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Abstract—Machine learning classification algorithms are
highly dependent of a dataset composed of high-level features. In
this paper, a deep learning approach is combined with traditional
machine learning classifiers in order to circumvent the need of a
specialist for extracting relevant features from one dimensional
frequency-domain vibration signals. Our approach relies on a
convolutional architecture trained with a triplet loss function
for extracting relevant features directly from the raw data. A
previously hand-crafted feature set, created by a specialist over
the course of many years of research, is compared with the
newly extracted feature set. Six conventional classifiers models
(K-Nearest Neighbors, Support Vector Machine, Decision Tree,
Random Forest, Quadratic Discriminant Analysis and Naive
Bayes) are trained in both features set separately and compared
in terms of macro F-measure. Results shows statistical evidence
towards to the acceptance that the extracted feature set is as good
as or better than the hand-crafted feature set, for classification
purposes.

Index Terms—Fault diagnosis, electrical submersible pump,
classification, metric learning, triplet network

I. INTRODUCTION

Submersible Centrifugal Pumping [1] is an artificial lifting
method widely used in oil and gas production and is character-
ized by the use of a multistage centrifugal pump driven by an
electric motor. An Electrical Submersible Pump (ESP) belongs
to a class of equipments used in the extraction and exploration
of oil and gas subject to severe working conditions. High
pressures, high temperatures, high flow rates and the need for
continuous operation are critical conditions for any machine.
In addition to that, these equipment are deployed under deep
water, making any maintenance unfeasible. Failures that re-
quire downtime, maintenance, and eventually replacement of
these equipment usually lead to significant financial losses due
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to the very high cost of performing maintenance and especially
because of the interruption of production over a long period
of time.

One way to reduce the risk of failure in ESP is conducting
an analysis in a testing laboratory prior to their deployment.
To perform this analysis, a specialist demands multiple ac-
celerometers to be installed along different points of the
EPS system so that vibration signal data are collected for
long periods of operation (e.g., 72 hours). Subsequently, the
specialist uses computational tools to visually analyze the vi-
bration spectrum of these signals. Based on the data collected,
the equipment may be considered in proper conditions of
operation or not.

While this procedure is quite effective in reducing the risk
of failure after deployment of the system, it has a drawback:
specialists who are able to effectively perform this analysis
are very rare. Typically, the knowledge required to accomplish
this task is gained over many years of experience and is not
easily taught. Thus, the industry becomes very dependent on
the experts capable of performing this test. This is inconve-
nient because unavailability of the specialist (due to vacation,
sickness or retirement) may delay schedules or, even worse,
cause less skilled technicians to accept equipment unfeasible
for operation. Therefore, it is desirable that such specialized
knowledge is incorporated into the company corporate knowl-
edge.

Some previous works have already addressed the fault diag-
nosis problem of ESP by adopting traditional machine learning
process [2]–[4]. In these works, the process for diagnosing
systems is composed of the following stages:

1) acquiring raw vibration signals from accelerometers
sensors and converting to the frequency domain;

2) using a specialist to label/diagnosis acquired data;
3) extracting custom made features from the spectrum;
4) training a classifier on the custom made features and
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5) using the trained classifier to diagnose faults in newly
observations.

As in many machine learning classification problems, the third
stage (defining features) is highly dependent of a specialist
capable of instructing which features are important and how
to extract them, so that it can be processed by machine learning
algorithms. In this present work, our main objective is to
address this problem by developing an artificial intelligence
algorithm capable of learning directly on the raw signal in the
frequency domain. To achieve this objective, our methodology
combines a convolutional neural network (CNN) trained with
a triplet loss learning [5] and standard machine learning
algorithm such as Random Forest [6]. This type of network
is capable of directly extracting relevant features from the
frequency domain data. In addition to a competitive classi-
fication performance, this methodology aims at producing a
feature space where the euclidean distance approximates the
“semantic distance”, which is commonly desired when using
this type of network [7]. This is useful for detecting the
introduction of new fault types or unknown anomalies. One
way to detect new fault types is to just compare similarities
(euclidean distance) among samples in the new feature space.
Moreover, the feature space becomes more visually clear to
be interpreted by non-expert analysts.

The remainder of this paper is organized as follows: Section
II provides a brief overview of how data is acquired and how
previous related works uses the data to propose solutions. In
Section III, the fundamentals and the modifications of triplet
network learning are presented. Subsequent to the elaboration
of our experimental setup and methodology in Section IV, the
experimental results and discussions are presented in Section
V. Section VI concludes the paper and presents possible future
works.

II. SIGNAL PROCESSING FOR FAULT DIAGNOSIS SYSTEMS

An ESP system is composed of electrical motors, pumps
and protectors, as showed in Fig. 1. In order to test an ESP,
accelerometers sensors are attached in strategic positions of
its components, as showed in Fig. 1. These sensors collect
vibration signals in the time domain.

In order to be analysed by a specialist, the data is trans-
formed from the time domain to the frequency domain by
the Fourier transformation. Although a specialist can usually
diagnosis faults by just looking the spectrum of a signal in
the frequency domain, a standard machine learning algorithm
is not capable of finding the right features when dealing with
large input data (about 200000 points for a single signal in
the frequency domain). For these reasons, a feature extraction
process is usually made in order to elaborate a condensed set
of relevant features that standard machine learning techniques
can deal with. In this paper, a condensed set of relevant
features, hand-crafted and given by a specialist in the field,
is used in order to compare with our methodology. This hand-
crafted set of features comprises eight real-valued features
that jointly create information about the peaks and shape of
the spectrum in the range of significant frequencies and are

used for identifying the status of the ESP. This set of features
is identical to the one presented in [2] and are described as
follows. Let F be defined as the rotation frequency in which
the BCS is operated. Each feature is defined as:

• median(3,5) Median of the amplitudes in the interval
(3Hz, 5Hz);

• median(F-1,F+1) Median of the amplitudes in the inter-
val (F-1Hz, F+1Hz);

• a: Coefficient a of the exponential regression of type
e(a·X+b) where X is the array of amplitudes in the
interval (5Hz, 19Hz);

• b: Coefficient b of the exponential regression of type
e(a·X+b) in the interval (5Hz, 19Hz);

• rotation1x: Frequency of the highest amplitude in the
interval (F-3Hz, F-0.2Hz);

• peak1x: Amplitude in rotation1x;
• peak2x: Amplitude in 2·rotation1x;
• rms(F-1,F+1) Root mean square of the amplitudes in the

interval (F-1, F+1).

Fig. 1. A BCS system with six components and attached 36 sensors. Each
square or circle represents a sensor.

III. FEATURE EXTRACTION VIA TRIPLET NETWORK

The aim of a triplet network is to learn an embedded
representation of any input object such that objects of the
same class are close/similar while objects of distinct classes
are distant in the multidimensional space defined by the
representation [5]. Despite the name, the triplet network can
have an architecture similar to any traditional neural network.



The difference lies on the objective/loss function in the training
stage.

Let f be the objective function being learned by the
network that maps an input object (a signal) to an embedded
representation in the real space, that is,

f : Rm → Rk,

where m is the number of input neurons (20000 in this work)
and k is the embedded space size (8 in this work). Given
three input objects x, x+, x−, such that x and x+ belong to
the same class and x− belongs to any other class, the loss
function L being optimized by the triplet network is given by:

L(x, x+, x−) = max(0, ||f(x)−f(x+)||−||f(x)−f(x−)||+α),

where α is the minimum desired margin between objects of
distinct classes. In the training stage, three input objects (the
triplet) are feed into the neural network separately. Then the
loss function using the three objects is computed as well as
its gradient. A balanced batch, i.e. a random batch of equally
distributed samples of each class, is formed before the triplets
are generated and fed into the network.

In general, there are O(n3) triplets to been chosen for
training the network, therefore a method for selecting triplets
is crucial. Inspired by [8], in this paper we present a method
for increasingly selecting difficult triplets. The training process
is described as follows. Only triplets considered not “easy”,
i.e, those with a positive loss using an initial margin α = 1.0,
are considered for training the network. For this purpose, a
initial learning rate of 10−3 is used. The training is done in
560 epochs, where after a pre-defined number of epochs the
learning rate is reduced by 10% and α is reduced by 25%. In
the end, the learning rate will be approximately 2 ·10−4 and α
will be 0.013. Reducing margin with time makes triplets with
loss close to the margin be discarded. Subjectively speaking,
the main idea of reducing margin with time lies on the premise
that some triplets have objects that are too hard to be separated
by a “large” margin. Preliminary experiments confirmed that
this strategy had better performance than increasingly focusing
on hard or semi-hard triplets.

The output of the triplet network can be seen as a new
feature vector, extracted from the input, with higher value of
complexity. In this paper, this point of view is adopted and
the new feature space is used for training traditional machine
learning algorithms, such as the K Nearest Neighbors (KNN).

The architecture and parameters of our CNN network are
shown in Table I. Note that an output with the same number of
hand-crafted features is used so that both features set are more
easily comparable. A stride of one and zero padding is used
in the convolutional layers. The Leaky ReLU function with a
negative slope of 0.05 was used as an activation function.

For a fair comparison among deep learning approaches,
a convolutional network (ConvNet), with similar architecture
as the proposed triplet network, was trained using standard
training procedure. The only difference in the architecture lies
on a additional output layer with one neuron for each class.
The training process uses the cross entropy of the prediction

TABLE I
THE ARCHITECTURE USED FOR THE TRIPLET NETWORK

Layer Type Feature Maps Filter Size Dropout
0 Signal 6100 - -
1 Conv 6096 x 16 5 0.2
2 Max Pool 1524 x 16 4 -
3 Conv 1520 x 32 5 0.2
4 Max Pool 380 x 32 4 -
5 Conv 376 x 64 5 0.2
6 Max Pool 94 x 64 4 -
7 FC 192 - 0
8 Output 8 - -

and desired target classes as a loss function. The training lasts
for a maximum of 560 epochs and uses back-propagation with
a initial learning rate of 10−3. After a pre-defined number
of epochs, the learning rate is reduced by 10%. Additionally
after training the ConvNet, similarly to the triplet network,
the internal network (all layers but the output) is used for
extracting new features where machine learning algorithms,
such as KNN, can be trained with. For the sake of simplicity,
the feature space extracted by the triplet network will be
called from now on of triplet-space whereas the feature space
extracted by the traditional ConvNet will be called deep-space.

The classification performance of ConvNet trained in the
frequency domain, as well as six machine learning algorithms
trained in the deep-space, are compared with the performance
on algorithms trained in the triplet-space in Section V.

IV. EXPERIMENTAL METHODOLOGY

The main purpose of this work is to collect statistical evi-
dence towards the acceptance/rejection of our hypothesis about
the proposed methods. This should be done in an objective
and quantitative way, therefore a statistical hypothesis test is
performed. The null hypothesis states that, given a metric for
evaluating classification performance, the average performance
of a classifier algorithm using the hand-crafted feature space
is equal to the average performance of a second classifier
algorithm using an automatically extracted feature space given
by a neural network model. In this paper, two cases of this
hypothesis are analysed. In the first one, a single classifier
model is trained and compared in two different features spaces
while in the second one, the best classifier models trained for
each feature space are compared with each other. The second
is when both C1 and C2 are the best algorithms found for
their respective feature space. Both cases are important. The
latter seems to be the most important in practice since it is
obviously desirable to use the best method to solve a problem,
assuming it can be determined. However, the former is relevant
for our better understanding of the methodology developed in
this paper.

In the next subsections, we define the dataset to be used,
the sampling method, the set of classifiers algorithms used and
how the statistics are estimated.

A. Dataset

A dataset comprising 5617 observations of vibration signals
acquired by accelerometers strategically attached on compo-



nents of a ESP system was created. The signals were collected
separately when the ESP was under various possible operations
conditions. Each signal is an one-dimensional real vector
acquired from a single sensor operating under a single specific
operation condition. Typically, a single vibration signal in the
time domain is composed of 400000 data points collected at
sampling rate of 4096 data points per second. After Fourier
transform is applied, the result is mirrored at 0Hz, therefore
only half of the resulting spectrum is considered to avoid
redundancy. Each vibration signal is considered independently
of each other. All of the 5617 vibration signals are classified as
having strong evidences of a fault in the ESP system or not by
an human expert. This paper consider only three types of motor
pump faults: shaft misalignment, pump blade unbalance, and
mechanical rubbing. Additionally, a faulty sensor generating
abnormal vibration behaviour is considered as a faulty pattern,
although the abnormal behaviour is not necessarily related to
the equipment. An expert performed a visual inspection of
the vibration spectrum of each sensor attributing one of the
five considered categories: normal, faulty sensor, unbalance,
misalignment or rubbing. Table II shows the class distribution
of collected dataset.

TABLE II
CLASS DISTRIBUTION OF 5617 COLLECTED VIBRATION SIGNALS

Class name A priori distribution [%]
Normal 80
Rubbing 4.86
Faulty sensor 5.25
Misalignment 0.93
Unbalance 8.96

B. Classification

As showed in Table II, there are 5 possible classes to be
predicted for a single vibration signal. Although some of
them can theoretically occur simultaneously, there was no
observation where a vibration signal had more than one fault.
Therefore, this paper consider the problem of detecting faults
in ESP systems based on the analysis of vibration signals as
a multi-class problem of 5 classes.

To solve this multi-class classification problem, six clas-
sification algorithms commonly used in the literature were
chosen: K-Nearest Neighbors (KNN) [9], Support Vector Ma-
chine (SVM) [10], Decision Trees (DT) [11], Random Forest
(RF) [6], Quadratic Discriminant Analysis (QDA) [12] and
Naive Bayes (NB) [12]. In order to improve classification
performance, the training process of these algorithms have
a preliminary stage to tune their particular hyper-parameters.
The tuning is done by grid-search, that is, testing each possible
combination of hyper-parameter values. The hyper-parameters
values used to tune this classifiers model are shown in Table
III.

The tunning is also done for the hyper-parameters of the
ConvNet and the TripletNet. For both the ConvNet and the
TripletNet, the tunning is done individually for each classifier,
therefore each classifier model uses the triplet-space that it

TABLE III
RANGE OF VALUES TESTED FOR TUNING THE HYPER-PARAMETERS OF

CHOSEN CLASSIFIERS MODELS.

Method Hyper-parameter Values
NB None -
KNN Number of neighbors {1, 3, 5, 7, 9, 11, 13, 15}
SVM γ {2, 8}

C {25, 27, 213, 215}
DT maximum number of leaf nodes {1, 2, 3 ,4, 5}

maximum tree height {3, 6, 9, 12, 15}
RF number of features {1, 2, 3 ,4, 5}

number of trees {100,1000}
QDA Covariance regularization {0, 10−5, 10−6}

suits best. Table IV shows the hyper-parameters used for
ConvNet and TripletNet. A total of 27 configurations of hyper-
parameters were evaluated for each network.

TABLE IV
RANGE OF VALUES TESTED FOR TUNING THE HYPER-PARAMETERS OF

THE CONVOLUTIONAL NETWORK AND TRIPLET NETWORK. THE
PARAMETER “STEP SIZE” INDICATES THE NUMBER OF EPOCHS IN WHICH

THE LEARNING RATE WILL BE PERIODICALLY REDUCED.

Method Hyper-parameter Values

Convolutional Network Batch size {128, 256, 512}
Learning rate {10−4, 10−3, 10−2}
Step size {20, 30, 40}

Triplet Network Class samples per batch {4, 8, 16}
Learning rate {10−4, 10−3, 10−2}
Step size {20, 30, 40}

C. The Evaluation Framework

The performance criterion used in this work is the macro-
averaged F-measure [13] as defined in equation 1. This
motivation comes from the simultaneous consideration, in
one single value, of precision and recall, derived from the
confusion matrix. Macro-averaging is chosen since it treats all
classes equally, which is desired in this problem due to its
imbalanced dataset, while micro-averaging favors classes with
more examples. Consider a multi-class classification problem
with c classes. For each class j, the individual true positives,
false positives and false negatives are defined as tpj , fpj and
fnj , respectively. The macro-averaged precision and macro-
averaged recall are defined as

PrecisionM =
1

c

c∑
j=1

tpj

tpj + fpj

and

RecallM =
1

c

c∑
j=1

tpj

tpj + fnj
.

The macro-averaged F-measure is defined as the harmonic
mean of precision and recall:

FM =
2 · PrecisionM · RecallM
PrecisionM + RecallM

. (1)



In order to ensure a fair comparison among classifiers, a
10-fold stratified cross-validation is used. For tuning hyper-
parameters, each configuration of parameters is evaluated by
training a new classifier with this configuration in eight of the
training folds and then evaluating its performance in terms of
f-measure in the remaining fold (the 9th fold present in the
training dataset). The best model trained is then tested on the
unseen data of the 10th fold and only this result is used for
computing the averaged F-measure.

On all features of all spaces, a data standardization is
applied, i.e, subtracting the feature mean and then dividing
by its standard deviation. It is important to note that the data
standardization parameters, mean and standard deviation, are
estimated only using the training dataset. Data standardization
is not applied on the triplet-space as preliminary experiments
showed a significant decay in the classifiers performance.

D. Statistical Analysis

As stated before, the purpose of this paper is to compare
several pairs of classifiers and conclude whether there is
statistical difference in each one. One of the assumptions of the
well-known paired t-test is the independence among samples.
This is not the case for the experimental framework used in
this paper, since there is an intersection of training datasets
among folds. Therefore, the corrected t-test proposed for this
situation by [14] was used instead.

V. EXPERIMENTAL RESULTS

The experiments were conducted in the python program-
ming language using PyTorch [15] as an artificial neural
network framework and Scikit learn [16] as a machine learning
framework and as an experimental testing platform. Perfor-
mances of traditional machine learning classifiers on both
features spaces are presented individually and compared.

The aim of the experiments is to determine if the new
features extracted by the triplet network is suitable for classifi-
cation purposes. A new feature space is defined suitable if it is
as “good” as the hand-crafted feature space for classification
algorithms, i.e, if machine learning classifiers achieve equal or
better performance on the new feature space when compared
to the hand-crafted space.

The boxplot in terms of F-measure on the 10-fold cross
validation is presented in Fig. 2. The highest median of each
space are given by Random Forest on hand-crafted feature
space, with a value of 0.829, KNN on the deep-space, with a
value of 0.814 and Quadratic Discriminant Analysis on triplet-
space, with a value of 0.858. Important to observe the large
difference between performance of classifiers SVM, NB and
QDA in the feature spaces. These models performed relatively
poorly when trained in the hand-crafted features. Meanwhile,
there was no model trained in the triplet-space that performed
poorly in this same way. The ConvNet achieved a median of
0.78 and an average of 0.71. The major problem regarding to
ConvNet is its variation. For instance, a minimum f-measure
of 0.45 and a maximum of 0.87 was given by the ConvNet.
Clearly, the combination of conventional machine learning

algorithms with neural networks outperformed the ConvNet,
with the exception of NB trained in the deep-space. To improve
ConvNet performance in this dataset, one should investigate
the reason for such behavior.

ConvNet SVM knn DT RF NB QDA
Classifier Model
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Feature space
frequency domain
triplet-space
deep-space
hand-crafted

Fig. 2. Boxplot of resulting macro F-measures. With the exception of the
traditional convolutional network (ConvNet) which was trained directly on the
frequency domain space, each triple indicates a classifier model being trained
in the triplet-space (left), the deep-space (middle) and the hand-crafted feature
space (right).

The average F-measure estimated from the 10-fold cross
validation is presented in Table V. One may see that methods
QDA and KNN performed well in both extracted spaces while
performed relatively poorly on hand-crafted space. It seems
that both triplet-space and deep-space are optimized for this
classifiers models, which is confirmed by observing Fig. 5
where examples of a class tends to lie close to the centroid
of that class. One may also note the best model trained in
the triplet-space (KNN) has a very similar performance to the
best model trained in the hand-crafted features (RF), with a
slightly higher median. Moreover, the classifier models NB,
QDA, SVM, KNN were better when trained in the triplet-
space.

Hypothesis tests were conducted with respect to the triplet-
space, deep-space and hand-crafted space. The p-values are
presented in two tables: Table VI, which compares average
performance of a classifier model trained in different features
spaces, and Table VII, which compares average performance
of the best models of each space. A significance level of 5%
is adopted. It should be noticed that no model trained on any
extracted feature space has been shown to have a significant
lower average F-measure than the same model but trained on
the hand-crafted features. Moreover, note the existence of a
significant statistical difference on NB, QDA and SVM. The
triplet-space is statistically better than the deep-space when
using QDA, NB, or SVM as classifier model, as shown in



TABLE V
AVERAGE F-MEASURE FOR ALL CONSIDERED CLASSIFIER MODELS.

Classifier Model Feature space F-measure

ConvNet frequency domain 0.71478
DT deep-space 0.76760

hand-crafted 0.79285
triplet-space 0.77906

NB deep-space 0.62356
hand-crafted 0.67328
triplet-space 0.81089

QDA deep-space 0.76185
hand-crafted 0.63896
triplet-space 0.82854

RF deep-space 0.79280
hand-crafted 0.83599
triplet-space 0.82764

SVM deep-space 0.76218
hand-crafted 0.73495
triplet-space 0.82529

KNN deep-space 0.80759
hand-crafted 0.81650
triplet-space 0.82944

TABLE VI
P-VALUES OF 18 CONDUCTED HYPOTHESIS TESTS. THE FIRST COLUMN

SHOWS FOR EACH CLASSIFIER MODEL THE P-VALUE WHEN THE AVERAGE
PERFORMANCE ON THE HAND-CRAFTED SPACE AND THE TRIPLET-SPACE

ARE COMPARED. IN BOLD ARE P-VALUES LESS THAN THE ADOPTED
SIGNIFICANCE LEVEL (5%).

Hand vs Triplet Hand vs Deep Deep vs Triplet

QDA 0.0024 0.0267 0.0156
NB 0.0200 0.2347 0.0266
SVM 0.0493 0.1954 0.0452
KNN 0.5705 0.6940 0.3316
DT 0.5785 0.4244 0.6965
RF 0.7403 0.1242 0.1635

Table VI. This is mainly because the triplet network indirectly
optimizes the feature space for these classifiers, as discussed
before. High p-values presented in Table VII means that the
best method for each feature space are competitive with each
other.

TABLE VII
P-VALUES OF THREE CONDUCTED HYPOTHESIS TESTS FOR THE BEST

MODEL OF EACH SPACE. THE STAR (*) INDICATES MODELS TRAINED IN
THE TRIPLET FEATURE SPACE WHILE THE PLUS SIGN (+) INDICATES

MODELS TRAINED IN THE DEEP-SPACE.

Classifier models p-value

RF vs KNN+ 0.2853
KNN+ vs KNN∗ 0.3316

RF vs KNN∗ 0.7991

For better understanding the concept and results of the new
extracted features spaces, a triplet network and a ConvNet
were trained on 80% of random samples of the dataset and
their feature spaces are visually presented in Fig. 5 and Fig. 4.
The hand-crafted feature space is also presented in Fig. 3. In all
figures, only the remaining 20% samples (test samples) were
considered. The figures comprise a scatter plot for each pair

of newly extracted features. The estimated univariate distribu-
tions, one for each class, are plotted in the matrix diagonal.
Only the three most relevant feature out of eight are presented
in each figure. The complete figures with all features displayed
are available in https://github.com/Lucashsmello/TripletNet-
on-ESP/wiki/Supplementary-material.
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Fig. 3. Scatter plot of the testing dataset for each pair of hand-crafted features.
Each color represents a class. Estimated univariate distributions, one for each
class, are plotted in the diagonal.

The amplitudes in the harmonics (features peak1x and
peak2x) are good features to discriminate a reasonable amount
of misalignment, unbalance and faulty sensor, as can be
observed from Fig. 3. High values of peak1x usually indicates
an unbalance problem, while very low values indicates a faulty
sensor. A High value in feature rms(freq-1,freq+1) also indi-
cates a faulty sensor, however less than one third of examples
with faulty sensors can be diagnosed in this way. With the
exception of these features, no other feature individually gives
a reasonable amount of discriminative power, unless combined
with more than two features.

In the triplet-space, some features separate a single specific
class, for instance, feature F6 separates most of samples
with faulty sensor class, feature F5 separates samples of
unbalance and feature F4 separates samples of misalignment.
In the deep-space, only the faulty sensor samples are easily
discriminated by visually looking the pair of features.

The most notable difference between deep-space and triplet-
space on Fig. 5 and Fig. 4 is the variance in which samples
with faulty sensor class are distributed in the space. The
variance of samples with faulty sensor in the deep-space is
much higher than that of samples of other classes and seems to
have no boundary for this class. In the other-hand, the triplet-
space seems to have a notable boundary for each one of the
classes and samples of the same class are much closer. It seems
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that samples of each class in the triplet-space tends to follow
a multivariate normal distribution which, if true, can make the
detection of new unknown classes much easier, because it is
possible to calculate the likelihood that a sample belongs to a
class. If a new sample have a low likelihood for all classes,
we expect this sample to probably belongs to a new unknown

fault type. This is due to the way the triplet loss is designed.
Consequently, the deep-space cannot be used in the same way
as the triplet-space for detecting new type or class of samples
for, at least, the present dataset.

VI. CONCLUSIONS

In this paper, a methodology based on triplet neural net-
works is developed for automatically extracting and discover-
ing relevant features for detecting and diagnosing faults in an
electrical submersible pump system. Empirical evidence shows
equal effectiveness of automatically extracted features and
specialist extracted features. The hypothesis tests conducted
indicate there is no classifier model trained on the hand-
crafted feature spaced that performed better than the respective
classifier model trained on the new feature space. In addition to
that, the hypothesis test indicated that three classifiers models
had their average f-measure significantly higher when trained
in the new feature space. Moreover, evidences show better
performance when using neural networks as features extractors
for conventional machine learning algorithms. Therefore, we
believe that our methodology for extracting relevant features
can be used to circumvent the need of a specialist investing
time in the process of designing features to be extracted.

The methodology proposed here provides a solution for
the problem of finding a feature space where the euclidean
distance approximates the “semantic distance” in the signal
processing field. In addition, the new feature space could
be useful for detecting the introduction of a new class/fault
type. This can be done by comparing similarities, using the
euclidean distance, among samples in the new feature space.
If a new example falls far from the centroids of each class,
then its is probably a new example of a distinct class. The
reliability of such a method should be investigated in future
works.

Other future work may investigate the meaning and un-
derstanding of the new extracted features. This may lead to
the discovery and understanding of new features that special-
ists were not aware of, consequently increasing the human
knowledge about the problem domain. Lastly, the combination
of the new feature space within the hand-crafted feature
space in order to improve classification performance should
be evaluated.
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