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Abstract—The LGMD1 neuron of locusts shows strong
looming-sensitive property for both light and dark objects.
Although a few LGMD1 models have been proposed, they are not
reliable to inhibit the translating motion under certain conditions
compare to the biological LGMD1 in the locust. To address this
issue, we propose a bio-plausible model to enhance the collision-
selectivity by inhibiting the translating motion. The proposed
model contains three parts, the retina to lamina layer for
receiving luminance change signals, the lamina to medulla layer
for extracting motion cues via ON and OFF pathways separately,
the medulla to lobula layer for eliminating translational excitation
with neural competition. We tested the model by synthetic stimuli
and real physical stimuli. The experimental results demonstrate
that the proposed LGMD1 model has a strong preference for
objects in direct collision course-it can detect looming objects in
different conditions while completely ignoring translating objects.

Index Terms—LGMD1 neuron, neural competition, ON and
OFF pathways, translating motion, inhibition

I. INTRODUCTION

Detecting approaching objects from dynamic visual envi-

ronments is crucial for animals, like locusts, eliciting escape

or collision-avoidance behaviors [1]–[3]. The LGMD1 (used

to name LGMD) neuron in the locust’s visual system, excited

by the approach of light or dark objects, plays an important

role in such escape or avoidance behaviors [4]. However,

how the presynaptic neural networks to implement and the

neural computations to shape their responses remain poorly

understood [5].

A lot of artificial visual systems based on LGMD1 are still

struggling to mimic its collision-selective property [6]–[9].

The bio-plausible structure and computation strategy proposed

based on LGMD1 aim to respond to approaching and not

translating visual stimuli, as only the former should reliably

elicit collision-avoidance behaviors [10]. However, detecting

looming as opposed to translating objects is still challenging

for existing models due to translational movements may also

evoke spike response under certain circumstances.

In [2], the first four-layered LGMD1 neuron model demon-

strated that its response would increase with edge velocity

when translatory motion across the “eye” at different speeds.

It cannot distinguish between the approaching cars and those
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nearby fast translating objects in its visual field [11]. Although

the fusion of LGMD1 and translating sensitive neural network

provide a solution to detect colliding objects in complex

dynamic scenes [12], it does not reflect the intrinsic collision-

selective property of LGMD1 neuron.

Recently, inspired by biological systems, most models tend

to split the input into separate ON and OFF channels for

motion detection [13]–[16], which consider the contrast po-

larity of moving edges [17]. Such dual-pathways processing

strategy is also used in collision detection, which combines

spike frequency adaptation (SFA) mechanism [18] in shaping

the collision selectivity of LGMD1 [7]. The model adopts a

method of neural response with derivative profiles to model

the biophysical SFA mechanism for enhancing the looming

selectivity. However, its computation of membrane potential

strongly relies on the tuning of the two adaptation coefficients

within a wide range.

For the ON/OFF separated models, there is a question to

answer, that is, are the responses from the ON/OFF channels

to a looming object and a translating object quite different or

similar? We think the responses to looming and translating

motion should be quite different within the ON and OFF

channels separately. This is because a similar amount of paired

ON-OFF responses are usually triggered by translating objects

but not looming objects. In biology, the neural competition

between ON and OFF channels can explain response features

arising from opponent inputs [19]. Also, the neurons compete

with each other make the winner ones tuned to a certain pattern

of inputs but keep the others from becoming selective to that

same pattern [20]. Therefore, it is possible to propose a new

LGMD1 model by comparing ON and OFF responses.

This paper proposes a new bio-plausible LGMD1 model

based on the neural competition between ON and OFF path-

ways. The morphological LGMD1 neural network and pro-

posed model are as shown in Fig. 1. As can be seen from Fig.

1, the model separates the ON and OFF channels. The main

contribution of this work is comparing ON and OFF responses

for inhibiting translational motion, which effectively enhances

the collision selectivity. The rest of this paper is organized

as follows: the network architecture of the proposed LGMD1

neural network system is presented in Section 2; explicit

experimental results and analysis are provided in Section 3;

the discussion is presented in Section 4; finally, we conclude
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this paper in Section 5.

Fig. 1. Schematic illustration of the morphological LGMD1 neural network
and proposed model: a large green dendritic field for receiving excitatory
synaptic inputs (A), two separate red dendritic fields (B and C) representing
ON and OFF feed forward inhibition; the model is composed of five layers
(P, E, I, S, G) and three cells (FFIon, FFIoff, LGMD1); signals are split into
ON (red-arrows) and OFF (blue-arrows) pathways each with four layers (E,
I, S, G); excitatory signals make a neural competition in LGMD1 neuron; the
dashed lines indicate transmissions of delayed neural signals.

II. NETWORK ARCHITECTURE

In this section, we first schematically illustrate the signal

processing in LGMD1 model, then elaborate on its compo-

nents in the following subsections.

The architecture of the proposed neural network is consisted

of four layers, including retina, lamina, medulla and lobula

layers, as illustrated in Fig.2. The luminance changes are

separated into ON and OFF visual stimuli, which represents

moving edges of positive or negative contrast polarity. The

two opposite stimuli are then further processed in ON and

OFF visual channels and more details are as follows.

A. Retina to Lamina layer

The luminance (L) signals are received by photoreceptors

and converted into electrical signals. The output of P cells is

defined by equation:

Pt (x, y) = Lt (x, y)− Lt−i (x, y) (1)

where Pt (x, y) reflects the luminance change of pixel (x, y)
over time i. Lt (x, y) and Lt−i (x, y) indicate the gray value

of pixel (x, y) at time t and t− i. For video image processing,

the P cells are arranged in a matrix and continuous time

is discretized by frames. Time t and t − i represent two

successive frames with the frame interval i decided by frame

rate. Different frame rate affects the outputs of P cells due to

moving edges of various extent.

B. Lamina to Medulla layer

As shown in Fig. 2, the intensity increments and decrements

are rectified by transient cells in the medulla [21]. The two

types of stimuli are further processed with three processes in

ON and OFF pathways separately. It is noted that ON and OFF

pathways show the computational process similarly, which is

elaborated as follows.

1) Asymmetric Mechanism: The P cell corresponds to a

pairwise excitatory (E) and inhibitory (I) cell. Its polarity of

positive (ON) value do not change but the negative (OFF)

is converted into positive, which corresponds to ‘half-wave

rectification’ [22]:

EON
t (x, y) = ION

t (x, y) = [Pt (x, y)]
+ (2)

EOFF
t (x, y) = IOFF

t (x, y) = −[Pt (x, y)]
− (3)

where [a]+ = max(0, a), [a]− = min(0, a), E and I units in

both ON and OFF channels have the same value related to the

the image contrast.

2) Lateral Inhibition Mechanism: The lateral inhibition

mechanism is a common feature of early visual processing in

many organisms [23]. In our model, lateral inhibition process

is described: center excitation unit (CEU) and output of time

delay unit (TDU) passed from surround inhibition unit (SIU)

are summed by S unit (see Fig. 2).

S ION
t (x, y) =

1∑
i=−1

1∑
j=−1

ION
t−τs (x+ i, y + j)Wi (i, j)

(4a)

SON
t (x, y) = [EON

t (x, y)− S ION
t (x, y)]+ (4b)

where S ION
t (x, y) represents the lateral summed inhibitory

signals correspond to spatial position (x, y) at time t in ON

pathway, τs represents the time delay constant, Wi is the

local inhibition connection weight matrix (see Fig. 3 (a), (b)).

SON
t (x, y) denotes the output of S cell.

3) Group-decay Processing Mechanism: The group-decay

process [1] is efficient and reliable for eliminating small and

isolated excitations in background. In addition, the grouping

operation connects lateral excitations together that enhances

the response to coherent stimuli [5]. It can be mathematically

defined as:

CeON
t (x, y) =

1∑
i=−1

1∑
j=−1

SON
t (x+ i, y + j)Ws (i, j) (5a)

ω = �c+max(abs[Ce]ON
t ))C−1

w (5b)

Gt
ON (x, y) =

(
SON
t (x, y)

)
CeON

t (x, y)ω−1 (5c)

G̃ON
t (x, y) =

{
GON

t (x, y)Cde if GON
t (x, y) ≥ Tg

0 else
(5d)

where CeON
t denotes the passing coefficient (see (5a)). ω is

a scale that is computed by (5b), where �c is a small real

number and Cw is a constant.

The S unit matrix is firstly convolved with a weighting

matrix (Ws) of group connection to compute the passing

coefficient. Then, the S unit is multiplied by this passing

coefficient, which connects directly to the G unit (see Fig. 3

(a), (c)). The decayed excitation remain unexcited as denoted

in (5c) and (5d), where Cde and Tg indicate the decay

coefficient and threshold, Cde ∈ (0, 1). When the grouped

excitation Gt
ON exceeds the decay threshold, its value G̃ON

t

will pass from the G cell to LGMD1 neuron.
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Fig. 2. Schematic illustration of signal processing in LGMD1 model, the procedure is divided into three processing stages: retina to lamina layer, the
photoreceptor (P) cells capture pixel-wise luminance (L) change; lamina to medulla layer, opposite visual stimuli are processed separately in ON and OFF
pathways; medulla to lobula layer, the winner excitatory signals are converged into LGMD1 neuron after a neural competition between ON and OFF pathways;
the combined delayed feed forward inhibition (FFI) signals inhibit the model’s initial response to movement.
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Fig. 3. Schematic illustration of lateral inhibition and group-decay processing
mechanism in lamina to medulla layer: (a) the E unit passes excitation to S unit
in the same retinotopic position and each surrounding delayed I unit passes
inhibition to S unit simultaneously where excitation and inhibition decay
exponentially with different coefficients (delays at excitatory connections are
set to 0 milliseconds, whereas delays on inhibitory connections are set to
vary from several to tens of milliseconds accordingly); (b) weighting matrix
of lateral inhibition connection; (c) weighting coefficients matrix of group
connection.

C. Medulla to Lobula layer
Many trans-medullary-afferents (TmAs) connect the eye

with each LGMD in the lobula layer [24]. The transmedullary

afferents of ON and OFF pathways pass excitatory signals

from G cells to LGMD1. A neural competition between

signals will elicit a spike if the membrane potential exceeds a

fixed threshold. The neural competition process schematically

illustrated in Fig. 4, but the exact mapping of cells in the

model is not known.

Fig. 4. Schematic illustration of the neural competition process indicating
responses comparison between ON and OFF channels. GON and GOFF are
effective outputs (nonzero value) of G layer participating in competition. The
winner excitations are passed to LGMD1 neuron.

Neural Competition Mechanism: To implement the neural

competition mechanism, the nonzero outputs of G cells in ON



and OFF channels are summed separately. Then the winner

excitation are summed and passed to the LGMD1 neuron. The

process can be mathematically described as:

CON
t =

∑
x

∑
y

G̃ON
t (x, y) (6a)

COFF
t =

∑
x

∑
y

G̃OFF
t (x, y) (6b)

where CON
t and COFF

t denote nonzero excitation in two

opponent pathways, which also represents the practical ex-

panding stimuli. The membrane potential MP(t) value is

defined as:

Cmax = max(CON
t , COFF

t ) (7a)

Cmin = min(CON
t , COFF

t ) (7b)

MP(t) =

{
Cmax − Cmin if Cmin ≤ 1

Cmax/Cmin − 1 else
(7c)

where the value of MP(t) is scaled that characterize the

saturation of neuronal response to large input. It is then

transformed to normalized membrane potential NMP(t) as

NMP(t) = 1− (
1/exp(MP(t) · n−1

cell)
)

(8)

where ncell is the total number of the cells in G layer,

NMP(t) ∈ (0 ∼ 1).

D. Spiking mechanism

The spiking mechanism will decide whether the model

trigger a collision alarm. If the normalized membrane potential

NMP(t) exceeds the threshold Ts, it produces a spike,

Spike (t) =

{
1 if NMP(t) ≥ Ts

0 otherwise
(9)

where 1 represents a spike, 0 means no spike. A collision alarm

is detected when there are successive nsp spikes in time tn
[1]. That is,

Calarm (t) =

{
TRUE if

∑t
i=t−tn

Spike (i) ≥ nsp

FALSE otherwise
(10)

where the value of Calarm (t) will become TRUE if a collision

is detected. The successive number of spikes nsp is usually set

four.

E. The Feed Forward Inhibition (FFI)

In the ON and OFF visual pathways, the FFI signals are

gathered from the P cells with tens of milliseconds delay

(τ ). The effect of feed forward inhibition is to suppress the

model’s initial response to movement [23]. Once the value of

FFI exceeds its threshold, spikes in the LGMD are inhibited

immediately. It can be described by the following function.

FFI =

nr∑
x=1

nc∑
y=1

PON
t−τ (x, y) +

nr∑
x=1

nc∑
y=1

POFF
t−τ (x, y) (11)

III. EXPERIMENTS AND ANALYSIS

In this section, we will present the systematic experiments to

evaluate the performance of our proposed model. It consists

two parts: test the competition hypothesis by analyzing the

polarity properties of moving edges and present the different

response properties between ON and OFF visual pathways by

synthetic stimuli; verify the efficiency of the proposed LGMD1

model by real-world physical stimuli. The parameters of the

neural network in all experiments were kept the same.

A. Analysis and Results on Synthetic Stimuli

We analysed the approaching and translating motion in a

simulated environment (see Fig. 5 ) to obtain a deep insight

into the computational model. It shows various response

properties on luminance changes comparing with two types of

motion in an image plane. To further demonstrate the previous

looming motion
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Fig. 5. Schematic illustration of stimuli properties between looming and
translating motion: (a) and (b) represent a black and white square looming
in a white and black background separately; (c) and (d) represent a black
and white rectangle translating in a white and black background separately.
The looming motion shows the monotonous response while translating motion
shows the pair of ON/OFF response.

hypothesis in the proposed neural network, we observe and

analyze the outputs of ON and OFF channels by testing

synthetic stimuli of looming and translating motion. The

resolution of the synthesized image sequences is 300× 300.

Fig. 6(a) and (b) simulate the looming motion of the dark

and light object. As can be seen, the excitation response

linearly increases in a single pathway of OFF or ON as the

expanding of moving edges. This indicates that the responses

in ON and OFF pathways are quite different for looming

motion.

Fig. 7(a), (b) and Fig. 8(a), (b) simulate the translating

motion of the dark and light object in a different direction,

which indicates that the excitation response in both ON and

OFF pathways are very similar in spite of the motion’s

direction.
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Fig. 6. The excitation response of looming objects in ON and OFF pathways:
(a) there are 43 frames featuring a dark square in a light background expanding
linearly; (b) there are 43 frames featuring a light square in a dark background
expanding linearly.
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Fig. 7. The excitation response of translating objects in ON and OFF
pathways: (a) there are 124 frames featuring a dark bar in a light background
move from left to right; (b) there are 124 frames featuring a light bar in a
dark background move from left to right.
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Fig. 8. The excitation response of translating objects in ON and OFF
pathways: (a) there are 124 frames featuring a dark bar in a light background
move from right to left; (b) there are 124 frames featuring a light bar in a
dark background move from right to left.

B. Challenged by Real Stimuli

To test whether the proposed model works reliably, the

best way is to challenge it with real-world physical stimuli.

We tested the model with eight recorded video clips. The

former six image sequences provide looming/approaching

and translating movements under various conditions. We also

consider translatory movements in the visual field when the

camera is turning, which are shown at the last two image se-

quences. These image sequences have resolutions of 100×120,

100× 125 and 100× 150 at 30 frames per second (fps).

Fig. 9, Fig. 10 and Fig. 11 show the collision trajectory

including the looming object or the camera approaching block

respectively. The colliding objects have different colors, sizes,

and shapes. The experimental results demonstrated that the

proposed LGMD1 neuron model can successfully detect the

impending collision. Comparing with three response curves,

they also indicate that the faster-speed and higher-contrast

visual stimuli will make the model produce spikes earlier than

the opposite.

Fig. 12, Fig. 13 and Fig. 14 show objects translating in

front of the camera from left to right or from right to left. The

experimental results demonstrated that the model can strongly

inhibit the translational motion despite objects’ own various

colors, sizes, and shapes. The unexpected three spikes in Fig.

14 are caused by the near-white ball’s uneven surface reflection

or shadows. Note that the near-fast or high contrast objects

abruptly move in or out of the field of view may also trigger
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Fig. 9. The neural response of the proposed model challenged by physical
stimuli from the first recorded image sequence. There are 34 frames featuring
a black ball looming to the camera.

1 20 45

Fig. 10. The neural response of the proposed model challenged by physical
stimuli from the second recorded image sequence. There are 53 frames
featuring the camera approaching a gray block.

1 16 27

Fig. 11. The neural response of the proposed model challenged by physical
stimuli from the third recorded image sequence. There are 30 frames featuring
a white ball looming to the camera and it was marked by a blue circle in the
image.

1 6 13

Fig. 12. The neural response of the proposed model challenged by physical
stimuli from the fourth recorded image sequence. There are 13 frames
featuring a black ball translating in front of the camera from left to right.

1 18 29

Fig. 13. The neural response of the proposed model challenged by physical
stimuli from the fifth recorded image sequence. There are 29 frames featuring
a gray block translating in front of the camera from left to right.

1 23 36

Fig. 14. The neural response of the proposed model challenged by physical
stimuli from the sixth recorded image sequence. There are 38 frames featuring
a white ball translating in front of the camera from right to left. The white
ball was marked by a blue circle in the image.



the model’s spiking. This phenomenon can be regarded as

events occur or it can be eliminated by smoothing the output

data, which depends on the need of the practical situation.

10 30 50

Fig. 15. The neural response of the proposed model challenged by physical
stimuli from the seventh recorded image sequence. There are 59 frames
featuring the turning motion of the camera under uniform illumination.

10 30 50

Fig. 16. The neural response of the proposed model challenged by physical
stimuli from the eighth recorded image sequence. There are 59 frames
featuring the turning motion of the camera under non-uniform illumination.

Fig. 15 and Fig. 16 show the turning motion of the camera

under different lighting conditions. The experimental results

demonstrate that translational movements caused by the turn-

ing motion of the camera can also be successfully inhibited.

IV. DISCUSSION

In the above section, we have proposed a new LGMD1

model using competition between ON and OFF neural path-

ways enhancing collision selectivity. The experiments showed

that it worked well especially when challenged with translating

motion cues. In the lobula of the locust optic lobe, there are

many other neurons working seamlessly together to respond

to the dynamic visual stimuli [25]. For example, there are

LGMD2 [4], [26]–[28] which only respond to darker objects

and directional selective neurons which only excited by visual

motion to specific direction [29], [30]. It is worth combing

all these neurons’ functionalities together in the future work

to provide robust solutions for collision detection for robotics

and autonomous vehicles.

V. CONCLUSION AND FUTURE WORK

To summarize, we have proposed a bio-plausible LGMD1

model for enhancing the collision selectivity. This new model

based on the neural competition can tell looming and trans-

lating motion by comparing ON and OFF responses. Both

the synthetic stimuli tests and real-world physical stimuli

experiments have demonstrated that the neural competition be-

tween the opponent visual pathways is effective for inhibiting

translatory objects and sensitive to looming objects. It should

be noted that the suddenly appeared or disappeared object in

the visual field may trigger the model spiking. However, the

above-mentioned situation may not happen for insects since

they own a nearly 360-degree field of view.
In our future work, we will investigate the potential appli-

cations of neural competition mechanism integrated into the

LGMD1 model to handle more complex and dynamic visual

scenes for the navigation of robots and vehicles.
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