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Abstract—Graph neural networks (GNNs), powerful deep
representation learning methods for graph data, have been widely
used in various tasks, such as recommendation systems and
link prediction. Most existing GNNs are designed to learn node
embeddings on homogeneous graphs. Heterogeneous information
network (HIN) with various types of nodes and edges still
faces great challenges for the heterogeneity and rich semantic
information. To make full use of the heterogeneous information,
many works try to manually design meta-paths, which are paths
connected with two objects. They utilize meta-paths to capture
more semantic information in heterogeneous graphs. However,
manually designed meta-paths require domain knowledge and
meta-path-based heterogeneous graph embedding methods only
utilize the information of nodes with the same type, ignoring
the impacts of the different types of nodes. We propose meta-
path generation online for heterogeneous network embedding
for all types of nodes, which can generate meta-paths and
learn node embeddings simultaneously. Firstly, we exhaust all
meta-paths within k-hop for specific nodes and apply a meta-
path guided nodes aggregation. Secondly, we adopt an attention
mechanism to select Top-N meta-paths with the largest attention
coefficients for the semantic aggregation. The above two stages
constitute one layer of our approach. Through stacking multi-
layers, we can generate longer and more complex meta-paths.
Without domain-specific preprocessing, extensive experiments on
two datasets demonstrate that our proposed approach achieves
better performance compared with other recent methods that
require predefined meta-paths from domain knowledge.

Index Terms—Meta-path, Heterogeneous network embedding,
Graph neural network

I. INTRODUCTION

Graph neural networks (GNNs), powerful deep representa-
tion learning methods for graph data, have been widely used
in various tasks, such as recommendation systems [1], [2], link
prediction [3]–[6] and similarity search [7], [8]. GNNs perform
convolution in the spectral domain using the Fourier basis of
a given graph [9], [10], or perform convolution directly on the
graph using the basic graph structure by pass node features to
neighbors [11], [12].

However, most existing GNNs are designed to learn node
embeddings on homogeneous graphs. As a matter of fact,
graphs in the real world usually have multiple types of nodes
and edges, known as heterogeneous information network
(HIN) [13]. As shown in Figure 1, a citation network has
multiple types of nodes (e.g. author, paper, subject) and edges
defined by their relations(e.g.Author-Paper, Paper-Subject). A
naive approach is to ignore the node/edge types and treat them

(a) Node type (b) Graph schema (c) Meta-paths
within 2-hop

Fig. 1. An illustrative example of a heterogeneous information net-
work(ACM). Figure 1(a) Three types of nodes(i.e., author, paper, subject).
Figure 1(b) A graph schema consists three types of nodes and two types of
connections. Figure 1(c) all existing meta-paths within 2-hop neighborhoods
for paper-type node.

as in a homogeneous graph. This is obviously a suboptimal
solution since the model cannot leverage the heterogeneous
information. To make full use of heterogeneous information,
[14] proposes to manually design meta-paths [15], a composite
relation connected with two objects, and decompose a hetero-
geneous graph into several homogeneous graphs defined by
the meta-paths. Then GNNs can operate on the decomposed
homogeneous graphs. This is a two-stage approach, which
requires manually predefined meta-paths for each task. These
meta-paths only utilize the information of nodes with the same
type, ignoring the impacts of other different types of nodes.
Moreover, downstream tasks will be severely affected by the
choice of meta-paths.

Our approach can generate meaningful meta-paths for dif-
ferent nodes online and learn node embeddings on a het-
erogeneous graph in an end-to-end fashion. Specifically, our
approach follows a two-stage structure: meta-path generation
online and Top-N meta-paths selection, as shown in Figure 3.

Meta-path Generation Online. We exhaust all meta-paths
within k-hop for a particular node in the first stage.s Taking
the citation network ACM shown in Figure 1(c) as an exam-
ple, there are 4 meta-paths within paper’s 2-hop neighbor-
hoods Paper-Author(PA), Paper-Subject(PS), Paper-Author-
Paper(PAP), Paper-Subject-Paper(PSP). In addition, there is
always one meta-path representing self-loop: Paper(P). There-
fore, there are total 5 meta-paths within 2-hop neighborhoods.
For each meta-path guided neighbors, we independently per-
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form a node information aggregation, as shown in Figure 2.
Then we obtain 5 meta-path-based embeddings representing
these meta-paths.

Top-N Meta-paths Selection. Still taking ACM shown in
Figure 1(c) as an example, paper classification in citation net-
works may benefit from meta-paths which are Paper-Author-
Paper(PAP) or Paper-Author(PA). Therefore, it is impractical
to treat different meta-paths equally, and it will weaken the se-
mantic information provided by some meaningful meta-paths.
For all meta-path-based embeddings, we adopt an attention
mechanism to estimate the impact of semantics attached to
each meta-path on the central node, as shown in Figure 2.
Then we select Top-N meta-paths with the largest attention
coefficients for the semantic aggregation.

In this paper, we propose a novel Meta-Path Generation
Online for Heterogeneous Network Embedding, named
MGOHE. Our framework can generate meaningful meta-paths
for different nodes online and learn effective node embeddings
simultaneously. Furthermore, through stacking multi-layers,
our framework can generate longer and more complex meta-
paths. After that, the overall framework, including meta-path
generation online and Top-N meta-paths selection, can be
optimized via back propagation in an end-to-end fashion. The
contributions of our work are summarized as follows:
(1) We propose a novel framework MGOHE, which can

simultaneously generate meaningful meta-paths within k-
hop and learn effective node embeddings on heteroge-
neous information networks for specific tasks.

(2) We use an attention mechanism to select Top-N meta-
paths within k-hop for generating meaningful multi-hop
connections without domain knowledge, which can avoid
the redundant information brought by noise meta-paths.

(3) We evaluate the performance of the proposed MGOHE
on the two real-world datasets: DBLP, ACM. The exten-
sive experiments prove that our MGOHE improves the
performance of classification task and clustering task.
And our MGOHE can generate meaningful meta-paths
like other predefined approaches, which also improve the
interpretability of meta-paths.

II. RELATED WORK

A. Graph Neural Network

Graph neural networks (GNNs) were introduced in [16],
which aim to extend the deep neural network to process
arbitrary graph-structured data. GNNs are categorized into two
approaches: spectral [9], [10] and non-spectral method [11],
[12], [17]. On one hand, [9] proposed a method to perform
convolution in the spectral domain using the Fourier basis of a
given graph. [10] uses a localized first-order approximation of
spectral graph convolution to simplify the GNNs. On the other
hand, non-spectral approaches define convolution operations
directly on the graph, operating on spatially close neighbors.
[11] introduces self-attention to learn the importance between
nodes and its neighbors and fuse the neighbors’ information
for graph representation learning.

Fig. 2. This figure shows the node information aggregation process of
MGOHE. αi represents relative attention value of a meta-path. Green and
orange dashed lines indicate edges. {P,A, S}∗ represents information ag-
gregation at a specific node level. The black solid lines with arrow represent
a meta-path aggregation from 1-hop neighborhoods. The black dashed lines
with arrow represent a meta-path aggregation from k-hop neighborhoods, in
this case k = 2.

B. Network Embedding

Network embedding, mapping a graph data into a latent
space, has been widely used in many downstream network
tasks. Traditionally, hand-crafted features have been used, such
as graph kernel [18] and graph statistics [19]. Like other fields,
hand-crafted features are not flexible and perform poorly. To
overcome the drawback, recent network embedding methods,
such as Deepwalk [20] and Node2vec [21], via random walks
[22] on graphs to generate corpus and then feed them into a
skip-gram [23] model to learn node embeddings, have man-
aged to achieve better performance. However, these methods
learn node embeddings solely based on the graph structure.
To improve scalability or performance, attention mechanism
on neighbors [11], [12], generalized convolution based on
spectral convolution [24] have been studied. GraphSAGE [12]
has proposed learnable aggregator functions which summarize
information over a fixed size node neighbor. GAT [11] uses
self-attention to learn the importance between nodes and its
neighbors and fuses the neighbors to learn node embeddings.
Although these methods show excellent performance, they all
suffer from a common limitation that they cannot apply to the
heterogeneous graphs, and can only deal with homogeneous
graphs.

Heterogeneous information networks embedding learn the
node embeddings for a graph with various types of nodes
and edges. In current works, heterogeneous graph embedding
techniques mostly rely on meta-path that is a composite
relation connected with two objects. Metapath2vec [25] learns
graph representation by using meta-path-based random walk
and it only utilizes one meta-path scheme which is hard to
mine comprehensive semantic information. ESim [8] accepts
predefined meta-paths as guidances to learn graph representa-
tion in a user-prefered embedding space for similarity search.
Although ESim can utilize multiple meta-paths, it needs to
conduct grid search [26] to find the optimal weights for
the meta-paths. HAN [17] learns graph representation by
decomposing a heterogeneous graph into several homogeneous
graph constructed by predefined meta-paths. It can learn the



optimal weights of different meta-paths through an attention
mechanism. However, these mata-path-based approaches face
challenges on path construction and selection, which require
domain knowledge and thus might not be able to capture all
meaningful relations for each task. In addition, performance
can be greatly affected by the choice of meta-paths. Unlike
these approaches, without any domain knowledge, our ap-
proach can automatically generate meaningful meta-paths for
different nodes online and learn the node embeddings on a
heterogeneous graph in an end-to-end fashion.

C. Meta-path Generation Automatically

Meta-path has been widely used in heterogeneous informa-
tion network to capture semantic information, such as meta-
path-based link prediction [27], [28], similarity measure [29],
[30], node classification [17], [25], recommendation [31] and
so on. However, most existing works manually select meta-
paths by domain experts and thus might not be able to
capture all meaningful relations. Hence, how to automatically
construct or select meta-paths with rich semantics becomes an
urgent problem to solve.

AMIE [32] proposes an approach that can automatically
discover meta-paths. Given an example of a pair of nodes,
AMIE utilizes a similarity aggregation function and a greedy
framework to generate meta-paths that can optimally explain
the relationship between these node pairs. However, it chooses
the best meta-path for a pair of nodes, not the global. AMPG
[33] employs a greedy algorithm to select the most relevant
meta-path at each step according to the similarity score. Unlike
these approaches, we exhaust all existing meta-paths within
k-hop neighborhoods for a specific node online and then
adopt an attention mechanism to select the Top-N meaningful
meta-paths. In the process of selecting the meta-paths, we
integrate node aggregation and meta-path aggregation for node
embedding, which will promote each other.

III. THE PROPOSED FRAMEWORK

The goal of our framework, MGOHE, is to simultaneously
generate meaningful meta-paths within k-hop and learn node
embeddings on heterogeneous information networks for spe-
cific tasks. We begin this section by introducing the notations
and definitions used in the rest of the paper followed by a
brief background on network embedding. Finally, we describe
our online meta-path generation method and an attention
mechanism for Top-N meta-paths selection. Figure 3 presents
the whole framework of MGOHE.

A. Preliminaries

Heterogeneous Information Network [13]. A heteroge-
neous information network is a specific graph which contains
either multiple types of nodes or multiple types of edges, we
denote a graph as G = (V, E), where V is a set of objects and
E is a set of links. A heterogeneous graph is also associated
with a node type mapping function φ : V → A and a link
type mapping function ψ : E → R. A and R denote the sets

of the node types and the sets of the edge types respectively,
where |A|+ |R| > 2.

Meta-path [15]. A meta-path ρ is defined as a path in
the form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1 (abbreviated as

A1A2 · · ·Al+1) which describes a composite relation R =
R1 ◦ R2 ◦ · · · ◦ Rl between objects A1 and Al+1, where ◦
denotes the composition operator on relations. Note that we
define the node itself as the meta-path within 0-hop.

Meta-path guided neighbors. Given a node i and a meta-
path ρ in a heterogeneous graph, the meta-path guided neigh-
bors N ρ

i of node i are defined as the set of nodes which
connect with node i via meta-path ρ.

B. Network Embedding

In the field of network embedding, no matter homoge-
neous graph embedding GCN [10], GAT [11], Deepwalk [20]
or heterogeneous embedding HAN [17], they all share the
same pipline: (1) find neighbors. (2) information aggregation
of neighbors. Deepwalk [20] utilizes random walk to find
neighbors and then adopts co-occurrence of neighbors as the
features for information aggregation. GCN [10] and GAT [11]
both choose 1-hop neighborhoods on the graph as neighbors.
During information aggregation phase, GAT specifies different
weights to neighbors while the GCN simply averages over
neighbors. HAN [17] uses meta-path guided nodes of the
same type with center node as neighbors. And then employs
an attention mechanism similar to GAT for node information
aggregation. We follow the HAN’s strategy and use meta-
path guided nodes with any type as neighbors where the
meta-path is generated online. Then we adopt an attention
mechanism similar to GAT for node information aggregation
to obtain multiple meta-path-based embeddings. Finally, we
adopt another attention mechanism to select Top-N meta-path-
based embeddings for the semantic aggregation.

C. Meta-path Generation Online

Previous works [17], [34] perform graph convolution on
the meta-path graphs which require manually predefined meta-
paths. They only gather information from nodes of the same
type. Instead, our proposed method generates meta-paths for
given data and tasks online and performs graph convolution
on the generated meta-path graphs. In this way, we can
generate more meaningful meta-paths and utilize more subtle
information from other types of nodes.

When performing information aggregation for a node, we
exhaust all meta-paths within the node’s k-hop neighborhoods
online. In particular, we set k=2 in experiments and the
reason will be explained later. Then we perform information
aggregation on each meta-path guided neighbors to obtain a
semantic embedding representing the meta-path.

Inspired by GAT [11], we use a self-attention mechanism
to assign varying levels of importance to different neighbors.
For the different feature spaces of different types of nodes(e.g.
node with type φi), we design the node type-specific trans-
formation matrix Wφi to project the features into the same
feature space.



Fig. 3. This figure shows an end-to-end architecture of our MGOHE. There are two stages in the framework. Firstly, we exhaust all meta-paths in a particular
node’s k-hop neighborhoods. Meta-path guided neighbors are all homogeneous, and we employ a meta-path-based nodes information aggregation. Secondly,
we adopt an attention mechanism to select the Top-N meaningful meta-paths for the final aggregation. µρi is the attention coefficient for each meta-path.

h′i = Wφi · hi (1)

Where hi and h′i are the original and projected feature of node
i respectively. Through type-specific projection operation, the
attention can handle arbitrary types of nodes.

For the node j in set N ρ
i of the node i, we leverage a

self-attention to learn the attention coefficients of node j,
which indicates the importance of node j to node i. Then
we normalize them across all neighbors on meta-path ρ with
the softmax function:

αρij =
exp

(
aTρ ·

[
h′i‖h′j

])∑
j∈Nkρ

exp
(
aTρ ·

[
h′i‖h′j

]) (2)

where aρ is a parametrized weight vector for meta-path ρ,
‖ denotes the concatenate operation. Then we perform nodes
information aggregation based on each meta-path ρ, and obtain
a meta-path-based embedding:

zρi = σ

∑
j∈Nρi

αρij · h
′
j

 (3)

where σ(·) denotes the Leakyrelu activation function. Similar
to [17], we employ multi-head attention to stabilize the learn-
ing process. Specifically, we conduct meta-path generation
online once. Then we repeat meta-path based node aggregation
Q times and concatenate the learned embeddings as the meta-
path-based embedding:

zρi =

Q∏
q=1

σ

∑
j∈Nρi

αρij · h
′
j

 (4)

D. Top-N Meta-paths Selection
Every node in a heterogeneous graph contains multiple

semantic information. Each semantic is revealed by a par-
ticular meta-path. Since we exhaust all meta-paths within k-
hop neighborhoods in previous stage, which will introduce
useless or redundant information, the most meaningful Top-
N meta-paths will be selected for the semantic information
aggregation. To address the challenge of meta-path selection
and semantic aggregation, we delicately design an attention
mechanism to automatically learn different levels of impor-
tance to meta-paths for a particular node. Then we will select
Top-N meta-paths with the largest attention coefficients and
fuse them for the particular node and task. Taking all meta-
path-based embeddings

{
z1i , z

2
i , . . . z

ρ
i

}
of node i as input, the

learned weights of each meta-path
{
w1
i , w

2
i , . . . w

ρ
i

}
can be

shown as follows:

{
w1
i , w

2
i , . . . w

ρ
i

}
= attmeta-path

{
z1i , z

2
i , . . . z

ρ
i

}
(5)

Here attmeta-path denotes the function which performs the
meta-path attention. It shows the importance of each meta-
path for a specific node. We first transform meta-path-based
embeddings through a nonlinear transformation.(e.g. one-layer
MLP in experiments). Then we measure the importance of
those meta-paths with an attention vector q. The importance
of each meta-path, denote as wρi , is shown as follows:

wρi = qT · tanh (Wρ · zρi + bρ) (6)



where W is the weight matrix, b is the bias vector, q is the
attention vector. Note that for meaningful comparisons, all
above parameters are shared for all meta-paths. After obtaining
the importance of each meta-path, we normalize them via
softmax function.

µρi =
exp (wρi )∑P
ρ=1 exp (w

ρ
i )

(7)

Obviously, the higher µρi is, the more important meta-path ρ
is. So we select Top-N meta-paths with the largest attention
coefficients for the semantic aggregation. With the learned
weights as coefficients, we can fuse these meta-path-based
embeddings to obtain the final embedding Zi as follows:

Zi = σ

 ∑
ρ∈Top−N

µρi · z
ρ
i

 (8)

where σ(·) denotes the activation function elu. The final em-
bedding is aggregated by Top-N meta-path-based embeddings.

We can apply the final embedding to particular tasks with
different loss function. For node classification, we minimize
the Cross-Entropy over all labeled node between the ground-
truth and the prediction:

Loss = −
∑
l∈YL

Yl ln
(
C · Zl

)
(9)

where C is the parameter of the classifier, YL is the set of
node indices that have labels, Yl and Zl are the labels and
embeddings of labeled nodes.

IV. EXPERIMENTS
In this section, we evaluate the embedding quality of

the proposed MGOHE and analyze the generated meta-paths
using two large real-world datasets. We conduct extensive
experiments and analysis to answer the following research
questions: Q1. Can the proposed method learn effective node
embeddings for classification and clustering? Q2. Can the
proposed method generate meaningful meta-paths? Can the
Top-N strategy select meaningful meta-paths?

A. Datasets

To evaluate the effectiveness of the proposed MGOHE, we
use two heterogeneous graph datasets with multiple types of
nodes and edges. Table I shows the detailed describtions of
the dataset used here. DBLP contains four types of nodes
(papers(P), authors(A), conferences(C), terms(T)), six types of
edges (PA, AP, PC, CP, PT, TP), and research areas of authors
as labels. ACM contains three types of nodes (papers(P),
authors(A), subjects(S)), four types of edges (PA, AP, PS, SP),
and categories of papers as labels. Each paper feature in the
two datasets is the elements of a bag-of-words represented of
keywords. The features of other types of nodes come from the
additive aggregation of the papers connected to them.

B. Baselines

We compare MGOHE with several recent network embed-
ding methods:
• Deepwalk [20]: A random walk based embedding

method for the homogeneous graphs. Here we ignore
the heterogeneity of nodes and perform Deepwalk on the
whole heterogeneous graph.

• Metapath2vec [25]: A heterogeneous graph embedding
method which performs meta-path-based random walk
and utilizes skip-gram [23] to embed the heterogeneous
graphs.

• GCN [10]: A semi-supervised graph convolutional net-
work for the homogeneous graphs.

• GAT [11]: A graph neural network which uses the
attention mechanism on the homogeneous graphs.

• HAN [17]: A heterogeneous graph embedding method
which exploits manually selected meta-paths. Here, we
test HAN on the selected meta-paths as described in [17].

C. Implementation Details

We set the embedding dimension to 64 for all the above
methods for a fair comparison. We fix the number of layer
to 2 and use Adam optimizer for all models. For random
walk based models including Deepwalk and Metapath2vec,
a walk length is set to 100 per node for 1000 iterations
and the window size is set to 5 with 7 negative samples.
For meta-path-based approaches, we follow the settings in
HAN [17], e.g. PAP and PSP for ACM, APA, APCPA and
APTPA for DBLP. For HAN, we use all the meta-paths. For
Metapath2vec, GCN and GAT, we test all the meta-paths and
report the best performance. All models are trained using a
learning rate of η = 0.005, with anneals every 50 epochs by
η/2 until 400 epochs were reached. For proposed MGOHE,
we set the dimension of the attention vector q to 8, the
number of attention head to 4. We use early stopping with
patience of 80 that means we stop training if the validation loss
does not decrease for 80 consecutive epochs. Since the 2-hop
neighborhoods of a node must be connected to itself, which
is the most meaningful meta-path, we set k for k-hop to 2. In
order to capture more subtle semantic information, we select
the Top-5 meta-paths with the largest attention coefficients for
every layer. We use a structure similar to resnet [35], which
means that we concat the embedding of the first layer and the
embedding of the second layer as the final embedding.

D. Classification and Clustering

Table II shows the performance of MGOHE and other node
classification baselines. Table III shows the performance of
MGOHE and other clustering baselines. By analysing the
result of our experiments, we will answer the question Q1.

Classification. In the classification task, we use KNN
classifier with k=5 to perform node classification. In order
to prove the reliability of the experimental data, we repeat
KNN for 10 times to report the average of Macro-F1 and
Micro-F1 in Tabel II. GAT tries to assign different weights
to neighbors while GCN simply averages over neighbors. So



TABLE I
STATISTICS OF THE DATASETS

Dataset Relations(A-B) Number of A Number of B Number of A-B Feature Train Val Test

DBLP
Paper-Author 14328 4057 19645

6044 800 400 2857Paper-Conf 14328 20 14328
Paper-Term 14327 8789 88420

ACM Paper-Author 3025 6028 10055 1524 600 300 2125Paper-Subject 3025 73 3025

TABLE II
QUANTITATIVE RESULTS (%) ON THE NODE CLASSIFICATION TASK

Datasets Metrics Deepwalk Metapath2vec GCN GAT HAN MGOHE

DBLP Macro-F1 86.31 91.23 87.62 90.28 91.69 93.41
Micro-F1 85.03 91.57 88.83 90.75 92.74 93.78

ACM Macro-F1 83.85 72.41 86.79 88.14 91.13 92.79
Micro-F1 83.29 72.74 87.34 88.39 91.18 92.84

TABLE III
QANTITATIVE RESULTS (%) ON THE NODE CLUSTERING TASK

Datasets Metrics Deepwalk Metapath2vec GCN GAT HAN MGOHE

DBLP NMI 72.25 73.34 74.11 65.85 73.48 76.79
ARI 79.95 78.43 79.39 69.01 79.04 82.56

ACM NMI 48.01 23.37 55.40 64.87 71.10 76.42
ARI 44.48 16.86 58.61 70.79 75.82 82.31

GAT usually performs better than GCN. HAN is a modified
GAT for heterogeneous graph. With the guide of multiple
meta-paths, the HAN performs better than GAT. This result
shows that meta-path can introduce more semantic informa-
tion. Interestingly, Metapath2vec is better than Deepwalk on
DBLP and the opposite on ACM. Metapath2vec introduces
meta-path on heterogeneous graph random walk compared
with deepwalk. This result shows that meaningful meta-path
can capture more semantic information while meaningless
meta-path may cause adverse effects on performance. The
MGOHE is modified from HAN, trying to generate meaningful
meta-paths for specific datasets and tasks. We observe that our
MGOHE achieves the best performance on all the datasets
against other methods. It demonstrates that in classification
task, the MGOHE can learn more meaningful meta-paths and
make full use of heterogeneous information for effective node
embedding.

Clustering. We also perform clustering task to evaluate the
embeddings learned by the above algorithms. We use the same
ground-truth as in node classification. And we adopt NMI and
ARI to evaluate the quality of the clustering results. Since
the performance of KMeans is affected by initial centroids,
we repeat the process for 10 times and report the average
result in Tabel III. Note we use the embeddings trained for
classification task. We find that the results do not show the
same trend in the clustering task and the classification task. For
example, Metapath2vec is better than GCN in classification
task and the opposite in clustering task. This inconsistency
may come from the reason that the embeddings is optimized
by classification loss. We also find that the performance on
different datasets varies greatly. For example, the clustering
performance of Metapath2vec, GCN and HAN is similar on

DBLP while HAN is much better than the other two on ACM.
On one hand, this shows the effectiveness of manually selected
meta-paths. On the other hand, this manually-selected meta-
paths have a lot of uncertainty and is more susceptible to the
influence of experts. We observe that our MGOHE achieves
the best performance on all the datasets against other methods.
It proves that MGOHE is better at generating meta-paths that
are actually meaningful without being affected by domain
knowledge. It also proves the stability and effectiveness of
GMOHE.

E. Meta-Path Generation

We compare the predefined meta-paths with the meta-paths
generated by MGOHE to discuss the question Q2.

Essentially, we exhaust all meta-paths within k-hop neigh-
borhoods, including self-loop connection. During training,
we use the attention mechanism to optimize the weights
of different meta-paths. When inferencing, we calculate the
average weight of the corresponding meta-paths on all nodes.
We argue that the average weight of all meta-paths reflect the
importance of the meta-path in real scenarios. Taking paper in
the ACM dataset as an example, there are 4 meta-paths(PA, PS,
PAP, PSP, as shown in Figure 1(c) within 2-hop neighborhoods
and one meta-path(P) representing self-loop. After training 100
epoches, we count the average weights of all meta-paths. As
shown in Figure 4, meta-path P takes the maximum weight,
which corresponds to our prior perception and the self-loop
connection in HAN [17] simultaneously. PAP is the suboptimal
meta-path and others take little weights. HAN [17] adopts
PAP and PSP which strongly rely on experts knowledge. In
experiments, MGOHE’s weights is approximately equal with
HAN’s weights for PAP and PSP. However, MGOHE doesn’t



TABLE IV
COMPARISON WITH PREDEFINED META-PATHS AND TOP-N META-PATHS BY MGOHE.

Datasets Predefined Meta-path Meta-path generated by MGOHE(Top-3)
DBLP APCPA,APA,APTPA APC*, APA*, AP*
ACM PAP,PSP PAP*, PA*, PS*

(a) Different weights for ACM meta-paths

(b) Different weights for DBLP meta-paths

Fig. 4. Different weights for meta-paths

require extensive domain knowledge. Furthermore, through
stacking multi-layers, our framework can generate longer and
more complex meta-paths.

We make a comparision with predefined meta-paths and
Top-N meta-paths generated by MGOHE in Table IV. For
example, PA is a meta-path found by MGOHE within one-
layer and PA* indicates more complex meta-paths found by
MGOHE within multi-layers. As shown in Table IV, the
predefined meta-paths originated from domain knowledge are
consistent with Top-N meta-paths generated by MGOHE. This
shows that MGOHE are capable of learning the importance of
meta-paths for particular task. More interestingly, MGOHE
discovers important meta-paths that are not in the predefined
meta-path set. For example, in the ACM dataset MGOHE
ranks PA and PS as important meta-paths, which is not
included in the predefined meta-path set. It makes sense that
paper’s subject(label to predict) is relevant to the venue where
the author participated and the area of the conference. So we
believe that the interpretability of MGOHE provides useful
insight in node classification and clustering by the attention

scores on meta-paths.

V. CONCLUSION

Our proposed Meta-Path Generation Online for Hetero-
geneous Network Embedding(MGOHE) can be applied to
heterogeneous graph of arbitrary nodes without any domain
expert knowledge. In MGOHE, we try to automatically gen-
erate meta-paths during the learning process to resolve the
dependence of meta-paths construction on domain knowledge.
Besides, the proposed Top-N strategy selects more meaningful
meta-paths while excluding meaningless ones. Our framework
can generate meaningful meta-paths for different nodes online
and learn effective node embeddings simultaneously. With-
out any domain knowledge, experimental results including
classification and clustering demonstrate the effectiveness of
MGOHE. By analyzing the generated meta-paths and the
learned attention weights of the meta-paths, the proposed
MGOHE can generate meaningful meta-paths automatically.
This has also proven its potentially good interpretability.
However, the exhaustive way to search the optimal meta-paths
is time-consuming. Therefore, in future work, we will explore
heuristics to automatically generate meaningful meta-paths.
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