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Abstract—In deep multi-task learning, weights of task-specific
networks are shared between tasks to improve performance on
each single one. Since the question, which weights to share
between layers, is difficult to answer, human-designed architec-
tures often share everything but a last task-specific layer. In
many cases, this simplistic approach severely limits performance.
Instead, we propose an algorithm to learn the assignment between
a shared set of weights and task-specific layers. To optimize the
non-differentiable assignment and at the same time train the
differentiable weights, learning takes place via a combination
of natural evolution strategy and stochastic gradient descent.
The end result are task-specific networks that share weights
but allow independent inference. They achieve lower test errors
than baselines and methods from literature on three multi-task
learning datasets.

I. INTRODUCTION

Deep learning systems have achieved remarkable success
in various domains at the cost of massive amounts of labeled
training data. This poses a problem in cases where such
data is difficult or costly to acquire. In contrast, humans
learn new tasks with minimal supervision by building upon
previously acquired knowledge and reusing it for the new task.
Transferring this ability to artificial learning is a long-standing
goal that is being tackled from different angles [1], [2], [3].
A step in this direction is multi-task learning (MTL), which
refers to learning multiple tasks at once with the intention to
transfer and reuse knowledge between tasks in order to better
solve each single task [4].

MTL is a general concept that can be applied to learning
with different kinds of models. For the case of neural networks,
MTL is implemented by sharing some amount of weights
between task-specific networks (hard parameter sharing) or
using additional loss functions or other constraints to create
dependencies between otherwise independent weights of task-
specific networks (soft parameter sharing). This way, over-
fitting is reduced and better generalization may be achieved
because the network is biased to prefer solutions that apply to
more than one task.

Weight sharing can take many forms but for this paper we
confine ourselves to hard parameter sharing and the common
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Figure 1. Different weight sharing schemes to solve a three-task MTL
problem. Each box depicts a network layer and the letters denote different
weights. Colored partitions in each box illustrate which tasks share weights
for that layer. Weights are never shared in the last layer because it is the
task-specific output layer. No sharing: When disregarding the possibility to
perform MTL, an independent set of weights is used in every task-specific
network. Full sharing: Sometimes called shared back-bone in literature, this
scheme shares weights in all but the final layer. Learned sharing: A weight
assignment learned by our method on the DKL-MNIST dataset.

case where weights can only be shared between corresponding
layers of each task-specific network. Figure 1 illustrates the
resulting spectrum of possible sharing configurations.

The difficulty then lies in choosing an appropriate weight
sharing configuration from this extremely large search space.
We introduce an automatic method that learns how to share
layer weights between task-specific networks using alternating
optimization with a natural evolution strategy (NES) and
stochastic gradient descent (SGD). The main problem is
the non-differentiable assignment between weights and layers
that prevents learning both the assignment and weights with
SGD. Therefore, we exploit the black-box nature of NES to
optimize a probability distribution over the non-differentiable
assignment. It would also be possible to learn the weights
themselves with NES but this is rather inefficient compared to
SGD. Since for every fixed assignment the networks become
differentiable wrt. their weights, we exploit SGD to efficiently
train them.

While alternating these two steps, the probability distribu-
tion’s entropy decreases and the layer weights are optimized
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to perform well under the most likely assignments. In the end,
this results in a single most likely assignment and correspond-
ing layer weights. Notably, this is achieved without resorting
to costly fitness evaluation steps that have to train networks
from scratch, or differentiable weight sharing approaches [5],
[6], [7] that result in computationally intensive forward passes
during inference.

Using our learned weight sharing (LWS) method, we show
accuracy improvements compared to our own baselines and
baselines from literature on three datasets.

II. RELATED WORK

The general approach that powers LWS is a hybrid opti-
mization of differentiable and non-differentiable parameters.
Such a concept is used in [8] to perform neural architecture
search. The non-differentiable parameters govern what kinds
of layers are used in the architecture and are optimized in an
alternating fashion together with the layer weights. Similarly,
in [9] the non-differentiable parameters are sparsity masks
inside a network and the differentiable parameters are again
layer weights. This allows to train sparse networks directly
instead of sparsifying them after first training a dense model.

Next, we will present deep MTL literature to position our
work against existing methods and then NES literature to
provide background for understanding the method.

A. Deep Multi-Task Learning

The main difference between various deep multi-task learn-
ing approaches is how weight sharing between tasks is im-
plemented. This decision is encoded in the architecture of a
deep neural network, either by the designer or an algorithm.
Early works usually employ a shared neural network that
branches into small task-specific parts at its end [10], [11].
This approach, referred to as full sharing in this paper, is
restrictive because all tasks have to work on exactly the
same representation, even if the tasks are very different. This
motivated further work to lift this restriction and make weight
sharing data-dependent.

Approaches like cross-stitch networks [5], Sluice networks
[6] or soft layer ordering [7] introduce additional parameters
that control the weight sharing and are jointly optimized with
the networks weights by SGD. In these approaches, the task-
specific networks are connected by gates between every layer
that perform weighted sums between the individual layer’s
outputs. The coefficients of these weighted sums are learned
and can therefore control the influence that different tasks
have on each other. However, since all task-specific networks
are interconnected, this approach requires to evaluate all of
them even when performing inference on only a single task.
In contrast, every task-specific network in LWS can be used
for inference independently. Soft layer ordering further has
the restriction that all shareable layers at any position in the
network must be compatible in input and output shape. LWS
on the other hand is unrestricted by the underlying network
architecture and can for example be applied to residual net-
works.

Another set of works explores non-differentiable ways to
share weights. Examples include fully-adaptive feature shar-
ing, which iteratively builds a branching architecture that
groups similar tasks together [12] or routing networks, which
use reinforcement learning to choose a sequence of modules
from a shared set of modules in a task-specific way [13].
Routing networks are similar to our work in that they also
avoid the interconnection between task-specific networks as
described before. However, their approach fundamentally dif-
fers in that their routing network chooses layers in a data-
dependent way on a per-example basis, while our network
configuration is fixed after training and only differs between
tasks not examples.

B. Natural Evolution Strategy

Natural Evolution Strategy refers to a class of black-box
optimization algorithms that update a search distribution in
the direction of higher expected fitness using the natural
gradient [14]. Given a parameterized search distribution with
probability density function q (x|α), and a fitness function
u (x), the expected fitness is

J (α) = Eqα [u (x)] . (1)

The plain gradient in the direction of higher expected fitness
can be approximated from samples x1, . . . , xλ distributed
according to q (x|α) by a Monte-Carlo estimate as

∇αJ (α) ≈ 1

λ

λ∑
i=1

u (xi)∇α log q (xi|α) (2)

with population size λ. Instead of following the plain gradi-
ent directly, NES follows the natural gradient F−1∇αJ (α).
Here, F−1 refers to the inverse of the search distribution’s
Fisher information matrix. The natural gradient offers, among
others, increased convergence speed on flat parts of the fitness
landscape.

The Fisher information matrix depends only on the probabil-
ity distribution itself and can often be analytically derived, e.g.
for the common case of multinormal search distributions [15].
For the case of search distributions from the exponential family
under expectation parameters, a direct derivation of the natural
gradient without first calculating F exists [16, page 57]. The
probability density function for members of the exponential
family has the form

q (x|α) = h (x) exp {α · T (x)−A (α)} (3)

with natural parameter vector α, sufficient statistic vector
T (x) and cumulant function A (α) . We focus only on the
case where h (x) = 1 in our paper. If we reparameterize the
distribution with a parameter vector µ that satisfies

µ = Eqα [T (x)] = ∇αA (α) , (4)

then we call µ the expectation parameters. With such a
parameterization, there is a nice result regarding the natural



gradient: The natural gradient wrt. the expectation parameters
is given by the plain gradient wrt. the natural parameters, i.e.

∇̃µq (x|µ) = ∇αq (x|α) . (5)

It follows that the log-derivative, which is necessary for the
search gradient estimate in NES, can easily be derived as

∇̃µ log q (x|µ) = ∇α log q (x|α) (6)
= ∇α (α · T (x)−A (α)) (7)
= T (x)− µ (8)

because of the relationship in Equation 4 between gradient of
the cumulant function and expectation parameters.

In other words, if we choose a search distribution with
expectation parameters, the plain and natural gradient coincide.
We will use this fact later, to follow the natural gradient of a
categorical distribution.

III. LEARNED WEIGHT SHARING

Consider the setup depicted in Figure 2 to solve an MTL
problem using deep neural networks. Any neural network
architecture is chosen as the base architecture, e.g. a residual
network. This base architecture is duplicated once for each
task to create task-specific networks. Finally, the last layer of
each task-specific network is modified to have the appropriate
number of outputs for the task.

In this setup, the weights of every layer except for the last
one are compatible between task-specific networks and can
potentially be shared. To this end, a set of K weights is created
for every layer and all of the N task-specific network layers
are assigned a weight from its corresponding set. By assigning
the same weight to multiple task-specific networks, weight
sharing is achieved. The number of weights per layer must
not necessarily be the same, however we restrict ourselves to
equally sized sets of weights for simplicity.

The problem is now to find good assignments between the
weights and task-specific network layers and at at the same
time train the weights themselves. We achieve this by alter-
nating between the optimization of a search distribution over
assignments with NES and the optimization of layer weights
with SGD. This approach is summarized in Algorithm 1 and
explained in more detail below.

A. Learning Objective

The search for good assignments and layer weights is cast
as an optimization problem

min
θ,a

f (θ, a) , (9)

where f : Θ×A → R is the average loss over all tasks, θ ∈ Θ
is a vector of all layer weights, and a ∈ A is an assignment
of weights to task-specific network layers. The loss function
f is differentiable wrt. θ but black-box wrt. a. We would like
to exploit the fact that θ can be efficiently optimized by SGD
but need a way to simultaneously optimize a. Therefore, we
create a stochastic version of the problem

min
θ,π

J (θ, π) = Epπ [f (θ, a)] (10)

Algorithm 1: LWS training procedure.

1 Let p (a|π) be the search distribution over assignments
2 Let fx,y (θ, a) be the loss for a batch of data x, y

under weights θ and assignment a
3 def StepNES (θ, π) as
4 x, y ← get random batch
5 for i in 1 . . . λπ do
6 sample ai distributed according to p (a|π)
7 calc. loss li = fx,y (θ, ai)
8 calc. log-derivative ∇π log p (ai|π)
9 end

10 calc. utilities ui = 2 · rank(li)−1
λπ−1 − 1

11 ∇πJπ = 1
λπ

∑λπ
i=1 ui∇π log p (ai|π)

12 return π + ηπ∇πJπ
13 end
14 def StepSGD (θ, π) as
15 x, y ← get random batch
16 for i in 1 . . . λθ do
17 sample ai distributed according to p (a|π)
18 calc. weight gradient ∇θfx,y (θ, ai)
19 end
20 ∇θJθ = 1

λθ

∑λθ
i=1∇θfx,y (θ, ai)

21 return θ − ηθ∇θJθ
22 end
23 π ← search distribution parameter vector with all

N (K − 1) elements set to 1
K

24 θ ← randomly initialized neural network weights
25 while not finished do
26 π ← StepNES (θ, π)
27 θ ← StepSGD (θ, π)
28 end

by introducing a probability distribution defined on A with
density function p (a|π). This stochastic formulation makes
the assignments amenable for optimization through π by the
NES algorithm, but on the other hand requires to sample
assignments for the calculation of the gradient wrt. θ.

B. Assignment Optimization
We use the NES algorithm to optimize π for lower ex-

pected loss J (θ, π) while keeping θ fixed (cf. Algorithm 1,
lines 3 to 13). The parameter π is initialized so that all
assignments are equally probable but with prior knowledge
the initial parameter vector could also be chosen so that it is
biased towards certain preferred assignments.

Assignments a1, . . . , aλπ distributed according to p (a|π)
are sampled and their loss values li = f (θ, ai) are calcu-
lated on the same batch of training data for all assignments.
Following Equation 2, the search gradient is approximated as

∇πJ (θ, π) ≈ 1

λπ

λπ∑
i=1

ui∇π log p (ai|π) (11)

with utility values ui in place of fitness values (see below).
Finally, π is updated by performing a step in the direction
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Figure 2. Setup to solve a three-task MTL problem with LWS. A base architecture is duplicated for each task and weights are stochastically assigned to each
layer. There are a total of N = 12 layers and K = 3 weights per weight set. The depicted assignment is the most probable one, which is used for inference.

of ∇πJ (θ, π) scaled by a learning rate parameter ηπ . This is
basic SGD but in principle more sophisticated optimizers like
SGD with momentum or Adam could be used for this update
step as well.

The utility values are created by fitness shaping to make
the algorithm invariant to the scale of the loss function. Loss
values li are transformed into utility values

ui = 2 · rank (li)− 1

λπ − 1
− 1, (12)

where rank (li) ranks the loss values from 1 to λπ in descend-
ing order, i.e. the smallest li receives rank λπ . This results in
equally spaced utility values in [−1, 1] with the lowest loss
value receiving a utility value of 1.

C. Layer Weight Optimization

While we can use backpropagation to efficiently determine
the weight gradient ∇θf (θ, a) with a fixed, determining
∇θJ (θ, π) with π fixed on the stochastic problem version is
not possible directly. Instead, we use a Monte-Carlo approx-
imation to optimize θ for lower expected loss J (θ, π) while
keeping π fixed (cf. Algorithm 1, lines 14 to 22).

In the beginning, all layer weights θ are randomly initial-
ized. For the Monte-Carlo gradient estimation, assignments
a1, . . . , aλθ distributed according to p (a|π) are sampled and
backpropagation is performed for each sample. The same
batch of training data is used for the backpropagation step
throughout this process for every assignment. The resulting
gradients ∇θf (θ, ai) are averaged over all assignments, so
that the final gradient is given by

∇θJ (θ, π) ≈ 1

λθ

λθ∑
i=1

∇θf (θ, ai) . (13)

Using this gradient, θ is updated by SGD with learning rate ηθ
but, again, more sophisticated optimizers could be employed
instead.

D. Natural Gradient

The NES search gradient calculation in Equation 11 actually
follows the plain gradient instead of the natural gradient unless
we take care to use a specific parameterization for the search

distribution. As previously explained, the natural gradient and
plain gradient coincide when the distribution is a member of
the exponential family and has expectation parameters. In our
problem setting, there are a total of N layers distributed over
all task-specific networks that need to be assigned a weight
from K possible choices from the weight set corresponding to
each layer. We can model this with categorical distributions,
which are part of the exponential family, as follows.

First, consider a categorical distribution over K categories
with samples x ∈ NK . It is well known [17], that the
categorical distribution can be written in exponential family
form (cf. Equation 3) with natural parameters α ∈ RK−1 as

pnat (x|α) = exp
{
α · Tnat (x)−Anat (α)

}
(14)

Tnat (x) =
(
δ1,x · · · δK−1,x

)
(15)

Anat (α) = log

(
1 +

K−1∑
i=1

eαi

)
, (16)

where δi,j is the Kronecker delta function that is 1 if i = j and
0 otherwise. Our goal is to have this distribution in expectation
parameters so that we can use the results mentioned before for
the natural gradient calculation. We can reparameterize the
distribution as

pex (x|µ) = exp
{
rex (µ) · Tex (x)−Aex (µ)

}
(17)

rex (µ) =
(
log µ1

µK
· · · log µK−1

µK

)
(18)

Tex (x) =
(
δ1,x · · · δK−1,x

)
(19)

Aex (µ) = − logµK , (20)

which gives us a parameter vector µ ∈ [0, 1]
K−1 with entries

corresponding to the probabilities of all but the last category.
For notational convenience, we use µK = 1−

∑K−1
i=1 µi even

though it is not technically part of the parameter vector.
To see that µ are expectation parameters, we compare it to

the derivative of the cumulant function in natural parameters
(cf. Equation 4). By using the relationship αi = log µi

µK
it is

easy to show that

∂Anat (α)

∂αi
=

eαi

1 +
∑K−1
j=1 eαj

= µi (21)

holds for all i ∈ NK−1.



Table I
TEST ERROR OF LEARNED WEIGHT SHARING COMPARED TO FULL

SHARING AND NO SHARING BASELINES.

DLK-MNIST CIFAR-100 Omniglot
Method ConvNet ResNet18 ResNet18

Full sharing 14.16 ± 0.37 31.80 ± 0.44 10.97 ± 0.60
No sharing 12.80 ± 0.16 32.53 ± 0.32 15.82 ± 1.02
Learned sharing 11.83 ± 0.51 30.84 ± 0.49 10.70 ± 0.62

Now, consider a joint of N independent but not identically
distributed categorical distributions with samples a and param-
eters π so that

a =
(
a1 · · · aN

)
∈ NNK (22)

π =
(
π1 · · · πN

)
∈ [0, 1]

N(K−1) (23)

are the concatenations of the samples and expectation param-
eters of all N categorical distributions, i.e. π is the concate-
nation of N expectation parameter vectors πi ∈ [0, 1]

K−1.
Due to the independence of the N categorical distributions,

the density function for the joint distribution becomes the
product of their individual densities. Again, this is a member
of the exponential family with expectation parameters:

p (a|π) =
∏N
i=1pex (ai|πi) (24)

= exp
{
r (π) · T (a)−A (π)

}
(25)

r (π) =
(
rex (π1) · · · rex (πN )

)
(26)

T (a) =
(
Tex (a1) · · · Tex (aN )

)
(27)

A (π) =
∑N
i=1Aex (πi) . (28)

In summary, LWS uses p (a|π) from Equation 24 as the
density for its search distribution. The parameters π are
the concatenation of all but the last probabilities for each
categorical distribution. Since π are expectation parameters,
we can use Equation 8 to calculate the natural gradient as

∇π log p (a|π) = T (a)− π (29)

and plug it into Algorithm 1 at line 8.

E. Inference

After training has finished, the most likely weight assign-
ment arg maxa p (a|π) is used for inference.

IV. EXPERIMENTS

We demonstrate the performance of LWS on three different
multi-task datasets using convolutional network architectures
taken from other MTL publications to compare our results to
theirs. We also perform experiments using a residual network
[18] architecture to show applicability of LWS to modern
architectures. Furthermore, we provide two baseline results for
all experiments which are full sharing, i.e. every task shares
weights with every other task at each layer except for the
last one, and no sharing, i.e. all task-specific networks are
completely independent. Note that a completely independent
network for each task means that its whole capacity is available

to learn a single task, whereas the full sharing network has to
learn all tasks using the same capacity. Depending on network
capacity, task difficulty and task compatibility we will see no
sharing outperform full sharing and also the other way around.

All experiments are repeated 10 times and reported with
mean and standard deviation. For statistical significance tests,
we perform a one-sided Mann-Whitney U test. The search
distribution parameters π are initialized to 1

K so that layers are
chosen uniformly at random in the beginning. Furthermore,
to prevent that a layer will never be chosen again once its
probability reaches zero, every entry in π is clamped above
0.1 % after the update step and then π is renormalized to sum
to one. The layer weights θ are initialized with uniform He
initialization [19] and update steps on θ are performed with
the Adam [20] optimizer. All images used in the experiments
are normalized to [0, 1] and batches are created by sampling 16
training examples from each different task and concatenating
them. Full sharing, no sharing, and LWS all use the same
equal loss weighting between different tasks. MTL is usually
sensitive to this weighting and further improvements might be
achieved but its optimization is left for future work. All source
code is publicly available online1.

A. DKL-MNIST
DKL-MNIST is a custom MTL dataset created from the

Extended-MNIST [21] and Kuzushiji-MNIST [22] image clas-
sification datasets. We select 500 training examples of digits,
letters and kuzushiji each for a total of 1,500 training examples
and keep the complete test sets for a total of 70,800 test ex-
amples. Using only a few training examples per task creates a
situation where sharing features between tasks should improve
performance. Since all three underlying datasets are MNIST
variants, the training examples are 28 × 28 grayscale images
but there are 10 digit classes, 26 letter classes and 10 kuzushiji
classes in each task respectively.

For this small dataset, we use a custom convolutional
network architecture that consists of three convolutional layers
and two dense layers. The convolutions all have 32 filters,
kernel size 3 × 3 and are followed by batch normalization,
ReLU activation and 2× 2 max-pooling. The first dense layer
has 128 units and is followed by a ReLU activation, while
the second dense layer has as many units as there are classes
for the task. LWS is applied to the three convolutional layers
and the first dense layer, i.e. the whole network except for the
task-specific last layer.

We train LWS and the two baselines for 5,000 iterations
on DKL-MNIST using a SGD learning rate of ηθ = 10−3.
Furthermore, LWS uses λθ = λπ = 8 samples for both SGD
and NES, and a NES learning rate of ηπ = 10−2 to learn
to share sets of K = 3 weights for each layer. We see in
Table I that full sharing performs worse than no sharing, i.e.
there is negative transfer when using the simple approach of
sharing all but the last layer. However, using LWS we find an
assignment that is significantly (p < 0.01) better than the no
sharing baseline for a total error of 11.83 %.

1https://github.com/jprellberg/learned-weight-sharing



Table II
COMPARISON AGAINST RESULTS FROM [13] USING THEIR NETWORK

ARCHITECTURE.

Method CIFAR-100 Test Error [%]

Cross-stitch networks [13] 47
Routing networks [13] 40

Full sharing 39.08 ± 0.36
No sharing 36.50 ± 0.43
Learned sharing 37.43 ± 0.53

B. CIFAR-100

The CIFAR-100 image classification dataset is cast as an
MTL problem by grouping the different classes into tasks
by the 20 coarse labels that CIFAR-100 provides. Each task
then contains 5 classes and 2,500 training examples (500 per
class) for a total of 50,000 training examples and 10,000 test
examples, all of which are 32× 32 pixel RGB images.

We employ the neural network architecture given by [13] to
allow for a comparison against their results. It consists of four
convolutional layers and four dense layers. The convolutions
all have 32 filters and kernel size 3× 3, and are followed by
batch normalization, ReLU activation and 2× 2 max-pooling.
The first three dense layers all have 128 units and are followed
by a ReLU activation, while the last dense layer has as many
units as there are classes for the task, i.e. 5 for all tasks on
this dataset. In [13] they only apply their MTL method to the
three dense layers with 128 units so we do the same for a fair
comparison. This means the convolutional layers always share
their weights between all tasks.

We train LWS and the two baselines for 4,000 iterations
on CIFAR-100 using a SGD learning rate of ηθ = 10−3.
Furthermore, LWS uses λθ = λπ = 8 samples for SGD and
NES, and a NES learning rate of ηπ = 10−1 to learn to share
sets of K = 20 weights for each layer. Table II shows that
LWS, with a test error of 37.43 %, outperforms both cross-
stitch networks at 47 % test error and routing networks at 40 %
test error. However, no sharing achieves even better results.
This can be attributed to the network capacity being small in
relation to the dataset difficulty. In this case, having 20 times
more weights is more important than sharing data between
tasks.

Therefore, we repeat the experiment with a ResNet18
architecture that has much higher capacity than the custom
convolutional network from [13]. The channel configuration
in our ResNet18 is the same as in the original publication
[18]. However, due to the much smaller image size of CIFAR-
100, we remove the 3 × 3 max-pooling layer and set the
convolutional stride parameters so that downsampling is only
performed in the last three stages. We apply LWS to share
weights between each residual block. They are treated as a
single unit that consists of two convolutional layers and, in
the case of a downsampling block, a third convolutional layer
in the shortcut connection. All hyperparameters stay the same
except for the amount of iterations, which is increased to

Table III
COMPARISON AGAINST RESULTS FROM [7] USING THEIR NETWORK

ARCHITECTURE.

Method Omniglot Test Error [%]

Soft layer ordering [7] 24.1

Full sharing 20.85 ± 1.07
No sharing 23.52 ± 1.25
Learned sharing 19.31 ± 2.54

20,000. Test curves are shown in Figure 5 and final test results
are listed in Table I. We notice that no sharing at 32.53 %
test error now performs worse than full sharing at 31.80 %
test error. We believe the reason to be the increased network
capacity that is now high enough to benefit from data sharing
between tasks. LWS further improves on this and achieves the
lowest test error at 30.84 %, which is significantly (p < 0.01)
better than full sharing.

Depending on the sharing configuration, the total number of
weights that are present in the system comprised of all task-
specific networks differs. Naturally, the no sharing configu-
ration has the highest possible amount of weights at 223M,
while full sharing has the lowest possible amount at 11M.
They differ exactly by a factor of 20, which is the number
of tasks in this setting. LWS finds a configuration that uses
136M weights while still achieving higher accuracy than both
baselines.

C. Omniglot

The Omniglot dataset [23] is a standard MTL dataset that
consists of handwritten characters from 50 different alphabets,
each of which poses a character classification task. The alpha-
bets contain varying numbers of characters, i.e. classes, with
20 grayscale example images of 105× 105 pixels each. Since
Omniglot contains no predefined train-test-split, we randomly
split off 20 % as test examples from each alphabet.

We employ the neural network architecture given by [7]
to allow for a comparison against their results. It consists
of four convolutional layers and a single dense layer. The
convolutional layers all have 53 filters and kernel size 3 × 3
and are followed by batch normalization, ReLU activation and
2 × 2 max-pooling. The final dense layer has as many units
as there are classes for the task. As in [7], we apply LWS to
the four convolutional layers.

We train LWS and the two baselines for 20,000 iterations
on Omniglot using a SGD learning rate of ηθ = 10−3.
Furthermore, LWS uses λθ = λπ = 8 samples for SGD
and NES, and a NES learning rate of ηπ = 10−2 to learn to
share sets of K = 20 weights for each layer. Table III shows
how LWS outperforms SLO and both baselines. We repeat
the experiment with a ResNet18 architecture with the 3 × 3
max-pooling removed and present results in Table I. LWS still
performs significantly (p < 0.01) better than no sharing and
is on par with full sharing. Neither full sharing nor LWS is
significantly (p < 0.01) better than the other.
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Figure 3. Percentage of tasks that share weights between exactly t tasks when
learned with LWS on DKL-MNIST.
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Figure 4. Percentage of tasks that share weights between exactly t tasks when
learned with LWS on Omniglot.

D. Qualitative Results

Figure 3 sheds light on what kind of assignments are learned
on the DKL-MNIST dataset. The three convolutional layers
and the one dense layers that are shareable are denoted on
the horizontal axis in the same order as in the network itself.
For each layer, a stacked bar represents the percentage of
tasks over all repetitions that shared the layer weight within a
group of t tasks. Since there are three tasks and three weights
per shared set the only possible assignments are (1) all three
tasks have independent weights, (2) two tasks share the same
weight, while the last task has an independent weight, and (3)
all three tasks share the same weight. In Figure 3 the group
sizes correspond to these three assignments, e.g. in 40 % of
the experiments the first layer had three tasks with independent
weights. An exemplary assignment that was found in one of
the DKL-MNIST experiments can be seen in Figure 1.

Figure 4 shows the same kind of visualization on Omniglot
for a ResNet18. Due to the vastly increased number of possible
assignments, the interpretation is not as straightforward as
in the DKL-MNIST case. However, we can clearly see how
weights are shared between a larger number of tasks in the
early layers. This corresponds well to results from transfer
learning literature [24], where early convolutional layers have
been found to learn very general filters.

V. CONCLUSION

LWS solves MTL problems by learning how to share
weights between task-specific networks. We show how com-
bining NES and SGD creates a learning algorithm that deals
with the problem’s non-differentiable structure by NES, while
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Figure 5. Test accuracy during training for LWS and its baselines using a
ResNet18 on CIFAR-100.

still exploiting the parts that are differentiable with SGD. This
approach beats the MTL approaches cross-stitch networks,
routing networks and soft layer ordering on their respective
problems and we show good performance on three datasets
using a large-scale residual network.
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