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Abstract—This paper presents a hybrid algorithm for the cre-
ation of heterogeneous single layer neural networks (SLNNs). The
proposed self-adaptive heterogeneous hybrid extreme learning
machine (SA-He-HyELM) trains a series of SLNNs with different
neuron types in the hidden layer utilizing the extreme learning
machine (ELM) algorithm. These networks are evolved into
heterogeneous networks (networks having different combinations
of hidden neurons) with the help of a modified genetic algorithm
(GA). The algorithm is able to handle two architecturally
different neuron types: traditional low order (linear) units and
higher order units with different transfer functions. The GA is
fully self-adaptive and uses one novel hybrid crossover operator
along with a self-adaptive mutation operator in order to retain
ELM’s simplicity and minimize the number of parameters need
tuning. The experimental part of the current paper involves
testing SA-He-HyELM with traditional ELM and other three
ELM-based methods. The experimental part utilized a series
of regression and classification experiments on relatively large
datasets. In all cases the proposed method managed to get lower
MSE or higher classification accuracy when compared to the
aforementioned methods.

Index Terms—extreme learning machine, genetic algorithm,
higher order unit, hybrid algorithm, single layer neural network

I. INTRODUCTION

A relatively new method named extreme learning machine
(ELM) was proposed by Huang et al. [1], [2] for a special case
of feed forward artificial neural networks (ANNs) having one
input layer, one hidden layer and one or more output nodes.
This method treats an ANN like a linear system of equations.
It is able to train it by randomizing the hidden layer weights
and thresholds and then with the help of the Moore-Penrose
pseudo-inverse it is able to analytically calculate the output
node weights. This method showed that a single layer neural
network (SLNN) can be trained by tuning only the output
node(s) weights while the hidden layer weights and thresh-
olds could be randomized [3]. One significant characteristic
of this method, is it’s ability to achieve low training error
for regression problems or high accuracy for classification

This work is partly funded by the project entitled xBalloon, co-financed
by the European Union and Greek national funds through the Operational
Program for Research and Innovation Smart Specialization Strategy (RIS3)
of Ipeiros (Project Code: HΠ1AB − 0028178).

problems with small norm of weights which according to
Bartlett’s neural network generalization theory [4] leads to
better generalization performance [5]. This approach is a lot
faster than gradient-based methods which use an iterative
process to adapt all weights and thresholds of the ANN.

The advantages of ELM include simplicity (since it doesn’t
have any parameters need tuning), speed (since it doesn’t
require a iterative process to train an ANN and efficiency
(since it doesn’t suffer from the local minimum problem).

Besides the aforementioned advantages, it has some disad-
vantages which include the requirement of a large number
of hidden neurons due to the fact that the hidden layer
weights and thresholds are randomized and not tuned [6],
[7]. Another disadvantage, is it’s inability to create networks
with low generalization error or high accuracy containing
different combinations of hidden neuron types in an automatic
way. The heterogeneous hybrid extreme learning machine
(He-HyELM) proposed by Christou et al. [8] tries to cir-
cumvent this problem by incorporating a genetic algorithm
(GA) to evolve homogeneous networks1 into heterogeneous
networks2. The purpose of this algorithm is to select the best
heterogeneous network at the end of the evolution process
according to it’s generalization ability in unknown test data.
Although this method is able to create optimal heterogeneous
networks, it introduces two user defined parameters which
affect the convergence rate of the GA. These parameters are
the mutation rate and the number of generations. Another issue
of He-HyELM is that it cannot be used with large datasets
because it is computationally intensive. The proposed self-
adaptive heterogeneous hybrid extreme learning machine (SA-
He-HyELM) solves these issues by introducing self-adaptive
versions of the mutation rate and the ending criteria of the GA
and introduces a novel application specific hybrid crossover
operator. Furthermore, its architecture has been modified and
now uses an application specific parallel GA which is able to
run in a PC having multiple central processing units (CPUs)

1The term homogeneous networks refers to SLNNs having the same
neuron types in the hidden layer.

2The term heterogeneous networks refers to SLNNs having different
combinations of neuron types in the hidden layer.
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which contain multiple processing cores. This architecture
greatly reduces the training time and makes SA-He-HyELM
able to run in large datasets. The neuron types created and
utilized by SA-He-HyELM are in accordance with the struc-
tured composite model (C-Model) proposed by Christou et
al. [9]. The C-Model utilizes three neuron sub-components in
order to create a custom neuron. These sub-components are
the dendrite (D), the activation (Sa) and the activation-output
function (Sao). A custom neuron is created by using different
sub-components from the above three categories. This model
supports traditional neuron types where each input is multi-
plied with the corresponding weight and higher-order units. In
the latter, the number of corresponding weights for each input
are calculated according to a mathematical formula. SA-He-
HyELM utilizes the higher-order units proposed by Gurney
[10], [11]. Both neuron types are analyzed in Section III and
utilized in the works of Neville et al. [12]–[14].

Numerous ELM based approaches try to improve various
aspects of the original algorithm. A significant number of
these approaches are focused in optimizing the hidden layer
weights and thresholds utilizing GA-based approaches. Zhu et
al. [7] proposed evolutionary ELM (E-ELM) which utilizes
differential evolution (DE) for optimizing the hidden layer
weights and thresholds. Then, with the help of the Moore-
Penrose pseudo-inverse, it is able to calculate the output
node(s) weights. DE is a powerful population based, stochastic
function minimizer which is able to optimize a problem by
trying to improve a candidate solution with regard to a given
measure of quality using an iterative approach [15], [16].
Evolving ELM (Evo-ELM) for classification problems by Li
et al. [17] is also able to optimize the hidden layer weights
and thresholds using an adaptive DE algorithm. It is able to
online select the appropriate operator for the generation of the
offspring, while the control parameters are adaptively tuned.
The above approaches are unable to create heterogeneous
networks and in most cases contain parameters which they
need manual selection from the user’s perspective.

The original ELM algorithm works in batch mode. A series
of ELM-based approaches have modified its structure, so it can
work with sequential data. Huang et al. [18] proposed on-line
sequential ELM (OS-ELM) which utilizes the recursive least-
squares (RLS) algorithm. RLS is able to find the coefficients
that minimize a weighted linear least squares cost function
according to the input signals by using a recursive approach
[19]. Scardapane et al. [20] extended OS-ELM to work with
implicit feature mappings in the proposed kernel on-line
sequential ELM (KOS-ELM). The robust on-line sequential
ELM (ROS-ELM) by Hoang et al. [21] extended OS-ELM by
adding a systematic bias selection method following the input
weights. The main purpose of the above approaches is to make
traditional ELM work with sequential data without taking into
consideration the creation of networks with heterogeneous
structure.

The homogeneous hybrid ELM (Ho-HyELM) by Christou et
al. [9] is able to create networks with custom created neurons
in the hidden layer and includes support for higher-order

neurons. Unfortunately, its lacking a mechanism to create
networks with different combinations of hidden units.

A number of ELM-based methods are able to create hetero-
geneous networks. The ELM algorithm with tunable activation
function (TAF-ELM) by Li et al. [22] is able to optimize
the hidden layer weights, the hidden layer thresholds and the
transfer functions with the use of a DE algorithm. The different
neuron types are created adaptively by the DE according to the
characteristics of each problem. The optimally pruned ELM
(OP-ELM) by Miche et al. [23] is able to create heterogeneous
networks by randomly creating one large SLNN with different
neuron combinations in the hidden layer. Then, with the use of
the multi-response sparse regression3 (MRSR) algorithm, each
hidden neuron is ranked according to its participation in the
overall network error. Finally, the neurons that have the least
contribution to the overall network error are selected to form
the final SLNN. Although, these methods are able to create
heterogeneous SLNNs, they don’t take into consideration
higher order units.

Finally, the non-ELM based method proposed by Tsoulos
et al. [25] uses grammatical evolution for the creation of the
network structure. This method is able to create networks with
multiple hidden layers, including recurrent networks but is
unable to create heterogeneous networks.

II. RELATED WORK

A. The ELM Algorithm Structure

The ELM algorithm works in a different way than tra-
ditional neural network training algorithms where all the
network weights need to be adapted in an iterative way. ELM
trains a SLNN by randomizing the hidden layer weights and
thresholds. Then, with the help of the Moore-Penrose pseudo-
inverse, it analytically calculates the output layer weights [1],
[2]. The hidden neurons can be of various types including
additive nodes, RBF nodes [26], higher order units [10] and
Fourier terms [27]. ELM can train also networks containing
other node types as long as they are non-linear piece-wise
continuous functions [28].

Huang et al. [26] utilized an incremental construction
method to prove that in additive neurons with bounded non-
constant piece-wise continuous activation functions (g : R→
R) or RBF neurons with integrable piece-wise continuous
activation functions (g : R → R and

∫
R
g(x)dx 6= 0), the

network containing randomly generated hidden layer units can
converge to any continuous target function by only tuning the
output layer weights [28], [29].

The ELM algorithm begins with the random selection of
the hidden layer weights and thresholds usually taken from
the [0, 1] or [−1, 1] interval in order to be in accordance with
Bartlett’s theorem [4]. Then, it calculates the hidden layer
matrix H , where each row of the table contains the data
for each training pattern introduced to the SLNN while each

3Sparse regression is the procedure of selecting a small subset from all
available regressors for the prediction of a target variable. MRSR is a general
case where the regressors and the target can be multivariate [24].



column of the table contains the training patterns for each
hidden unit. The next step is the creation of target output
matrix T . Again, each row of the table contains the target
values of each training pattern introduced to the SLNN while
each column of the table corresponds to the target output
values of each output node. The algorithm finalizes with the
calculation of output node(s) weights matrix β by multiplying
the Moore-Penrose pseudo-inverse of H , which is depicted
with the symbol H†, with the target output matrix T as seen
in formula β = H†T [1], [2].

B. The Traditional GA Structure

Traditional GAs are inspired from the natural selection
mechanism where stronger individuals have more possibilities
to win in a competitive environment. The GA follows the same
principle where an optimal solution is found by the winner of
a genetic game. A potential solution of a problem is encoded
as a set of parameters in binary string form, which is the
digital equivalent of the gene sequence in a chromosome. A
fitness value is used to evaluate each chromosome towards
the problem. The fitness value has high relation with the
problem’s objective value. Through the evolution process, fitter
chromosomes tend to produce high quality offspring which in
turn result to a better solution to the problem.

The GA begins with the creation of the initial population
which is a pool of usually randomly created chromosomes
(although other methods can be utilized). In each evolution
cycle which is termed generation, the population is evaluated
according to a fitness function. A subsequent generation is
created by the individuals of the current population. These
individuals are named ‘parents’ and the fitter ones are selected
by a selection mechanism for the reproduction process where
the parent genes are recombined in order to produce the
offspring of the next generation. This evolution process is
expected to produce better (fitter) chromosomes since the best
chromosomes, according to fitness, are selected for reproduc-
tion which in turn are going to produce better offspring. This
process is nature inspired from the “survival of the fittest”
mechanism [30].

The evolution process is repeated until a specific stopping
criterion is reached. This criterion can be a fixed number
of generations, a specific fitness value or when no fitter
chromosomes are produced. Then, the optimal solution found
is returned [30].

Each generation contains two basic operators named
crossover and mutation. In the traditional GA, one-point
crossover operator is responsible for the reproduction process.
This procedure involves the mutual exchange of genes between
two parent chromosomes according to a randomly selected
crossover point.

The mutation operation is applied after the reproduction
process at each individual where each bit is changed randomly
according to a small probability (usually less than 0.1).

III. THE SA-HE-HYELM ARCHITECTURE

A. SA-He-HyELM Neuron Types

The custom neurons used in SA-He-HyELM are com-
prised from three neuron sub-components named dendrite
(D), activation function (Sa) and activation-output function
(Sao), following the structured composite model (C-Model)
by Christou et al. [9]. The last two sub-components form
the artificial equivalent to the biological soma of the neuron.
The subscripts a and ao are used to distinguish between the
soma activation function and soma activation-output function.
These sub-components form the custom neuron’s structure and
can be mathematically modeled by the composite function
y = g(u) = Sao(Sa(D)) where the input patterns are
introduced to the neuron as an input vector. The purpose of
the dendrite is to weight the inputs according to a specific
formula. The weighted inputs are summed together in the
soma activation function and an optional threshold is added
(this regards traditional unit types only, since the higher order
units utilized in this paper do not support a threshold). Finally,
the soma activation-output (transfer) function receives the
outcome of the activation function and produces the neuron’s
output. The experimental part of SA-He-HyELM utilized two
types of dendrites which are based on two different neuron
types. The first is the linear dendrite (Dl) and is based on the
traditional neuron type. The latter is the multi-cube dendrite
(Dmc) and is based on a special case of the higher order unit
proposed by Gurney [10] named multi-cube neuron. These
dendrite types are going to be analyzed in the following two
sections.

B. Linear Dendrite Structure

The linear dendrite is based on the traditional neuron
structure where each input is multiplied by its corresponding
weight. The input patterns introduced to the linear dendrite
are expressed as the input vector x = [x1, x2, . . . , xn] ∈ Rn
which is multiplied element-wise with the weight vector
wl = [w1, w2, . . . , wn] ∈ Rn forming the formula Dl =
[w1x1, w2x2, . . . wnxn] [31].

C. Cubic Dendrite Structure

In a cubic unit, the number of weights (wno) is not propor-
tional to the number of inputs (n) but increases exponentially
according to the formula wcno = 2n ∈ N∗. The participation of
each weight to the activation function is calculated according
to a probability value which is determined using the equation
Pµ = 1

2n

∏n
i=1(1 + µi

xi
xmax

). In this equation, the term
1

xmax
is used to normalize the input at [−1, 1]. The term

µ = µ1µ2 . . . µn is a positive integer converted to binary string
form. The purpose of µ is to change the sign values of the
inputs for each product term. The ones are interpreted as pluses
while the zeroes as minuses [8]–[10]. The formula for the
cubic unit dendritic type is Dc = wcµ

1
wcmax

∏n
i=1(1+µi

xi
xmax

).
It uses the weight vector wcµ = [w0, w1, . . . , w2n−1] ∈ R2n

which can be considered as a multi-dimensional hypercube
where each weight corresponds to a site of the hypercube. In



this formula, the factor 1
wcmax

is used for normalization of the
weights at [−1, 1] where the term wcmax defines the maximum
weight vector value [8]–[10].

Unfortunately, these types of neurons suffer from scaling
problems since the number of weights increases exponentially
according to the number of inputs. In order to overcome this
problem, Gurney [10] proposed the multi-cube unit which
utilizes a set of low dimension hyper-cubes instead of one
high dimension hypercube. The experimental part of this
paper utilizes a special case of the multi-cube unit where
all sub-cubes have the same dimension. The formula de-
scribing this dendritic type is Dmc = [wmcµ,1

1
wmcmax

∏d
i=1(1 +

µi
xi,1
xmax

), . . . , wmcµ,q
1

wmcmax

∏d
i=1(1 + µi

xi,q
xmax

)].
In this equation, q is the number of sub-cubes, d is the

number of inputs for each sub-cube and wmcmax defines the
maximum weight vector value.

D. Activation Function Structure
The research part of this paper makes use of the ‘sum of

weights’ soma (S) activation function which aggregates the
dendrite elements and in the case of the linear dendrite adds
an optional threshold. The formula SSoWαl

=
∑n
i=1 xiwi + θ

describes the ‘sum of weights’ activation function for linear
units. In this equation, the superscript declares the activation
function type (for ‘sum of weights’ activation function the
superscript is SoW ). The subscript declares the neuron type
and can take the values l, c and mc which correspond to the
linear, cubic and multi-cube neuron types accordingly. The for-
mula for cubic units is SSoWαc = 1

wcmax2
n

∑2n−1
µ=0 wcµ

∏n
i=1(1+

µi
xi

xmax
) while the formula for multi-cube units is SSoWαmc =

1
wmcmax2

d

∑q
j=1

∑2d−1
µ=0 wmcµ

∏d
i=1(1 + µi

xi
xmax

) [8]–[10].

E. Activation-Output Function Structure
The neuron’s output is produced by the soma (S) activation-

output function. This paper uses six different activation-
output functions with variable shapes defined by the tun-
ing parameter ρ = {0.2, 0.4, 0.6, 0.8, 1}. These are bent

identity (SBIao = ρ
(√

Sa2+1

2 + Sa

)
), Gaussian (SGao =

e
−
(
Sa
ρ

)2

), hyperbolic tangent (SHTao = tanh
(
Sa
ρ

)
), sigmoid

(SSigao = 1

1+e
−Sa
ρ

), sinusoid (SSinao = sin
(
Sa
ρ

)
) and soft

sign (SSSignao =
Sa
ρ

1+|Saρ |
). The superscript at each formula

(BI,G,HT, Sig, Sin, SSign) defines the activation-output
type while the subscript (ao) differentiates an activation-output
function from an activation function.

F. SA-He-HyELM
The SA-HE-HyELM algorithm is constituted by two parts.

The first part creates a set of homogeneous networks while the
second part selects the most promising ones (50%) and evolves
them into heterogeneous networks. Finally, the heterogeneous
network with the lowest generalization error for regression
problems or the highest accuracy for classification problems
is selected as the most optimal.

1) Creation of the Homogeneous SLNNs: The creation of
the homogeneous networks involves defining the neuron sub-
components which will form the custom neurons. Then, a
set of SLNNs with fixed number of hidden units is created
and trained using ELM. This procedure is described in Algo-
rithm 1.

Algorithm 1 Creation of the Homogeneous SLNNs (Part 1)

1 : PoolD =



[w1x1, w2x2, . . . wnxn],

wmcµ,1
1

wmcmax

d∏
i=1

(1 + µi
xi,1
xmax

), . . . ,

wmcµ,q
1

wmcmax

d∏
i=1

(1 + µi
xi,q
xmax

)

]


2 : Poola =



n∑
i=1

xiwi + θ,

1

wmcmax2
d

q∑
j=1

2d−1∑
µ=0

wmcµ

d∏
i=1

(1 + µi
xi

xmax
)



3 : Poolao =



ρ
(√Sa2 + 1

2
+ Sa

)
,

e
−
(
Sa
ρ

)2

, tanh
(Sa
ρ

)
,

1

1 + e−
Sa
ρ

, sin
(Sa
ρ

)
,

Sa
ρ

1 + |Saρ |


4 : Poolcn =


SBIaol , S

BI
aomc , S

G
aol
, SGaomc ,

SHTaol , S
HT
aomc , S

Sig
aol

, SSigaomc , S
Sin
aol

,

SSinaomc , S
SSign
aol

, SSSignaomc


5 : Poolnets =

∑h
i=1[βi1, . . . , βim]g(u), g(u) ∈ Poolcn

The first three pools (PoolD, Poola, Poolao) contain den-
drites, activation functions and activation-output functions.
The distinction between these pool types is done using the D, a
and ao subscripts accordingly. The algorithm begins with the
creation of the dendrite pool which contains linear and multi-
cube dendrite types. Then, it creates the activation function
pool containing linear and multi-cube activation functions (one
for each previously created dendrite type). The third neuron
sub-component pool contains the bent identity, Gaussian,
hyperbolic tangent, sigmoid, sinusoid and soft sign activation-
output functions. In step 4, it creates twelve different custom
neuron types. In these neuron types, the superscript defines
the activation-output type (BI,G,HT, Sig, Sin, SSign). The
subscripts aol and aomc distinguish an activation-output func-
tion receiving as input a linear activation function from an
activation-output function receiving as input a multi-cube
activation function. Step 5, involves creating a pool contain-
ing homogeneous networks (Poolnets) where each network
utilizes one different custom neuron from the previous step.
A diagram of the procedure can be seen in Fig. 1.

The homogeneous networks can be mathematically modeled
as
∑h
i=1[βi1, . . . , βim]g(u). In this formula, h is the number



of hidden units, m is the number of output units, with βim is
depicted the ith weight of the output node m and (g(u) = u)
is the activation-output function of the output node(s). These
SLNNs can be trained by ELM and they have no threshold in
the output node(s).

Figure 1. Creation of the Homogeneous SLNNs (Part 1). This figure shows the
creation of the homogeneous networks. The algorithm begins with the creation
of three pools containing different number of neuron subcomponents. These
subcomponents are utilized for the creation of the custom neurons which will
then form a set of SLNNs with the same number of neurons in the hidden
layer.

2) Evolution of the Homogeneous SLNNs into Heteroge-
neous SLNNs : The second part of the algorithm utilizes a
GA in order to evolve the homogeneous networks created in
the previous part into heterogeneous networks. This procedure
is described in Algorithm 2 and begins with the selection of the
homogeneous networks which will form the initial population.

Algorithm 2 Creation of the Heterogeneous SLNNs (Part 2)
1 : create Population
2 : Loop
3 : Populationevaluate = evaluate(Population)
4 : If best(Populationevaluate) is unchanged for 3
5 : generations
5 : Net← best(Populationevaluate)
6 : Return Net
7 : End If
8 : Populationselect ← Populationevaluate

2
9 : Offspring ← crossover(Populationselect)
10 : Offspring ← mutation(Offspring)
11 : Population← Population+Offspring
12 :End Loop

Each hidden layer is represented as a chromosome with each
hidden neuron encoded as a gene. The next step of the algo-
rithm begins the evolution process. In step 3, the population is
evaluated according to a fitness function. Initially, the SLNNs
forming the population are trained with ELM. The training
process is done in parallel by utilizing a multiple CPU system
where each CPU contains multiple processing cores. When the
training process is completed, the networks are ranked from
best to worst according to fitness.

Each dataset is partitioned into training/validation/test sets.
A percentage of the dataset is retained as test set and the rest of

the dataset is divided into training/validation sets using the k-
fold cross-validation method. The ranking mechanism utilized
the average k-fold cross-validation error over all folds in order
to rank the SLNNs from best to worst.

The fitness criterion for regression problems was the average
mean square error (MSE) where the network which managed
to get the lowest value is considered as the most optimal. The
formula MSE = 1

kp

∑k
i=1

(∑p
j=1(t

j
i − y

j
i )

2
)

calculates the
average MSE. In this equation, k is the number of folds, p
is the number of validation patterns, tji is the current pattern
target network output value for the current fold and yji is the
current pattern network output value for the current fold. The
fitness criterion for classification problems was the average
accuracy (acc) where the network which managed to get
the highest value is considered as the most optimal. The
formula acc = 1

k

∑k
i=1

(
1− err

p

)
calculates the average acc.

In this equation, k is the number of folds, p is the number
of validation patterns and err is the number of misclassified
test patterns for the current fold. When the ranking process
is completed, 50% of the networks with the highest fitness
values are selected to form the current population.

In step 4, the termination criterion checks if the best
network found is unchanged for three generations. In case this
condition is true, it selects the best network found according
to fitness and terminates the evolution process (steps 5,6). In
case the condition is false, the evolution process continues with
the selection operator (step 8) where 50% of the networks
with the lowest generalization error for regression problems
or highest accuracy for classification problems are selected
for the reproduction process.

In step 9, the GA reproduces the population using the
proposed application specific hybrid neuron ranking masked
crossover operator. This is an adaptive operator which takes
into consideration the fitness value at each generation in order
to switch between two different crossover operators. If the
fitness value changes and a more optimal network is found, the
crossover operator is set to the uniform crossover, otherwise
the proposed neuron ranking masked crossover operator is
utilized. The uniform crossover operator creates two offspring
having n genes by exchanging information between the par-
ent chromosomes utilizing a uniform random real number
u ∈ [0, 1]. This number decides if the first descendant will
have the ith genes from the first or the second parent. [32],
[33]. If the fitness value doesn’t change and a more optimal
network has not been found, the proposed neuron ranking
masked crossover operator is utilized. This operator uses
one binary vector (mask) for each parent chromosome with
purpose to guide the reproduction process. These masks are
created by ranking the genes (neurons) of each chromosome
using the MRSR algorithm [24]. The MRSR algorithm ranks
each hidden layer neuron according to its participation in the
overall network error. The hidden layer neurons are divided
as significant (50%) and less significant (50%). The neurons
that contribute less to the overall network error receive the 0
value and they are considered significant while the neurons



that contribute more to the overall network error receive the
value 1 and they are considered less significant. The parent
mask vectors are created at each generation by setting the
value 0 to the positions of the high ranked neurons and 1 to the
positions of the low ranked neurons. The reproduction process
for the first offspring is done according to the first mask vector.
The gene positions with the 0 value from the first parent are
retained at the first offspring while the gene positions with
the 1 value are replaced with the genes at the same positions
from the second chromosome. This procedure is repeated for
the second parent using the second mask vector as a guide for
the reproduction process and replacing the low ranked neurons
of the second chromosome with the equivalent ones from the
first chromosome. If the reproduction process produces two
identical offspring, the second offspring is randomly shuffled.

The proposed hybrid neuron masked crossover operator has
the advantage of switching to a more promising intelligent
reproduction process when the uniform crossover doesn’t
produce fitter offspring and switching back to the uniform
crossover when fitter offspring are produced. Having only the
neuron masked crossover operator would result in a slower
evolution process since the MRSR ranking mechanism intro-
duces a computational cost. The proposed hybrid crossover
operator is able to retain a balance between efficiency and
computational cost.

Figure 2. Creation of the Heterogeneous SLNNs (Part 2). This figure shows
the creation of the heterogeneous networks. The algorithm begins with the
creation of the initial population utilizing the homogeneous networks created
in part 1. The evolution process begins with the evaluation of the population.
Then, the GA checks if the stopping criteria have been satisfied in order to
return the optimal heterogeneous network found. If the stopping criteria have
not been satisfied, the evolution process continues with the selection of the
best networks (50%) for the reproduction process (crossover). The produced
offspring are then mutated and added to the existing population with purpose
to form the population of the next generation.

In step 10, a percentage of the offspring has one of its
neurons replaced randomly by a neuron taken from the custom
neuron pool. The proposed application specific self-adaptive
mutation operator is able to adapt the mutation rate by taking
into consideration the value of the fitness function at each
generation. If the evolution has just begun or if a more optimal
fitness value has been found, the mutation rate is set to 10%.
If the offspring do not produce fitter descendants, then the
mutation rate gradually increases by 20% to a maximum
value of 50%. The purpose of setting the mutation rate to
a maximum value of 50% is because a higher mutation rate

would convert the GA to a random search which is a primitive
optimization method [34].

The proposed self-adaptive mutation operator is able to
enhance the global search of the search space by gradually
increasing the mutation rate to a maximum value (50%) when
no fitter offspring have been produced. On the other hand, it is
able to enhance the local search of the search space when fitter
offspring have been produced by setting the mutation step to
its lowest value (10%).

Finally, in step 11 the mutated offspring are added to the
current population with purpose to form the population of
the next generation. The evolution process is repeated until
the stopping criterion is satisfied. A diagram visualizing this
procedure is seen in Fig. 2.

IV. EXPERIMENTAL RESULTS

The experimental results involve the comparison of the pro-
posed SA-He-HyELM with traditional ELM and other three
ELM-based methods (Ho-HyELM, OS-ELM and KOS-ELM)
in three regression and three classification (one multi-class and
two binary) problems. The regression problems are ‘air quality
[35]’, ‘appliances energy prediction [36]’ and ‘combined cycle
power plant [37]’. The classification problems are ‘crowd-
sourced mapping [38]’ (multi-class), ‘electroencephalogram
(EEG) eye state’ (binary) and ‘high time resolution universe
2 [39]’ (binary). All datasets have a large number of samples
and have been downloaded from the UCI machine learning
repository [40]. The ‘air quality’ dataset contained missing
values. The selected method for circumventing this problem
was to replace the missing values from each column with the
equivalent average column value.

A. Simulation Parameters

The experiments were executed in MATLAB 2017a using
the parameters depicted in Table I.

Table I
SA-HE-HYELM PARAMETERS

Parameter Name Symbol Values/Types

Linear Inputs No n n ∈ N∗

Linear Neuron Weights wl wl ∈ [−1, 1]n
Multi-Cube Inputs No d d ∈ N∗

Multi-Cubes No q q = n
Multi-Cube Neuron Weights wmc wmc ∈ [−1, 1]2n
Threshold θ θ ∈ [−1, 1]
Inputs x x ∈ [−1, 1]n
Hidden Layer Neurons No h 15
Tuning Parameter ρ ρ = {0.2, 0.4, 0.6, 0.8, 1}
Folds No k 10
Experiment Sets expNo 10

We utilized linear and multi-cube dendrites, the ‘sum of
the weights’ activation function and the six tunable activation-
output functions described in Section III-E for the Ho-HyELM
and SA-He-HyELM approaches. The [−1, 1] interval was used
for the normalization of all datasets and for the randomization



of the hidden layer weights and thresholds. The number of
multi-cube neuron inputs was set to 1 and the number of multi-
cubes was set to n which resulted in q2d = n21 = 2n number
of weights. The number of hidden layer units was set to 15
while the tuning parameter ρ took the values 0.2, 0.4, 0.6, 0.8
and 1. Each dataset was partitioned into training/test sets were
20% of the data was kept as test data. One exception was the
‘crowdsourced mapping’ dataset which was already divided
into training (10545 samples) and test (300 samples) sets.
The training set for SA-He-HyELM was further divided using
the 10-fold cross-validation method. Finally, we conducted 10
repeats of each experiment with different random values for
the hidden layer weights and thresholds.

Traditional ELM and OS-ELM used linear units with sig-
moid transfer functions while Ho-HyELM used the same
custom neuron types with SA-He-HyELM. KOS-ELM utilized
Gaussian kernels and has two parameters that affect signifi-
cantly its generalization ability. These are the regularization
parameter C and the bandwidth γ of the Gaussian kernel
which were both searched in {2−8, 2−4, 20, 24, 28, 213} [20].
The network which produced the best results on the test set
was selected as the most optimal.

B. Experimental Results for Regression Problems

Table II
RESULTS COMPARISON FOR REGRESSION PROBLEMS

Methods Air
Quality

Appliances
Energy Prediction

Combined Cycle
Power Plant

ELM 0.00356 0.00848 0.0000719
Ho-HyELM 0.00348 0.00809 0.0000719
OS-ELM 0.06406 0.09087 0.0085477
KOS-ELM 0.00408 0.0112 0.0001941
SA-He-HyELM 0.00201 0.00779 0.0000711

Figure 3. Results Comparison for Regression Problems.

The results from the comparison of SA-He-HyELM with
the other methods in terms of MSE are depicted in Table II
and visualized in Fig. 3. It can be seen that in all compared

datasets, it managed to get the lowest average MSE over all
experiment runs (the lowest MSE is marked in bold).

C. Experimental Results for Classification Problems

Table III
RESULTS COMPARISON FOR CLASSIFICATION PROBLEMS

Methods Crowdsourced
Mapping

EEG
Eye State

High Time
Resolution Universe 2

ELM 37.6% 61.8% 97.3%
Ho-HyELM 39.6% 62.2% 97.5%
OS-ELM 37% 52.9% 97.2%
KOS-ELM 40.3% 58.6% 96.9%
SA-He-HyELM 47.3% 65.6% 97.7%

Figure 4. Results Comparison for Classification Problems.

The results from the comparison of SA-He-HyELM with the
other methods in terms of accuracy are depicted in Table III
and visualized in Fig. 4. It can be seen that in all compared
datasets, it managed to get the highest average accuracy over
all experiment runs (the highest accuracy is marked in bold).

V. CONCLUSION

SA-He-HyELM is able to evolve homogeneous networks
into heterogeneous ones with better generalization ability
while retaining ELM’s simplicity. The only user defined pa-
rameter is the selection of the neuron sub-components that are
going to form the custom neurons.

The main purpose of the proposed algorithm was to retain
the simplicity of ELM by reducing the number of parameters
need tuning. For this reason, the number of generations and
the mutation rate of the GA are no longer user defined but they
are automatically adjusted. The algorithm is able to exploit the
fitness at each generation, in order to take vital decisions for
the evolution process. These include the switching criterion
between the uniform crossover and the proposed intelligent
neuron ranked masked crossover operator, the mutation rate
and the termination of the evolution process. Finally, by
adapting the algorithm to work in multi-CPU environments,
we further reduced the computationally intensive evolution



process and we made SA-He-HyELM to be able to work with
large datasets.
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[24] T. Similä and J. Tikka, “Multiresponse sparse regression with application
to multidimensional scaling,” in International Conference on Artificial
Neural Networks. Springer, 2005, pp. 97–102.

[25] I. G. Tsoulos, D. Gavrilis, and E. Glavas, “Neural network construction
using grammatical evolution,” in Proceedings of the Fifth IEEE Inter-
national Symposium on Signal Processing and Information Technology,
2005. IEEE, 2005, pp. 827–831.

[26] G.-B. Huang, L. Chen, C. K. Siew et al., “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[27] F. Han and D.-S. Huang, “Improved extreme learning machine for func-
tion approximation by encoding a priori information,” Neurocomputing,
vol. 69, no. 16-18, pp. 2369–2373, 2006.

[28] G.-B. Huang and L. Chen, “Enhanced random search based incremental
extreme learning machine,” Neurocomputing, vol. 71, no. 16-18, pp.
3460–3468, 2008.

[29] ——, “Convex incremental extreme learning machine,” Neurocomput-
ing, vol. 70, no. 16-18, pp. 3056–3062, 2007.

[30] K.-F. Man, K. S. Tang, and S. Kwong, Genetic algorithms: concepts
and designs. Springer Science & Business Media, 2001.

[31] K. Gurney, An introduction to neural networks. CRC press, 2014.
[32] G. Syswerda, “Uniform crossover in genetic algorithms,” in Proceedings

of the third international conference on Genetic algorithms. Morgan
Kaufmann Publishers, 1989, pp. 2–9.

[33] A. Umbarkar and P. Sheth, “Crossover operators in genetic algorithms:
A review.” ICTACT journal on soft computing, vol. 6, no. 1, 2015.

[34] T. Panda, T. Theodore, and R. A. Kumar, Statistical Optimization of
Biological Systems. CRC Press, 2015.

[35] S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia, “On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario,” Sensors and Actuators B: Chemical, vol.
129, no. 2, pp. 750–757, 2008.

[36] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven predic-
tion models of energy use of appliances in a low-energy house,” Energy
and buildings, vol. 140, pp. 81–97, 2017.
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