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Abstract—The BlockChain Neural Network increments grad-
ually neurons as user information or data increases, offering a
biologically inspired “Neuron as a Service” (NaaS) solution. The
additional neurons codify both the new information to be added
to the “neural block” and the previous neurons potential to form
the “neural chain”. This configuration provides the proposed
algorithm with the same properties found in the BlockChain:
security and decentralization with the same validation process:
mining the input neurons until the neural network solution
is found. The mathematical model of the Neural Networks
in BlockChain configuration is presented in this paper with
evidences of its stable learning convergence during its learning
process. The main advantage of this research proposal is the
biological simplicity of the solution, however it suffers high
computational cost when the number of neurons increase. Exper-
imental results that validate the proposed method are presented
with optimistic conclusions; this paper provides the biologically
inspired mathematical model as a digital step forward to avoid
physical currencies, documentation and contracts.

Index Terms—Neural Network, BlockChain, Neuron as a
Service

I. INTRODUCTION

The concept of “as a Service” outsources the management
and ownership responsibilities to a third party service provider;
it also increases efficiency and reduces cost as the service
provider optimizes the usage of the assets that are required
to deliver the service. The inconvenient truth is that business
performance relies on the service provider in key aspects such
as Cybersecurity; to address this dependency, Service Level
Agreements (SLA) and free market competition forces both
parties to perform optimally. Key business applications of the
“as a Service” concept are data centers, that optimize CPU,
memory, software, power and networks based on user data
demand. Similarly, Mobility as a Service (MaaS) detaches
the ownership between the user and the vehicle including the
related liabilities such as taxes, parking, and maintenance by
paying for service based on usage such as time or distance. The
key decision to be made is the balance between the additional
costs associated with the services a business outsources and
the assets it owns. This paper presents the concept: “Neuron
as a Service”, a biologically inspired model where neurons
are gradually incremented on demand as user information
expands.

BlockChain enables the digitalization of contracts as (1)
authentication between the parties within the agreement, (2)

encryption of information that gradually increases in size as
more data is generated between the parties, and finally (3)
validation of the encrypted information that is stored in a
decentralized network externally from the relevant parties. Due
to these key properties, BlockChain functionality has several
applications such as Cryptocurrency [1], Smart Contracts [2]
[3] [4], Smart Cities [5], 5G in Intelligent Buildings [6] and
Internet of Things [7] [8]. BlockChain applications mostly
cover the digitalization of physical agreements based on paper
eliminating the need for an external supervisor or authorizer
that generates the third party in the agreement.

This paper presents a BlockChain system where each
successive “neural blocks” contains additional neurons and
synapses so that neurons in successive blocks are intercon-
nected and chained. Additional neurons codify (1) the new
data to be inserted within the “neural block” and (2) the
potential of the previous neurons generates the “neural chain”.
The BlockChain Neural Network has analogue biological
properties as the BlockChain:
• user authentication based on a mining process that ran-

domly assigns potential to the input neurons until the
neural network solution is found

• data encryption as information is contained in neural
network weights rather than the neurons

• user information is gradually incremented and learned
with additional neurons and stored in a decentralised
network

The key benefit of the presented neural network in a new
BlockChain configuration is the biological simplicity of the
solution however it suffers high computational cost when
neurons increase. Section 2 of this paper describes the Brain
and BlockChain related work, Section 3 presents the Random
Neural Network whereas Section 4 describes Long Short Term
Memory Networks.Section 5 proposes the BlockChain Neural
Network model. Section 6 evaluates the proposed model
whereas finally Section 7 shares the conclusions.

II. BRAIN AND BLOCKCHAIN RELATED WORK

This paper proposes ”Neuron as a Service” (NaaS) where
neurons are added as information increases. This method
emulates the biological brain, in particular the Short Term
Memory, with an approach very similar to how a datacentre
handles and stores information. The number of neurons in the
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brain is approximately 1011, this figure is similar to the number
of stars of our galaxy or the storage of a standard datacentre,
at a very reduced weight (approximate 1.5 kg) [9] which
shows the brain neural density. Although every neuron has
the same genes and components (a cell body, a dendrite and
an axon), each neuron is different in its form and connectivity,
therefore remains unique. Spikes generated by a neuron travel
through its axon as an electrical impulse, however the signal
is transmitted between the emitting axon and the receiver
dendrite via specialised molecules in the synapse. Normally
neurons are connected to and from hundreds or thousands
of other neurons in very specific structures highly closed
to each other creating specialised clusters of neurons that
perform different functions [10]. Single neurons in the brain
perform key specific functions in the short term memory
with precise firing patterns. Short term memory is active only
during very short periods of time, normally in the scale of
seconds, therefore it avoids the conscious stage; this feature
makes short term memory fundamental during the human
learning process due its fast processing, although the drawback
is that the learned knowledge is not included in the long term
memory [11]. Long term memory in the brain is distributed in
several locations rather than centralised into specific neurons
where the representation of any single event is enabled by
chains of neurons [12]; this process emulates the redundancy
of datacentres where the same data is stored in dispersed sites.
The activation and conversion between short term memory
into long term memory in the brain is fairly independent of
the specific details of neuron functions. Short term memory
is activated by external stimulus which can be artificially
maintained by persistent neuron firing for periods of seconds
after the removal of the stimuli in spiking neural network
models, although neurons cannot maintain accurate graded
levels of activity for longer time periods as they eventually
relax to one of the constant activities or equilibrium where
random noise generates different equilibriums [13].

In addition, the neural synapses of the ”Neuron as a
Service” model are chained to form a neural chain with
the same functionality as the BlockChain. This functionality
also emulates the process of thinking when thoughts move
from topic to topic based on chains of concepts or ideas.
The thinking process of the brain and the intelligent human
behaviour is based on some general principles that manage
the structure and operation of the neural circuits [14]. At
cellular level, there is standardization in the way information is
transmitted, however, the thinking process involves a selection
of methods and a following adaption in order to calculate the
right concept based on several optimizations. Goals and the
required optimizations to achieve them are the foundations
of thinking and decision making which can be modelled
as a descriptive and prescriptive search inference process,
where thinking is described as conclusions generated from
possibilities, evidence and goals that are discovered through
searching [15]. Thinking is conceived as a method of choosing
among potential options where possibilities might consist of
actions, beliefs or personal goals. These choices are based on a

search for relevant information and the implications which are
made from the information obtained; information is broadly
defined to include goals, choices, and evidence where choices
are evaluated on the basis of evidence in light of these goals.
The cognitive mechanisms of thinking have been described
through the three major components [16] of problem solving
that includes planning and design. While 1) reasoning focuses
on drawing deductive conclusions and the process to make
them, 2) judgment and 3) decision-making involve the rate
of wrong arguments that make use of the formal structure of
probability theory. BlockChain thinking defines thinking as a
BlockChain process where all input elements are discrete units
that can be encoded and stored; processing is generated in a
massively distributed computing architecture that includes the
nonlinearity of human thought [17]. The BlockChain thinking
solution proposes the integration of Artificial Intelligence
with potentially new consensus models for self-mining and
intelligence in which neural networks are similar to currencies
that are distributed as knowledge and ideas.

Neural Networks have also been already applied to Cryptog-
raphy for smart card applications [18]. Two multilayer neural
networks on their mutual output bits are trained with discrete
weights to achieve a synchronization that can be applied
to exchange secret keys over a public channel [19]. Three
crypt-analytic attacks (genetic, geometric and probabilistic)
are launched to the above neural network [20] to evaluate its
performance and functionality. Feed forward neural networks
have also been applied as an encryption and decryption
algorithm with a permanently changing key [21]. A two
stage cryptography multilayered neural network consists in a
first stage to generate neural network-based pseudo random
numbers and a second stage that encrypts information based
on the non-linearity of the neural network [22].

III. THE RANDOM NEURAL NETWORK

The Random Neural Network was introduced in [23] and
many of its properties have been developed in [23] [24] [25]
[26]. It is a spiking stochastic model which can be used as
either a feedforward or feedback (recurrent) network (Fig. 1).
The Random Neural Network consists on n-neurons. The state
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Fig. 1. The Random Neural Network structure.

of the n neuron network at time t is represented by the vector of
non-negative integers K(t) = [K1(t), . . .Ki(t)] where Ki(t)
is the potential of neuron i at time t. Neurons interact with



each other by interchanging signals in the form of spikes of
unit amplitude:
• A positive spike is interpreted as an excitation signal

because it increases by one unit the potential of the
receiving neuron m, Km(t+) = Km(t) + 1;

• A negative spike is interpreted as inhibition signal de-
creasing by one unit the potential of the receiving neuron
m, Km(t+) = Km(t)−1, or has no effect if the potential
is already zero, Km(t) = 0.

Each neuron accumulates signals and it will fire if its potential
is positive. Firing will occur at random and spikes will be sent
out at rate r(i) with independent, identically and exponentially
distributed inter-spike intervals:
• Positive spikes will go out to neuron m with probability
p+(i,m) as excitatory signals;

• Negative spikes will go to neuron m with probability
p−(i,m) as inhibitory signals.

Neuron i can also send send spikes out of the network with
probability d(i), so that:

d(i) +

n∑
j=1

[p+(i,m) + p−(i,m)] = 1 for 1 ≤ i ≤ n (1)

The potential of any neuron i decreases by one unit when
the neuron fires either an excitatory or an inhibitory spike. Ex-
ternal (or exogenous) excitatory or inhibitory signals to neuron
i can also arrive at rates Λ(i), λ(i) respectively according to
stationary Poisson processes.

A. Mathematical Model

The Random Neural Network excitatory and inhibitory
weight parameters w+(j, i) and w−(j, i), respectively are
directly related to the r(i) and the p+(i, j), p−(i, j), and are
expressed as:

w+(j, i) = r(i)p+(i, j) ≥ 0 (2)

w−(j, i) = r(i)p−(i, j) ≥ 0 (3)

Thus information in this model is transmitted by the rate
or frequency at which spikes travel. Each neuron i, if it is
excited, behaves as a frequency modulator emitting spikes at
rate w(i, j) = w+(i, j) + w−(i, j) to neuron j.

Thus each neuron j acts as a non-linear frequency demodula-
tor transforming the incoming excitatory and inhibitory spikes
into the “excitation level” or potential potential Kj(t).

This network model has a product form solution; i.e. the
network’s stationary probability distribution is the product
of the marginal probabilities of the state of each neuron as
shown in [23], where the further result is shown. Let p(k,t)
= Prob[K(t) = k)] and the marginal probability a neuron
i is excited at time t as qi(t) = Prob[ki(t) > 0]. The
stationary probability distribution p(k) = limt→∞p(k, t) and
qi = limt→∞qi(t) where k(t) is a continuous time Markov
chain that satisfies Chapman-Kolmogorov equations.

Let’s define:

qi =
λ+(i)

r(i) + λ−(i)
(4)

r(i) +

n∑
j=1

[
w+(i, j) + w−(i, j)

]
for 1 ≤ i ≤ n (5)

where the λ+(i), λ−(i) for i=1,. . . ,n satisfy the system of
nonlinear simultaneous equations:

λ+(i) =

n∑
j=1

[
qjr(j)p

+(j, i)
]

+ Λ(i) (6)

λ−(i) =

n∑
j=1

[
qjr(j)p

−(j, i)
]

+ λ(i) (7)

If a nonnegative solution λ+(i), λ−(i) exists to the equa-
tions (4), (6) and (7) that meets qi < 1 then:

p(k) =

n∏
i=1

[1− qi] qkii (8)

The network will be stable if a value qi < 1 can be found.
The average potential at a neuron i is qi/[1− qi] and the rate
of emission of spikes from neuron i in steady state is qir(i). If
we have λ+(i) > [r(i)+λ−(i)] for any neuron means that the
neuron is unstable or saturated; this implies that it is constantly
excited in steady state and its rate of excitatory and inhibitory
spike emission r(i) to another neuron j will be r(i)p+(i, j) and
r(i)p−(i, j) respectively (Fig. 2).

Validation 1
V(1) 

Validation 2
V(2) 

Validation 3
V(3) 

Data Neuron 

Link Neuron 

Key Neuron 

Validation t
V(t) 

x1
w+(j,i): excitatory 
network weights 

x2

xL

z1

z2

zM

y1

y2

yN

Input Layer Hidden Layer Output Layer

w-(j,i): inhibitory 
network weights 

Λ1

λ1

Λ2

λ2

ΛL

λL

Λ: External 
excitatory signal

λ: External 
inhibitory signal

External signals

i1

i2

iL

qi

λi

Λi

qiri(p
+

i,1+p-
i,1)

qiri(p
+

i,k+p-
i,k)

q1r1(p
+

1,i+p-
1,i)

qkrk(p
+

k,i+p-
k,i)

di

w+
j,i = rip

+
i,j

w-
j,i = rip

-
i,j

Non negative rates spike emission
Excitatory / Inhibitory 

Data 1
d1

No Mining

User
yN

Decentralized Neural Network

w+(j,i) w-(j,i)

Data 2
d2

Mines xL and zM

Validation 1
V(1) 

User
yN

User
yN

Validation 2
V(2) 

Validation t
V(t) 

Data t
dt

Mines xL and zM

Fig. 2. The Random Neural Network model.

B. Learning Algorithm

Neural networks are capable to learn iteratively through ex-
amples or training sets. The two main methods are supervised
learning based on an input with the desired output and Rein-
forcement Learning based on the environment reactions from
user actions. The Random Neural Network learning algorithm
proposed by Erol Gelenbe [26] is based on gradient descent
of a quadratic error function. The backpropagation model
requires the solution of n linear and n nonlinear equations
each time the n neuron network learns a new input and output
pair.



IV. LONG SHORT-TERM MEMORY NETWORK

Long Short Term Memory (LSTM) networks are widely
used in time series data as their learning algorithm does not
present exploding and vanishing gradient descent issues as
traditional recurrent Neural Networks with back propagation
Learning Algorithms (Fig. 3). LSTM networks are a type of
artificial recurrent neural network composed of the following
elements:
• the cell ct that provides memory to the neural structure
• the input gate it controls the relevance of new sensorial

activity to the cell
• the forget gate ft manages the relevance of existing

sensorial information stored in the cell
• the output gate ot modulates the stimuli the current cells

transmits to the next cell in the neural chain
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Fig. 3. Long Short Term Memory Network.

A. Mathematical Model

LSTM network enables a constant error flow through self-
connected memory cells (Fig. 4), where input and output gates
manage its transmission while protecting it from perturbations
[27], although error signals contained within the memory cell
can not be altered. Specifically, a LSTM network with P input
cells and Q output cells is defined as:
• The forget vector ft ε RQ:

ft = σg

(
P∑

p=1

wfpxt +

Q∑
q=1

uqfht−1 + bf

)
(9)

• The input activation vector it ε RQ:

it = σg

(
P∑

p=1

wipxt +

Q∑
q=1

uiqht−1 + bi

)
(10)

• The output activation vector ot ε RQ:

ot = σg

(
P∑

p=1

wopxt +

Q∑
q=1

uoqht−1 + bo

)
(11)

• The cell state vector ct ε RQ:

ct = ft ◦ ct−1 + it ◦σc

(
P∑

p=1

wcpxt +

Q∑
q=1

ucqht−1 + bc

)
(12)

• The hidden state vector ht ε RQ:

ht = ot ◦ σc(ct) (13)

where:
• xt ε R

P is the input vector to the LSTM network
• w ε RQxP is the weight matrix for the input vector
• uεRQxQ is the weight matrix for the hidden state vector
• b ε RQ is the bias vector
• σg represents the sigmoid function
• σc represents the hyperbolic tangent function
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Fig. 4. Long Short Term Memory Cell.

B. Learning Algorithm

The Long Short Term Memory network learning algorithm
proposed by Sepp Hochreiter and Jürgen Schmidhuber [27] is
based on the Back Propagation Through Time (BPTT) learning
algorithm that truncates the error flow making it constant when
it departs memory cell. Errors arriving to memory cells do not
get propagated back further in time although they affect the
memory cell it arrives. Only within the memory cell, errors
are backpropagated through previous internal states. The cell
gates ensure that there are no feedback in the network as they
disable the re-entrance of an error that has already departed a
memory cell. The LSTM learning algorithm has a complexity
of O(w) or O(u) where w or u is the number of neural weights.

V. THE BLOCKCHAIN NEURAL NETWORK

The BlockChain Neural Network model consists of L Input
Neurons, M hidden neurons and N output neurons Network.
Information in this model is contained within the neural
network weights W rather than neurons xL, zM , yN :
• X = (x1, x2, . . . , xL), a variable L-dimensional vector
Xε[0, 1]L represents the input state qL for the neuron L;
where scalar L values range 1 < L <∞;

• Z = (z1, z2, . . . , zM ), a M-dimensional vector Zε[0, 1]M

that represents the hidden neuron state qM for the neuron
M; where scalar M values range 1 < M <∞;

• Y = (y1, y2, . . . , yN ), a N-dimensional vector Y ε[0, 1]N

that represents the neuron output state qN for the neuron
N; where scalar N values range 1 < N <∞;



• W(j,i) is the (L+M+N) x (L+M+N) matrix of network
weights that represents the connection from neuron j to
neuron i; where iε[xL, zM , yN ] and jε[xL, zM , yN ];

The key concept of the Neural Network BlockChain is that
the neuron vector sizes, L, M and N are not fixed; they are
variable. The input layer X represents the user’s incremental
data; the hidden layer Z represents the values of the chain and
the output layer Y represents the user Private Key (Fig. 5).
Neurons or blocks are iteratively added where the value of
the additional neurons consists on both the value of the
additional information and the value of previous neurons
therefore forming a neural chain. Information in this model
is transmitted in the neural network weigh matrix, W rather
than in the neurons rather than neurons xL, zM , yN .
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Fig. 5. The BlockChain Neural Network model.

A. The BlockChain Neural Network model

The Random Neural Network BlockChain model is based
on the main concepts shown on Figure 6”:
• Private key, yN ;
• Validation, V(t) and Data D;
• Neural Chain Network and Mining;
• Decentralized information, W(j,i).
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Fig. 6. The BlockChain Neural Network model.

B. Private key

The private key Y = (y1, y2, . . . , yN ) consists on the user
or application digital credentials specifically assigned to them
such as biometrics or any other cryptographic algorithm such
as Advanced Encryption Standard (AES) 256-bit cipher. The
private key is presented by the user, or the application, every
time new data is to be inserted therefore credentials require
validation.

C. Validation and Data

The neural network block chain model defines Validation
and Data as:
• Validation, V (t) = V (1), V (2), . . . V (t) as a variable

accumulative vector where t is the validation stage;
• Data, D = d1, d2, . . . dt as a set of t I-vectors where do =

(eo1, eo2, . . . eoI) and eo are the I different dimensions for
o=1,2, ... t.

The first Validation V(1) has associated an input state X = xI
that corresponds d1 representing the user data. The output
state Y = yN corresponds to the user Private Key and the
hidden layer Z = zM corresponds to the value of the neural
chain that will be inserted in the input layer for the next
transaction. The calculated network weights W(j,i) are stored
in the decentralized network and are retrieved in the mining
process. The second Validation V(2) has associated an input
state X = xI that corresponds to the user data d1 for the
first Transaction T(1), the chain, or the value of the hidden
layer zM and the additional user data d2. The output state
Y = yN still corresponds the user Private Key and the hidden
layer Z = zM corresponds to the value of the neural chain
for the next transaction. This process iterates as more user
data is inserted. The neural chain can be formed of the values
of the entire hidden layer neurons, a selection of neurons, or
any other combination to avoid the reverse engineering of the
private key from the stored neural weights.

D. Neural Chain Network and Mining

Data is validated or mined by calculating the outputs of
the Random Neural Network using the transmitted network
weighs, W(j,i) at variable random inputs X = xI , or fol-
lowing any other method. The Random Neural Network with
BlockChain configuration is mined when an Input I is found
that delivers an output Y with an error Ek lesser than a Mining
Threshold TM for the retrieved user network weights W(j,i):

Ek =
1

2

N∑
n=1

(
y

′

i − yn
)2

< TM (14)

where Ek is the error of the BlockChain Neural Network, y
′

n

is the output of the Random Neural Network with mining or
random input X = xI and yn is the user or application Private
Key. The mining complexity can be tuned by adjusting Ek.
Once the solution is found or mined the user or application
data can be processed, the values of the hidden layer are
used in the input of the next transaction, along with the
new data. the potential value of the neural hidden layer
Z = zM is added to form the Neural Chain as the input of
the next transaction where more user data is added. Finally,
the proposed method calculates the Random Neural Network
with gradient descent learning algorithm for the new pair (I,
Y) when the Ek) is lesser than a Learning Threshold TL,
following the described neural netwokrs learning algorithms.
The new generated network weights W(j,i)are stored in the
decentralized network. The more user data and validations;
the mining process increases on complexity.



E. Decentralized Information

The user network weights W(j,i) are stored in the decentral-
ized network rather than its data I directly where I is calculated
with the mining process. The network weights expand as more
verification data is inserted creating an adaptable method. In
addition; only the user Data can be extracted when the user
presents its biometric key therefore making secure to store
information in a decentralized system.

VI. VALIDATION AND EXPERIMENTAL RESULTS

The BlockChain Neural Network is validated with the
Random Neural Network (RNN) and a Long Short Term
Memory Network (LSTM). The algorithm is run 100 times to
obtain statistically significant experimental results. The LSTM
network requires more learning iterations than the RNN model
and both networks learn faster as the Validation V(t) stages
gradually progress (Fig. 7). The size of the neural chain has
an impact during the learning stage as the increment of neurons
in the hidden layer increases the number of learning iterations.
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Fig. 7. The BlockChain Neural Network model.

A. Four neuron Neural Chain

This section presents the validation and experimental results
for the private key Y = yN , data D = dt and the neural chain
Z = zM of 4 neurons. The potential value of the neurons for
each data input dt is shown on Table I, the chosen values are
dispersed between the possible values [0-1].

TABLE I
FOUR NEURON NEURAL CHAIN CONFIGURATION

d1 d2 d3 d4 d5 yN
0.12 0.32 0.52 0.72 0.92 0.2
0.14 0.34 0.54 0.74 0.94 0.4
0.16 0.36 0.56 0.76 0.96 0.6
0.18 0.38 0.58 0.78 0.98 0.8

Table II shows the results for a 4 Neuron RNN with
a Learning Threshold TL=1.0E-30 and a Mining Threshold
TM=1.0E-5. This includes the number of learning iterations
the BlockChain Neuron, the number of iterations to mine the
BlochChain and finally the number of neurons for each layer;
input xL, hidden zM and output yN .

TABLE II
FOUR NEURON RNN VALIDATION

Stage Learning Learning Mining Mining Neurons
V(t) Iteration Error Iteration Error xL,zM ,yN
V(1) 153 7.53E-31 6.45E+03 3.41E-06 04-04-04
V(2) 79.87 6.09E-31 2.95E+05 3.75E-06 12-04-04
V(3) 60.12 6.64E-31 1.71E+05 3.44E-06 20-04-04
V(4) 54.49 6.08E-31 9.17E+03 3.58E-06 28-04-04
V(5) 58.97 4.16E-31 3.19E+02 3.64E-06 36-04-04

The number of Mining Iterations is not linear in contrast to
the linear increment of user data (Fig. 8).0
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Fig. 8. The Four Neuron RNN validation.

Table III shows the results for a 4 Neuron LSTM with
a Learning Threshold TL=1.0E-30 and a Mining Threshold
TM=0.5E-2.

TABLE III
FOUR NEURON LSTM VALIDATION

Stage Learning Learning Mining Mining Neurons
V(t) Iteration Error Iteration Error xL,zM ,yN
V(1) 406 8.02E-31 3.43E+05 3.25E-06 04-04-04
V(2) 208.32 8.62E-31 2.13E+05 4.04E-03 12-04-04
V(3) 147 7.56E-31 5.23E+04 3.96E-03 20-04-04
V(4) 115.12 8.34E-31 3.98E+05 4.12E-03 28-04-04
V(5) 108 4.22E-31 1.36E+02 3.63E-03 36-04-04

Similar to the previous validation, the effort to mine the
BlockChain LSTM Network does not increase linearly with
the user data (Fig. 9).
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Fig. 9. The Four Neuron LSTM validation.



B. Eight neuron Neural Chain

This section presents the validation and experimental results
for the private key Y = yN , data D = dt, and the neural chain
Z = zM of 8 neurons. The potential value of the neurons
for each data input d is shown on Table IV, similar to the
previous validation, the chosen values are dispersed between
the possible values [0-1].

TABLE IV
EIGHT NEURON NEURAL CHAIN CONFIGURATION

d1 d2 d3 d4 d5 yN
0.12 0.32 0.52 0.72 0.92 0.2
0.13 0.33 0.53 0.73 0.93 0.3
0.14 0.34 0.54 0.74 0.94 0.4
0.15 0.35 0.55 0.75 0.94 0.5
0.16 0.36 0.56 0.76 0.96 0.6
0.17 0.37 0.57 0.77 0.96 0.7
0.18 0.38 0.58 0.78 0.98 0.8
0.19 0.39 0.59 0.79 0.99 0.9

Table V shows the results for a 8 Neuron RNN with
a Learning Threshold TL=1.0E-30 and a Mining Threshold
TM=1.0E-5.

TABLE V
EIGHT NEURON RNN VALIDATION

Stage Learning Learning Mining Mining Neurons
V(t) Iteration Error Iteration Error xL,zM ,yN
V(1) 206 9.12E-31 1.80E+05 3.25E-06 08-04-04
V(2) 120.88 7.46E-31 2.25E+06 3.15E-06 20-04-04
V(3) 91.13 7.40E-31 1.04E+05 4.04E-06 32-04-04
V(4) 80.71 6.27E-31 7.12E+02 3.40E-06 44-04-04
V(5) 76.98 5.12E-31 2.26E+01 3.81E-06 56-04-04

The mining process for a ”neural chain” of neurons does
not follow the linear pattern of the increment of user data or
number of input neurons (Fig. 10), although the number of
mining iterations has increased from a neural chain from four
neurons to eight neurons. The process of mining is easier when
at final validation stages.0
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Fig. 10. The Eight Neuron RNN validation.

Table VI shows the results for a 8 Neuron LSTM with
a Learning Threshold TL=1.0E-30 and a Mining Threshold
TM=1.5E-2.

TABLE VI
EIGHT NEURON LSTM VALIDATION

Stage Learning Learning Mining Mining Neurons
V(t) Iteration Error Iteration Error xL,zM ,yN
V(1) 1251 6.81E-31 9.56E+05 1.31E-02 08-04-04
V(2) 660.4 9.78E-31 2.06E+06 1.38E-02 20-04-04
V(3) 401.3 9.39E-31 1.53E+06 1.31E-02 32-04-04
V(4) 271.9 8.37E-31 8.79E+07 1.24E-02 44-04-04
V(5) 193.5 8.41E-31 4.88E+03 1.21E-02 56-04-04

Similar to the previous validations, the increment of the
”neural chain” also increments the number of learning itera-
tions, although the mining effort decreases with the validation
stage. This effect follows a linear pattern alongside with the
increasing user information. The Mining Threshold tunes the
mining effort of the proposed BlockChain Neural network
(Fig. 11).
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Fig. 11. The Eight Neuron LSTM validation.

C. Tampering validation

In order to be effective, the BlockChain Random Neural
Network algorithm shall also detect tampering in the learned
data. Table VII and Table VIII shows the tampering error
where ∆ represents the number of tampered neurons.

TABLE VII
RNN AND LSTM TAMPERING VALIDATION 4 NEURON CHAIN

Stage RNN RNN LSTM LSTM Neurons
V(t) ∆=0.0 ∆=1.0 ∆=0.0 ∆=1.0 xL,zM ,yN
V(1) 7.53E-31 2.24E-02 8.02E-31 8.00E-05 04-04-04
V(2) 7.08E-31 4.37E-04 9.99E-31 7.63E-05 12-04-04
V(3) 5.56E-31 3.62E-05 7.80E-31 7.08E-05 20-04-04
V(4) 5.40E-31 5.70E-06 8.17E-31 6.40E-05 28-04-04
V(5) 7.39E-31 1.30E-06 3.20E-31 5.66E-05 36-04-04

There is a clear difference within the Blockchain error
between the real and the tampered values. Both configurations,
RNN and LSTM, have similar error values although LSTM is
more constant through the different validation stages than the
RNN.



TABLE VIII
RNN AND LSTM TAMPERING VALIDATION 8 NEURON CHAIN

Stage RNN RNN LSTM LSTM Neurons
V(t) ∆=0.0 ∆=1.0 ∆=0.0 ∆=1.0 xL,zM ,yN
V(1) 9.19E-31 1.19E-02 6.81E-31 3.96E-05 08-04-04
V(2) 7.58E-31 2.68E-04 9.99E-31 3.88E-05 20-04-04
V(3) 6.90E-31 2.28E-05 8.02E-31 3.79E-05 32-04-04
V(4) 6.34E-31 3.62E-06 7.95E-31 3.63E-05 44-04-04
V(5) 6.09E-31 9.25E-07 9.98E-31 3.34E-05 56-04-04

The effects of tampering the Neural Block Chain (Fig. A)
is detected by the learning algorithm even when the tampered
values only differ in one neuron,∆=1.0. The LSTM network,
with a Back Propagation Through Time learning algorithm,
keeps the error constant as the cell gates prevent its circulation
through the network.
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Fig. 12. RNN and LSTM Tampering Validation.

Both Neural Network models, RNN and LSTM, show
similar properties: they manage almost insignificant learning
errors with very reduced Learning Thresholds TL = 1.00E-
30 due to their iterative gradient descent learning algorithms.
Their learning iterations decrease with the number of input
neurons, or user data, although there is convergence as the
validation stage increases. Due the mining process is based
on random values, the results are not as linear as originally
expected.

VII. CONCLUSIONS

This paper has proposed “Neuron as a Service” (NaaS)
based on the BlockChain Neural Network that gradually
increments neurons as user information or data increases. The
additional neurons codify both the new information to be
added to the “neural block” and previous neurons potential to
form the “neural chain”. This configuration provides the Neu-
ral Network with the same properties found in the BlockChain:
security and decentralization with the same validation process:
mining the input neurons until the neural network solution is
found.

The mathematical model of the Neural Networks in
BlockChain configuration has a stable learning convergence
during its learning process although mining is not as linear as
originally expected. Mining the Blockchain Neural network is
easier when more user data is stored in the model. The main

advantage of this research proposal is the biological simplicity
of the solution, however it suffers high computational cost
when the number of chain neurons increase. In addition,
the BlockChain neural network successfully detects tampering
without difficult or effort.

Both BlockChain Neural Networks, RNN and LSTM, per-
form similarly. The Random Neural Network requires less
learning interactions dues its main analytical properties based
on the “product form” and the existence of the unique net-
work steady state solution. The LSTM Network with a Back
Propagation Through Time learning algorithm keeps the error
constant as the cell gates prevent its circulation through the
network. Further research work will increase the validation
stages, therefore expanding the number of input neurons or
user data. In addition, the contribution of the number of hidden
neurons, or ”neural chain”, to the mining process will be
further assessed.
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