searching stage, the experiment
takes approximately 4 days on a single 2080Ti GPU. Notably,
the CSMEA-Net far outweighs the human-designed models
such as the highest-performing architectures Wide ResNet
and DenseNet in every aspect such as parameters, FLOPs,

TABLE II: Comparison with the best classification error of state-of-the-art networks on CIFAR-10 (C-10) and CIFAR-100
(C-100)

Architecctures Params Mult-Adds Test Error(%) Search Cost Search Method
(M) (M) on C-10 on C-100 (GPU days)

Wide ResNet [28] 36.5 5953 4.17 20.5 - manual
DenseNet-BC (k = 40) [12] 25.6 - 3.47 17.18 - manual
MetaQNN(top model) [19] 11.2 - 6.92 27.14 100 RL

NAS + more filters [21] 37.4 - 3.65 - 3150 RL
ENAS + cutout [29] 3.3 533 2.75 - 0.5 RL

BlockQNN-S more filter [20] 39.8 - 3.54 18.06 96 RL
NASNet-A + cutout [5] 3.3 532 3.41 - 2000 RL

Darts + cutout [8] 3.3 - 2.76 - 4 gradient-based
AmoebaNet-A + cutout [30] 3.2 533 3.34 - 3150 evolution

GeNet [7] 156 - 7.10 29.05 - evolution
CGP-CNN(ConvSet) [31] 1.75 - 6.34 - - evolution
CGP-CNN (ResNet) [31] 2.64 - 6.05 - 28 evolution

PPP-Net-Baseline [26] 11.39 1364 4.36 17.18 - multi-evolution
MONAS [32] - - 4.34 - - multi-evolution

LEMONADE [6] 4.7 - 3.05 - 56 multi-evolution
NSGA-Net (filters=128) [25] 3.3 1290 3.85 20.74 8 multi-evolution

CSMEA-Net 2.42 16.28 2.51 15.91 4 multi-evolution

Fig. 6: Progress of the Pareto front of CSMEA-Net during
architecture search (The knee point marked with black frame
is the chosen neural network to refine.)

and test accuracy. RL-search and EA-generated methods need
orders of magnitude much computation resources than our
method, which illustrates the necessity of a surrogate model
based multi-objecctive evolutionary algorithm. Compared to
the gradient-based NAS method such as DARTS, we also
have the advantage in test error and parameters. One of the
greatest strengths of the multi-objecctive evolutionary algo-
rithm (MOEA) is that we can flexibly choose an architecture
from the Pareto Frontier according to different scenarios. For
example, if engineers want to construct an efficient mobile
architecture, they could pick the neural network with fewer
FLOPs. Moreover, the classification surrogate model employed
in MOEA can approximate the original objective function and
estimate the performances of the candidate solutions. Then
based on the estimated fitness values, promising solutions can
be identified. Therefore, the surrogate model can help our
algorithm to use less computational resources and make our
algorithm more fast than other multi-objecctive NAS methods.

Besides, we test our model on CIFAR-100 dataset, which
is evolved on CIFAR-10 with the same training setup for
evaluating the transferability. The training time takes about
1.5 GPU days. Results shown in TABLE II demonstrate that
the architecture found by our method can be transferable
to CIFAR-100 and achieves better performance than other
architectures.

The decoding architecture is shown in Fig. 2 and Fig. 3, and
the encoding chromosome of cell structure is [3, 1, 9, 0, 8, 0,
7, 2, 3, 2, 8, 1, 8, 2, 9, 0, 3, 2, 1, 2, 4, 1, 1, 1, 9, 2, 6, 0, 9,
2, 2, 1, 5, 4, 2, 1, 8, 0, 3, 4], which can be divided into two
parts of equal length. The first part [3, 1, 9, 0, 8, 0, 7, 2, 3,
2, 8, 1, 8, 2, 9, 0, 3, 2, 1, 2] can be decoded to a normal cell,
and the second part [4, 1, 1, 1, 9, 2, 6, 0, 9, 2, 2, 1, 5, 4, 2,
1, 8, 0, 3, 4] can be decoded to a reduction cell.

Fig. 7: The classification accuracy of the picked network in
each training epoch

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we attempt to use the multi-objective evolu-
tionary algorithm (MOEA) based on a classification surrogate

model for neural architecture search. Our method affords a
number of practical benefits. Firstly, the design of neural
network architectures can effectively optimize and balance
the trade-off of two competing objectives: classification error
and computational complexity. Secondly, population based
methods can produce a set of individuals in each generation,
so experts could select a suitable neural network according
to their needs, which is more effective than just optimizing
the weighted linear combination of objectives. Last, the clas-
sification surrogate model which is implemented into Pareto
domination based MOEA framework can filter possible ’neg-
ative’ offspring solutions to improve the efficiency of MOEA.

We investigate our algorithm’s potential on CIFAR-10 and
CIFAR-100. The experimental results show that the evolved
neural network outperforms state-of-the-art automated and
hand-crafted models both in terms of accuracy and model
complexity. Thus our method can effectively balance the trade-
off between validation accuracy and number of multiply-add
operations to discover usable and efficient solutions.

Because evaluating on a large-scale dataset will require
massive computational resources, we only test the proposed
multi-objective evolutionary algorithm on some commonly
used middle-scale benchmarks, not on a large-scale dataset.
For future work, we will put effort into efcient tness eval-
uation methods in order to reduce the search time and the
computational resources. Moreover, another future work is that
applying the proposed method to other image problems, such
as image restoration or object detection.

REFERENCES

[1] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research, vol. 13, no. 2,
pp. 281–305, 2012.

[2] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. Adaptive computation and machine learning, MIT Press, 2006.

[3] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in International
conference on learning and intelligent optimization, pp. 507–523, 2011.

[4] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp. 1–
21, 2019.

[5] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8697–8710,
2018.

[6] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” in International
Conference on Learning Representations, 2019.

[7] L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 1379–1388, 2017.

[8] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architecture
search,” in International Conference on Learning Representations, 2019.

[9] D. Coomans and D. L. Massart, “Alternative k-nearest neighbour rules in
supervised pattern recognition: Part 1. k-nearest neighbour classification
by using alternative voting rules,” Analytica Chimica Acta, vol. 136,
pp. 15–27, 1982.

[10] J. Zhang, A. Zhou, and G. Zhang, “A classification and Pareto domina-
tion based multiobjective evolutionary algorithm,” in IEEE Congress on
Evolutionary Computation, pp. 2883–2890, 2015.

[11] A. Howard, M. Sandler, G. Chu, et al., “Searching for MobileNetV3,”
IEEE International Conference on Computer Vision, pp. 1314–1324,
2019.

[12] G. Huang, Z. Liu, V. D. Maaten, et al., “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2261–2269, 2017.

[13] G. J. van Wyk and A. S. Bosman, “Evolutionary neural architecture
search for image restoration,” in International Joint Conference on
Neural Networks, pp. 1–8, 2019.

[14] J. Zhao, X. N. Zhang, H. Gao, J. Yin, M. Zhou, and C. Tan,
“Object detection based on hierarchical multi-view proposal network
for autonomous driving,” in International Joint Conference on Neural
Networks, pp. 1–6, 2018.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Conference and Workshop
on Neural Information Processing Systems, pp. 1106–1114, 2012.

[16] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proceedings of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

[18] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,” in
The Association for the Advancement of Artificial Intelligence, pp. 4278–
4284, 2017.

[19] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” in International Conference
on Learning Representations, 2017.

[20] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise
neural network architecture generation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2423–
2432, 2018.

[21] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in International Conference on Learning Representations,
2017.

[22] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
International Conference on Machine Learning, vol. 70 of Proceedings
of Machine Learning Research, pp. 2902–2911, 2017.

[23] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II,” in Parallel Problem Solving from Nature, vol. 1917 of Lecture
Notes in Computer Science, pp. 849–858, 2000.

[24] Y.-H. Kim, B. Reddy, S. Yun, and C. Seo, “NEMO: Neuro-evolution
with multiobjective optimization of deep neural network for speed and
accuracy,” in Journal of Machine Learning Research: Workshop and
Conference Proceedings, vol. 1, pp. 1–8, 2017.

[25] Z. Lu, I. Whalen, V. Boddeti, et al., “NSGA-Net: neural architecture
search using multi-objective genetic algorithm,” in Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 419–427, 2019.

[26] J. Dong, A. Cheng, D. Juan, W. Wei, and M. Sun, “PPP-Net: Platform-
aware progressive search for pareto-optimal neural architectures,” in
International Conference on Learning Representations, 2018.

[27] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions, 2017.

[28] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British
Machine Vision Conference, 2016.

[29] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in International Conference
on Machine Learning, vol. 80 of Proceedings of Machine Learning
Research, pp. 4092–4101, 2018.

[30] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 33, pp. 4780–4789, 2019.

[31] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic programming
approach to designing convolutional neural network architectures,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 497–504, 2017.

[32] C.-H. Hsu, S.-H. Chang, J.-H. Liang, and othera, “MONAS: Multi-
objective neural architecture search using reinforcement learning,” Com-
puting Research Repository, vol. abs/1806.10332, 2018.

