
AUC Estimation and Concept Drift Detection for
Imbalanced Data Streams with Multiple Classes

1st Shuo Wang
School of Computer Science

University of Birmingham
Birmingham, UK

s.wang@cs.bham.ac.uk

2nd Leandro L. Minku
School of Computer Science

University of Birmingham
Birmingham, UK

l.l.minku@cs.bham.ac.uk

Abstract—Online class imbalance learning deals with data
streams having very skewed class distributions. When learning
from data streams, concept drift is one of the major challenges
that deteriorate the classification performance. Although several
approaches have been recently proposed to overcome concept
drift in imbalanced data, they are all limited to two-class
cases. Multi-class imbalance imposes additional challenges in
concept drift detection and performance evaluation, such as a
more severe imbalanced distribution and the limited choice of
performance measures. This paper extends AUC for evaluating
classifiers on multi-class imbalanced data in online learning
scenarios. The proposed metrics, PMAUC, WAUC and EWAUC,
are studied through comprehensive experiments, focusing on their
characteristics on time-changing data streams and whether and
how they can be used to detect concept drift. The AUC-based
metrics show effectiveness in detecting concept drift in a variety
of artificial data streams and a real-world data application with
multiple classes. In particular, EWAUC is shown to be both
effective and efficient.

Index Terms—Class imbalance learning, Online learning, Con-
cept drift detection

I. INTRODUCTION

Online class imbalance learning has been drawing growing
attention from both academia and industry. It deals with
data streams with imbalanced class distributions in an online
fashion, and commonly exists in real-world applications, such
as spam detection, fraudulent bank transactions, and social
media analysis.

Online learning processes each data example for training
once on arrival without storage and reprocessing [1], and
provides real-time predictions. Because it deals with data
sequences rather than a static data set, dynamic changes may
occur in the data distribution, a.k.a. concept drift. Concept
drift detection is a major challenge in the area of data stream
learning, as concept drift compromises the classification per-
formance over time and can even cause catastrophic failure [2].

There are three fundamental forms of concept drift [3]: 1)
a change in class prior probabilities P (y); 2) a change in
class-conditional probability density function p (x | y); 3) a
change in posterior probability P (y | x). Only the third form
causes classification boundary changes, potentially leading to
the most severe performance reduction. It is called a “real”
concept drift [4], which is the focus of this paper. In the

following sections, concept drift detection implicitly refers to
detecting a real concept drift.

Class imbalance learning has been widely discussed in
offline machine learning. It refers to a type of classification
problems, where some classes of data (minority) are heavily
under-represented compared to other classes (majority). This
skewed distribution between classes can cause learning bias
towards the majority class and thus poor generalization [5]. It
has been extended to online learning scenarios in recent years,
but is limited to data with two classes [6].

Imbalanced data problems with more than two classes (i.e.
multi-class imbalance) are widely seen. For example, in topic
recognition of social media analysis, social media messages
involve various topics, such as book, sports, music, politics,
etc. Multi-class imbalance suffers more learning difficulties,
because it increases data complexity and aggravates the im-
balanced distribution [7] [8]. However, none of the existing
methods are designed for non-stationary data with multi-class
imbalance.

AUC is the most popular measure for evaluating classifiers
on two-class data sets. Its online variant PAUC [9] has been
shown to be an effective indicator of concept drift in two-
class data streams [9] [6]. This paper is thus motivated to
explore multi-class AUC for both performance estimation and
concept drift detection in imbalanced data streams. We look
into three research questions: Q1) How to generalize AUC to
multi-class online scenarios? Q2) Once a multi-class AUC is
developed for streaming data, how well does it reflect the cur-
rent performance of online classifiers, including performance
variations resulting from concept drift? Q3) When used as a
part of a concept drift detection method, how well does it
detect concept drift and improve classification performance
in multi-class imbalanced data streams? To the best of our
knowledge, an AUC extension that is suitable for multi-class
data streams remains unexplored. This is the very first work of
concept drift detection for multi-class imbalanced problems.

For Q1 (Sections III and IV), we define three new metrics,
PMAUC, WAUC and EWAUC. For Q2 (Section V), we study
their properties by visualizing their values on stationary and
drifting data streams in comparison with G-mean [10]. For
Q3 (Section VI), we discuss whether these AUC estimates are
useful for concept drift detection and benefit the classification

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

performance overtime, through a variety of data streams with
different settings.

II. BACKGROUND

In this section, we introduce the existing active drift detec-
tion approaches for class imbalanced data, review the current
research progress in multi-class imbalance learning, and dis-
cuss the existing multi-class extensions for AUC. The research
gap in multi-class imbalanced data streams is recognized.

A. Active Drift Handling Approaches

An active drift handling approach consists of a change
detector aiming to sense and report the drift accurately and
timely, and an adaptation mechanism aiming to maintain the
performance of the classifier by reacting to the detected drift.
The change detector inspects certain features extracted from
the incoming data stream (indicators), such as the sample
mean/variance or the predictive performance. A thresholding
mechanism or a hypothesis test adopted by the change detector
is constantly applied during the data arrival to determine if
any change occurs based on the chosen indicator [6]. Once
a change has been detected, the adaptation mechanism is
triggered, so that the classifier can adapt to the change.

A few active approaches for class imbalanced data streams
have been proposed in recent years focusing on binary prob-
lems. A detailed comparison and analysis of these approaches
can be found in [6]. Two of the significant findings were: 1) the
active approaches outperformed the passive ones; 2) PAUC-
PH [9], one of the active approaches, brought significant clas-
sification improvement. It uses PAUC, an AUC-based metric,
as an indicator monitored by the Page-Hinkley (PH) test [11],
and retrain the classifier once a drift alarm is triggered.

B. Multi-Class Imbalance Problems

Multi-class imbalance learning has attracted great attention
in recent years. The existing solutions can be classified into
two categories: class decomposition approaches and ad-hoc
learning algorithms. A class decomposition approach converts
a multi-class problem into a set of two-class subproblems.
There are two commonly used decomposition schemes: one-
versus-one approaches (OVO) and one-versus-all approaches
(OVA). When one class is chosen to be the positive in a two-
class subproblem, OVO picks a different class to be the nega-
tive (e.g. Zhang et al.’s DRCW-ASEG [12], Cerf et al.’s OVE
framework [13]), and OVA merges all the remaining classes
as the new negative (e.g. Yang et.al.’s IEFS framework [14],
Chen et al.’s M3-SVM [15]). Ad-hoc learning algorithms deal
with multi-class data directly, such as multi-class versions
of extreme learning machines [16] and Multi-class Roughly
Balanced Bagging [17].

To evaluate the classification performance on multi-class
imbalance data, G-mean [18] is the most popular “overall”
performance metric, which can reflect the accuracy over all
classes. It is preferable to the traditional accuracy in class
imbalance learning, because it is insensitive to the class distri-
bution. G-mean can be easily used in multi-class cases, which

is defined as the geometric mean of recall of all classes [19].
One issue of G-mean is that it depends on the choice of the
classification threshold, which is not a problem for AUC. The
original AUC, however, is only suitable for offline two-class
data scenarios. Further details on AUC and its extensions to
other scenarios are given in the next section.

C. AUC and Its Extensions

As the most commonly used measure of classification per-
formance, especially in class imbalance learning, the Area Un-
der the ROC Curve (AUC) summarizes all possible trade-offs
between the true and false positive rates of a binary classifier
by varying the decision threshold. It has the attractive property
of being insensitive to class prevalence and misclassification
costs. A few attempts have been made for AUC’s multi-class
extension, referred to as Volume Under the ROC hyper-Surface
(VUS). The existing findings show that a full extension of the
two-class ROC analysis is theoretically possible [20], but the
calculation of VUS remains computationally infeasible [21].

One approach to high-dimensional ROC surfaces is two-
class approximation, decomposing the whole data set into
several two-class subsets and applying the two-class method-
ology directly. Two forms of two-class approximation exist,
similar to the data decomposition schemes in Section II-B:
one-versus-all (OVA) and one-versus-one (OVO). The former,
first used by Provost and Domingos, averages AUC scores
between each class and all remaining classes, weighted by
the class’s frequency [10]. The advantage of this approach
is that the computational complexity only increases linearly
with the number of classes C, and the results are easy to
visualize. However, it becomes sensitive to changes in class
priors. The latter, called MAUC in the literature, averages AUC
scores between all class pairs [22]. It keeps the property of
the traditional AUC, but it has higher complexity involving
C2 − C pairwise comparisons.

In spite of the wide use of AUC and the research effort
into its multi-class extensions, the calculation and the high
computational complexity restrict their application to offline
learning. To address the limitation, Brzezinski and Stefanowski
recently proposed Prequential AUC (PAUC), which makes
use of a sliding window as a forgetting mechanism for
assessing classifiers on evolving data streams and incorporates
the red-black tree data structure to improve computational
efficiency [23]. It was shown to be statistically consistent
and comparably discriminating on stationary data, and a good
indicator of concept drifts, especially abrupt concept drifts, on
non-stationary data [6]. It is only suitable for two-class data
streams.

III. Q1: PREQUENTIAL MULTI-CLASS AUC

We define Prequential Multi-Class AUC (PMAUC) in this
section. It combines PAUC and MAUC to obtain the AUC
estimate for multi-class data streams based on OVO. The
sliding window allows us to compute AUC incrementally after
every new example arrives, based on the most recent data. The
pairwise computation based on any two classes in data allows

us to use binary approaches, while holding the insensitivity to
class prior changes.

For any input data x, assume that the classifier can pro-
vide estimates of the probability of x belonging to each
class p̂ (i | x) for i = 1, . . . , C. The classifier outputs a set
of {p̂ (1 | x) , p̂ (2 | x) , . . . , p̂ (C | x)} with their summation
equal to 1. For any pair of classes i and j, we follow the
notations in [22], and define Â (i | j) as the probability that
a randomly drawn member of class j will have a lower
estimated probability of belonging to class i than a randomly
drawn member of class i. For instance, given a set of data
examples with two possible class labels 1 and 2, Â (1 | 2) is
how likely an example x of class 2 will be predicted with
p̂ (1 | x) < p̂ (1 | x′), where x′ is a randomly drawn example
of class 1. Thus, a higher Â (i | j) implies more accurate
prediction.

Based on the definition of the ROC curve, AUC be-
tween classes i and j can be estimated by Â (i, j) =(
Â (i | j) + Â (j | i)

)
/2. Note that Â (i | j) is not necessarily

equal to Â (j | i) in multi-class cases, although Â (1 | 2) =
Â (2 | 1) in binary cases. This will be explained through an
example below.

Given the data examples in the current window, to calculate
Â (i | j) efficiently, p̂ (i | x) will be sorted in descending order
and maintained in a “red-black tree” [24]. A red-black tree is
a self-balancing binary search tree that can complete insertion
and deletion operations in O (log n) time without additional
memory cost. The method of calculating Â (i | j) is to count
the number of pairs of class i and class j examples such that
the former has a higher probability than the latter, and then to
normalize this value by all possible pairs ninj , where ni is
the number of class i examples and nj is the number of class
j examples in the window [22].

Table I gives an example of calculating Â (i, j) in a
three-class case. Suppose the window W has six examples
{x1, . . . , x6}. Their true class labels are given in the first row
of the table, following the example notation. The numbers in
each column are the predicted probabilities for the correspond-
ing example.

TABLE I: A three-class data example with labels 1, 2 and 3.

p̂ (i | x) x1 (C1) x2 (C1) x3 (C2) x4 (C1) x5 (C2) x6 (C1)
C1 0.9 0.7 0.6 0.3 0.2 0.1
C2 0.04 0.25 0.2 0.15 0.1 0.7
C3 0.06 0.05 0.2 0.55 0.7 0.2

In this example with classes 1, 2 and 3, when calculating
Â (1 | 2), we treat class 1 as the positive and class 2 as the
negative class, and sort the examples based on p̂ (1 | x) in
the descending order (the first row in the table). The sorted
examples have the following classes: +,+,-,+,-,+. By adding
the number of positive examples before each negative one,
we obtain Â (1 | 2) = (2 + 3) / (4× 2) = 0.625. When
calculating Â (2 | 1), we treat class 2 as the positive and
sort the examples based on p̂ (2 | x) (the second row in the

TABLE II: Calculating PMAUC.

Input: W : a window of examples; d: window size; Y = {1, 2, . . . , C}: class
label set; (xt, yt): the example received at the current moment t with true class
label yt ∈ Y ; ni: the number of class i examples in W ; tree (i | j): the red-
black tree when treating class i as the positive and class j as the negative.
Output: pmauc: PMAUC value at time step t.
Initialize: A (i | j) = 0: pairwise AUC when treating class i as the positive and
class j as the negative, where i, j = 1, 2, . . . , C and i 6= j.
1. n =

∑C
i=1 ni

2. if n = d %when window is full, remove the oldest and add the new.
3. for all trees involving class yt−d+1

4. tree.remove(xt−d+1)
5. end for
6. nyt−d+1

= nyt−d+1
− 1

7. for all trees involving class yt

8. tree.add(xt)
9. end for
10.nyt = nyt + 1

11.for any 2 classes i and j in W
12. s = 0
13. for all sorted examples (x, y) ∈ tree (i | j)
14. if y = i
15. s = s + 1
16. else
17. A (i | j) = A (i | j) + s
18. end for
19. A (i | j) = A (i | j) / (ninj)
20. s = 0
21. for all sorted examples (x, y) ∈ tree (i | j)
22. if y = j
23. s = s + 1
24. else
25. A (j | i) = A (j | i) + s
26. end for
27. A (j | i) = A (j | i) / (ninj)
28.end for
29.pmauc =

∑
i6=j A(i|j)
C(C−1)

30.return pmauc
*The code is made available at GitHub: https://github.com/shuo-wang/Data-Stream-Learning.

table), obtaining the following class sequence: -,-,+,-,+,-. Thus,
Â (2 | 1) = (0 + 0 + 1 + 2) / (2× 4) = 0.375. As you can
see, Â (1 | 2) is not equal to Â (2 | 1). Â (1, 2) is their average,
equal to 0.5.

After obtaining all [C (C − 1)] pairs of Â (i, j), the overall
AUC estimate of the classifier is their average:

PMAUC =
2

C (C − 1)

∑
i<j

Â (i, j)

The detailed calculation is presented in Table II. During
online learning, when a new example arrives, the data in the
current window and the [C (C − 1)] corresponding red-black
trees will be updated for calculating PMAUC (lines 1-10). The
time complexity of updating the trees is in O

(
|C|2 log d

)
,

where d is the window size. The time complexity of calculating
all A (i | j) values (lines 11-30) is in O

(
|C|2 d

)
, Therefore,

the overall time complexity of computing PMAUC at each
time step is in O

(
|C|2 d

)
.

IV. Q1: WEIGHTED MULTI-CLASS AUC AND EQUAL
WEIGHTED MULTI-CLASS AUC

In this section, we extend Provost and Domingos’ weighted
AUC [10] [25] for data stream learning. We denote the
extension by WAUC. WAUC applies the OVA scheme for

multi-class decomposition and the sliding window strategy for
incremental update. Each class decomposition is weighted by
the class’s frequency based on the samples in the window, thus
it is sensitive to class imbalance. For a fair comparison of AUC
estimates between OVA and OVO schemes, we also propose
and discuss equal weighted AUC, denoted by EWAUC. The
only difference between WAUC and EWAUC is that, EWAUC
is calculated with an equal weight 1/C assigned to each
class decomposition. Both WAUC and EWAUC output the
average AUC score of C class decompositions. The detailed
calculation is given in Table III.

TABLE III: Calculating WAUC and EWAUC.

Input: W : a window of examples; d: window size; Y = {1, 2, . . . , C}: class
label set; (xt, yt): the example received at the current moment t with true class
label yt ∈ Y ; ni: the number of class i examples in W ; tree (i | ī): the red-black
tree when treating class i as the positive and the remaining classes as the negative.
Output: wauc and ewauc: WAUC and EWAUC values at time step t.
Initialize:
A (i | ī) = 0: AUC when treating class i as the positive and the remaining classes
as the negative, where i, j = 1, 2, . . . , C.
1. n =

∑C
i=1 ni

2. if n = d %when window is full, remove the oldest and add the new.
3. for each class i
4. tree (i | ī).remove(xt−d+1)
5. end for
6. nyt−d+1

= nyt−d+1
− 1

7. for each class i
8. tree (i | ī).add(xt)
9. end for
10.nyt = nyt + 1

11.for each class i
12. s = 0
13. for all sorted examples (x, y) ∈ tree (i | j)
14. if y = i
15. s = s + 1
16. else
17. A (i | ī) = A (i | ī) + s
18. end for
19. A (i | ī) = A (i | ī) / (ni (n− ni))
20. end for
21.wauc =

∑C−1
i=0 (ni/n)A (i | ī)

22.ewauc =
∑C−1

i=0 (1/C)A (i | ī)
30.return wauc, ewauc

Because C red-black trees are maintained for the calcula-
tion, the overall time complexity of computing WAUC and
EWAUC at each time step is in O (|C| d), which is more
efficient than computing PMAUC.

V. Q2: PROPERTIES OF MULTI-CLASS AUC METRICS IN
IMBALANCED DATA STREAMS

In this section, we look into the properties of the AUC
estimates, i.e. PMAUC, WAUC and EWAUC, by tracking and
visualizing their values over time on stationary and drifting
imbalanced data streams, in comparison with G-mean. The
visualization helps us to understand how these metrics behave
over time on different types of data streams, which will further
motivate our study on concept drift detection.

A. Experimental Settings

We generate four artificial data streams with 5000 examples
(namely 5000 time steps). Each example is formed of two
numeric attributes and a class label that can be one of the

four class values {c1, c2, c3, c4}. Two classes, c1 and c2, are
chosen to be the minority with an imbalance ratio (IR) equal
to 3:7. Each class follows the multivariate Gaussian distri-
bution, where the mean and covariance matrix are randomly
generated. The means range within [0, 10].

The first data stream (‘DataStatic’) follows a static distri-
bution without any changes.

The second data stream (‘DataPrior’) involves a class prior
probability change after time step 2500, but no real concept
drift occurs. In other words, the classes c1 and c2 are the
minority before time step 2500, after which c3 and c4 become
the minority with the same IR.

The third data stream (‘DataDrift30%’) involves a concept
drift with 30% severity after time step 2500. There are no class
prior changes, and IR remains 3:7. In this case, c1 is swapped
with c2.

The fourth data stream (‘DataDrift100%’) involves a con-
cept drift with 100% severity after time step 2500. There are
no class prior changes, and IR remains 3:7. In this case, c1 is
swapped with c2; c3 is swapped with c4.

All the changes occur abruptly. ‘DataDrift100%’ has a more
severe concept drift than ‘DataDrift30%’. Severity refers to
the percentage of the input space which has its target class
changed after the drift is complete [2]. With this definition, be-
cause the two minority classes are affected by the concept drift
in ‘DataDrift30%’ with 3:7 of IR, this concept drift has 30%
of severity. Similarly, the concept drift in ‘DataDrift100%’ has
100% severity, because all the classes are replaced with a new
concept.

We apply both traditional Online Bagging (OB) [26] and
Multi-class Oversampling-based Online Bagging (MOOB) [8]
to these data streams. OB does not tackle class imbalance,
while MOOB uses adaptive random oversampling to identify
minority-class examples more accurately. The purpose of
including both is to gain insights into the impact of class
imbalance techniques on these performance metrics. This will
further help us to develop effective concept drift detection
methods that are the most suitable to class imbalanced data.
Both OB and MOOB are ensemble learning algorithms, train-
ing 11 multilayer perceptron (MLP) classifiers as one ensem-
ble model. The calculation of PMAUC, WAUC, EWAUC and
G-mean is based on the same window of examples for fair
comparison. The window size is set to 500 in this section,
which is large enough to include examples from all classes as
required in [23].

B. Property Visualization and Analysis

Fig. 1 depicts how the aforementioned four performance
metrics (i.e. PMAUC, WAUC, EWAUC and G-mean) produced
by OB and MOOB behave over time on the four data streams.
Each is presented with a mean curve and the standard deviation
based on 100 runs.

By comparing across all plots, we can see that the three
AUC-based metrics, i.e. PMAUC, WAUC and EWAUC, be-
have similarly. They are more optimistic than G-mean, in
the sense that they always show a higher value, even when

(a) OB on ‘DataStatic’ (b) MOOB on ‘DataStatic’ (c) OB on ‘DataPrior’ (d) MOOB on ‘DataPrior’

(e) OB on ‘DataDrift30%’ (f) MOOB on ‘DataDrift30%’ (g) OB on ‘DataDrift100%’ (h) MOOB on ‘DataDrift100%’

Fig. 1: PMAUC, WAUC, EWAUC and G-mean behavior.

the model fails to recognize any examples from some of the
minority classes. When OB is the learner, no class imbalance
techniques are applied to rectify the imbalanced distribution,
and G-mean remains zero most of the time. G-mean is the
geometric mean of recall of each class, as introduced in
Section II-B. A zero G-mean implies that at least one class
receives zero classification accuracy. When MOOB is the
learner, more minority-class examples are used for training,
and G-mean is improved significantly. Based on the exist-
ing literature on class imbalance learning, a higher G-mean
suggests better overall classification performance with more
balanced accuracy among classes. In contrast with G-mean,
the AUC-based metrics in the MOOB cases become lower
than that in the corresponding OB cases. This observation
tells us that the AUC values can be high when the learner
performs poorly on minority classes. Therefore, G-mean can
better reflect the performance on minority classes than AUC-
based metrics. It also suggests the necessity of applying class
imbalance techniques in order to better recognise examples
from minority classes. The over optimism of AUC was also
observed in Brzezinski’s research in binary cases [23].

In Fig. 1(c)(d), when there is a class prior change at time
step 2500, all the metrics are not negatively affected by the
change. In Fig. 1(e)-(h), when there is a concept drift at time
step 2500, the AUC-based metrics show a reduction in both
OB and MOOB cases, indicating the performance loss caused
by a concept drift. G-mean shows similar behaviour in the
MOOB cases only. The impact of concept drift on G-mean
cannot be observed in OB, due to the zero G-mean values.
The result here suggests that, the AUC-based metrics can be
over-optimistic for performance evaluation compared to G-
mean, but present good sensitivity to concept drift regardless
of whether a class imbalance technique is applied.

Let us now compare ‘DataDrift30%’ and ‘DataDrift100%’.

It is expected that the less severe concept drift (Fig. 1(e)(f))
causes a smaller performance reduction. In plot (e), WAUC
does not react to concept drift as much as EWAUC and
PMAUC. The reason could be that the majority class has
a higher weight than the minority class in WAUC. In
‘DataDrift30%’, the concept drift only occurs to the minority
classes. Therefore, WAUC does not show a performance drop
as much as EWAUC and PMAUC. It could be problematic
if the data stream becomes more class imbalanced. PMAUC
and EWAUC behave closely to each other. The OVA and
OVO schemes of calculating multi-class AUC do not show
differences, as long as all classes are equally treated. This may
suggest that EWAUC is a better AUC extension than PMAUC
because of its lower computational cost.

VI. Q3: CONCEPT DRIFT DETECTION

Concept drift may be actively detected by tracking the above
performance metrics discussed in this paper. A significant drop
in the metric could suggest a potential concept drift. The
significance is constantly examined during learning through a
statistical test, such as the popular Page-Hinkley (PH) test [11].
Existing active detectors are either designed for binary data or
limited to balanced data. Therefore, in this section, we make
the first step of exploring how to accurately and timely detect
concept drift in multi-class imbalanced data streams.

A. Experimental Design

In the following experiment, we trace each of the four multi-
class metrics, PMAUC, EWAUC, WAUC and G-mean, within
the PH test, and discuss their detection performance on a set
of artificial and real-world data problems. These four drift
detectors are denoted by PMAUC-PH, EWAUC-PH, WAUC-
PH and GM-PH. They are combined within MOOB online
learner as follows. When the detector reports a concept drift,
the MOOB learner is reset and starts learning from scratch; all

the window-based metrics are reset to 0. To avoid false drift
alerts at the early stage of training, the detector is disabled until
at least 30 examples have arrived. OB learner is not discussed
in this section, because of its poor performance [6].

It is worth noting that detection threshold λ in the PH test
is set to 50 throughout our experiment, for fair comparison
and consistent results. When the performance reduction is
greater than λ, a drift alert is issued. This is the most com-
monly used setting in practice [27] and open-source learning
frameworks, such as Java MOA and Python scikit-multiflow,
giving a generally good trade-off between false alarms and
miss detections. Depending on the admissible false alarm rate,
λ can be adjusted for each individual application.

1) Data Settings: We perform two groups of experiments
on the artificial data with concept drift, followed by more
discussions on a real-world problem. Using artificial data
allows us to control when and how the concept drift happens,
and compare the performance of the drift detectors.

For the first group of experiments on the artificial data
(Section VI-B), we aim to find out the effectiveness of the
drift detectors on different types of data, and answer: would the
detectors be effective and remain effective, when the number
of classes increases, when data becomes more imbalanced,
and when concept drift is less severe? Which detector is most
effective on different data settings? We use the same data
generation method as in Section V to generate artificial data,
but vary the number of classes in data (C), the severity of
concept drift (s) and IR using the values shown in Table IV.
There are 32 artificial data sets generated in total. The drift
severity is controlled by how many classes are assigned with
a new mean and covariance matrix. In this group, we fix the
window size to 500 as in Section V.

TABLE IV: Artificial data settings.

Class number C = 4, 8, 16, 24

IR 3:7 Severity s
1, 0.7, 0.5, 0.3

1:9 1, 0.9, 0.5, 0.1

For the second group (Section VI-C), we aim to find out
the impact of window size d on the performance of the drift
detectors, and answer: could a smaller d lead to better sensitiv-
ity to concept drift with the risk of higher false alarm? Which
detector is most effective under which window setting? We
consider 4 different window settings: d = 50, 200, 500, 1000,
and fix the data properties with IR = 3:7, C=4, and s=1.

After the in-depth analysis using the artificial data, we
focus on a real-world problem (Section VI-D). It is a public
gas sensor data set with potential concept drift. The task
is to discriminate 6 types of gases based on data collected
from 16 chemical sensors over 36 months. Eight features
are extracted from each sensor, resulting in 128-dimensional
feature space. Sensor drift has been recognized in this data set,
which could be caused by external contamination and sensor
environments [28].

2) Performance Evaluation: All the experimental analysis
is based on 100 repetitions of training. We record and compare

the True Detection Rate (TDR), the False Alarm Rate (FAR)
and the Delay of Detection (DoD) of the concept drift de-
tectors, when discussing the artificial cases [6]. TDR is the
possibility of detecting the true concept drift. FAR is the
possibility of reporting a concept drift that does not exist.
DoD records the number of time steps required on average
to detect a drift after the actual occurrence. They tell us how
accurate and fast the detection is. A good detector should have
a high TDR, a low FAR and a low DoD. A statistical test for
comparing TDR, FAR and DoD from different algorithms is
not applicable in our case, because their calculation relies on
the outputs of all runs. Instead, we visualize and compare
the TDR-FAR trade-off and average DoD through scatter
plots. When studying the real-world case without knowing
the ground truth, we record the total number of reported drift
and observe the window-based performance metrics over time.
These metrics are compared through the Wilcoxon signed-rank
test at 95% confidence level.

B. Effectiveness of the Drift Detection Methods in Different
Types of Data

In this experiment, we discuss the performance of the 4 drift
detectors on data streams with different number of classes,
imbalance rate and drift severity. Fig. 2 presents the trade-off
between TDR and FAR of the drift detectors on the 32 artificial
data streams. Points at the top left corner are desirable. The
average DoD of each group of points is also listed.

The first three plots show how the detectors are affected
by the data properties. Each point is the average over all the
detectors. The number of classes C presents a clear impact
on the performance. Most of the C = 4 cases have a high
TDR locating above 0.4 compared to the others; most of the
C = 16, 24 cases locate at the bottom left corner, showing
that the concept drift is less likely to be detected and thus less
probability of producing a false alarm. The C = 4 cases also
have the shortest DoD, indicating an earlier detection.

The drift severity s, surprisingly, does not present a clear
impact as it ranges from 10% to 100%. A s = 10% case can
have a high TDR and a low FAR, and a s = 100% can suffer
from a low TDR.

The imbalance ratio does not show a significant impact
on TDR, but the cases with IR=1:9 produce a higher FAR
even when their TDR is low. In other words, the detected
drift in more imbalanced data seems more likely to be a false
alarm. It suggests that the classification performance on more
imbalanced data is more fluctuant, causing the higher FAR.

In the final plot, we compare the 4 detectors across all data
streams. In terms of TDR, EWAUC-PH and PMAUC-PH are
competitive with GM-PH. GM-PH has good TDR (TDR >
0.6), but high FAR. Among the three AUC-based detectors,
PMAUC-PH tends to have more false alarms (FAR > 0.05).
In terms of DoD, GM-PH can detect the drift earlier than
the three AUC-based detectors. Based on the observation in
this experiment, EWAUC-PH is the best choice when there is
limitation on false alarms; otherwise, GM-PH is also a good
detector when detection promptness is necessary.

(a) Number of classes C (b) Drift severity s (c) IR (d) Detector comparison

Fig. 2: TDR, FAR and DoD on different types of data and detector. Each plot is created based on the 32 data streams.

C. Impact of Window Size on the Effectiveness of the Drift
Detection Methods

The performance of each detector is presented in Table V.
The results show that the window size is a key factor affecting
how accurate and how soon the concept drift is detected.
When the window size increases from 50 to 1000, it can be
clearly observed that TDR and FAR are decreasing, and DoD
is increasing for all the detectors. In other words, a small
window size increases the probability of detecting the drift and
reduces the delay; due to the TDR-FAR trade-off, it is more
likely to be a false alarm. Therefore, it is important to find the
best trade-off point for the problem and for the chosen drift
detector. In this experiment, GM-PH can reach 100% TDR,
but its FAR is greatly increased to 0.62; when the window
size is increased to 200, although TDR is decreased to 0.87,
its FAR is dropped into a more reasonable range.

TABLE V: Detection performance at the setting of “C = 4,
Model = MOOB, s = 100%, IR = 3:7”.

Detector d TDR FAR DoD

PMAUC-PH

50 0.65 0.04 1206
200 0.53 0.03 1172
500 0.41 0.015 1246

1000 0.35 0 1662

EWAUC-PH

50 0.8 0.082 1057
200 0.69 0.04 1065
500 0.61 0.015 1201

1000 0.52 0 1518

WAUC-PH

50 0.63 0.035 955
200 0.58 0.03 960
500 0.54 0.015 1104

1000 0.52 0 1446

GM-PH

50 1 0.622 618
200 0.87 0.055 813
500 0.67 0.015 1121

1000 0.45 0 1566

D. On Real-World Data

We apply the same online learner combined with the drift
detector on the gas sensor data set. The chosen data batches
cover 8 months of collected data with 5289 examples. The
number of examples of each type of gases per month is shown
in Table VI [28]. It presents a skewed class distribution varying
over time.

Table VII shows the average number of detected drift over
100 runs, and compares all approaches against GM-PH based
on 4 performance metrics through Wilcoxon signed-rank test.

TABLE VI: Number of examples of each class per month.

Month Gas1 Gas2 Gas3 Gas4 Gas5 Gas6 Total
1 76 0 0 88 84 0 248
2 7 30 70 10 6 74 197
3 0 0 7 140 70 0 217
4 0 4 0 170 82 5 261
8 0 0 0 20 0 0 20
9 0 0 0 4 11 0 15

10 100 105 525 0 1 0 731
36 600 600 600 600 600 600 3600

Each cell in the table includes the mean and standard deviation
of the average performance during the last month period over
100 runs. P-values from the significance test are presented
in brackets for comparing each of the AUC-based detectors
with GM-PH in each column. The purpose is to find out how
the discussed detectors benefit classification over the new data
concept period. The authors in [28] who collected the gas
sensor data claimed and showed that the data of the last month
suffered sensor drift the most.

We can see that GM-PH does not detect any drift, because
G-mean remains 0 at most of the time steps. This suggests
that, if the classifier performs poorly on one or more minority
classes, it affects the effectiveness of GM-PH detecting con-
cept drift. The 3 AUC-based detectors report 1 concept drift
on average, and lead to a significant performance improvement
in AUC types of metrics compared to GM-PH. For example,
PMAUC is improved from 0.579 when using GM-PH to 0.651
when using EWAUC-PH. This reflects the positive role of us-
ing AUC-based metrics to detect concept drift in performance
improvement. Among PMAUC-PH, WAUC-PH and EWAUC-
PH, although they produce similar classification performance,
EWAUC-PH is preferable, because EWAUC is both insensitive
to class imbalance changes and computationally efficient.

VII. CONCLUSIONS

This paper studied the multi-class extension of AUC for
online class imbalance learning. We focused on three research
questions: Q1. define multi-class AUC metrics applicable to
online class imbalance problems; Q2. analyze their properties
as an evaluation measure and a concept drift indicator; Q3.
investigate if and how they can be used to detect concept drift
effectively and efficiently.

TABLE VII: The number of detected drift and average PMAUC, WAUC, EWAUC and G-mean on the last month of data.

Detector Drift No. PMAUC EWAUC WAUC G-mean
PMAUC-PH 1.35 0.668±0.053 (0.000) 0.668±0.053 (0.000) 0.658±0.059 (0.000) 0.000±0.000 (0.322)
WAUC-PH 1.13 0.671±0.058 (0.000) 0.671±0.058 (0.000) 0.664±0.063 (0.000) 0.000±0.000 (NaN)

EWAUC-PH 1.17 0.671±0.059 (0.000) 0.670±0.059 (0.000) 0.662±0.065 (0.000) 0.000±0.001 (0.322)
GM-PH 0.00 0.589±0.102 0.589±0.102 0.588±0.100 0.000±0.000

*Columns 3-6: mean ± standard deviation (p-value). P-values smaller than 0.05 indicate a significant difference w.r.t. GM-PH.

For Q1, we defined PMAUC, WAUC and EWAUC that use
OVO and OVA decomposition schemes. They are calculated
through the sliding window strategy for incremental update
and make use of the red-black tree data structure to improve
computational efficiency. For Q2, we studied their properties
compared to G-mean. We visualized their differences on
stationary and drifting streams with different types of changes.
We find that the AUC-based metrics can be optimistic as
a performance measure, and G-mean can better reflect the
performance on minority classes. PMAUC and EWAUC reflect
the impact of concept drift well without being affected by other
types of changes. For Q3, we discussed four active concept
drift detectors that use PMAUC, EWAUC, WAUC and G-mean
as the drift indicator respectively within PH-test. EWAUC-
PH and GM-PH show better TDR. The former has a lower
false alarm rate, and the latter has an earlier detection. The
window size is a key factor affecting concept drift detection.
Following the experiment on the artificial data, we applied
the drift detectors on a real-world data set. The AUC-based
detectors brought significant classification improvement.

In summary, we made the first step towards detecting
concept drift in multi-class imbalanced data streams. The
results are promising. In the near future, we would like to
discuss their performance on more real-world data sets. Having
an adaptive window size for AUC calculation would be useful.

REFERENCES

[1] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2001, pp. 359–364.

[2] L. L. Minku and X. Yao, “DDD: A new ensemble approach for
dealing with concept drift,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 4, pp. 619 –633, 2012.

[3] M. G. Kelly, D. J. Hand, and N. M. Adams, “The impact of changing
populations on classifier performance,” in Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1999, pp. 367–371.

[4] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[5] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[6] S. Wang, L. L. Minku, and X. Yao, “A systematic study of online class
imbalance learning with concept drift,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 4802 – 4821, 2018.

[7] S. Wang and X. Yao, “Multi-class imbalance problems: Analysis and po-
tential solutions,” IEEE Transactions on Systems, Man and Cybernetics,
PartB: Cybernetics, vol. 42, no. 4, pp. 1119–1130, 2012.

[8] S. Wang, L. L. Minku, and X. Yao, “Dealing with multiple classes
in online class imbalance learning,” in The 25th International Joint
Conference on Artificial Intelligence (IJCAI’16), 2016, pp. 2118–2124.

[9] D. Brzezinski and J. Stefanowski, “Prequential auc for classifier eval-
uation and drift detection in evolving data streams,” New Frontiers in
Mining Complex Patterns, vol. 8983, pp. 87–101, 2015.

[10] F. Provost and P. Domingos, “Well-trained pets: Improving probability
estimation trees,” in CDER Working Paper, STERN School of Business,
NYU, 2000, pp. 1–24.

[11] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1,
pp. 100–115, 1954.

[12] Z.-L. Zhang, X.-G. Luo, S. González, S. Garcı́a, and F. Herrera, “Drcw-
aseg: One-versus-one distance-based relative competence weighting
with adaptive synthetic example generation for multi-class imbalanced
datasets,” Neurocomputing, vol. 285, pp. 176 – 187, 2018.

[13] L. Cerf, D. Gay, N. Selmaoui-Folcher, B. Crémilleux, and J.-F. Bouli-
caut, “Parameter-free classification in multi-class imbalanced data sets,”
Data & Knowledge Engineering, vol. 87, pp. 109 – 129, 2013.

[14] J. Yang, J. Zhou, Z. Zhu, X. Ma, and Z. Ji, “Iterative ensemble feature
selection for multiclass classification of imbalanced microarray data,”
Journal of Biological Research-Thessaloniki, vol. 23, no. 13, pp. 1–9,
2016.

[15] K. Chen, Bao-Liang Lu, and J. T. Kwok, “Efficient classification of
multi-label and imbalanced data using min-max modular classifiers,”
in The 2006 IEEE International Joint Conference on Neural Network
Proceedings, 2006, pp. 1770–1775.

[16] H. Yu, C. Sun, X. Yang, W. Yang, J. Shen, and Y. Qi, “ODOC-ELM:
Optimal decision outputs compensation-based extreme learning machine
for classifying imbalanced data,” Knowledge-Based Systems, vol. 92, pp.
55 – 70, 2016.

[17] M. Lango and J. Stefanowski, “Multi-class and feature selection ex-
tensions of roughly balanced bagging for imbalanced data,” Journal of
Intelligent Information Systems, vol. 50, no. 1, pp. 97–127, Feb 2018.

[18] M. Kubat, R. Holte, and S. Matwin, “Learning when negative examples
abound,” in European Conference on Machine Learning, vol. 1224,
1997, pp. 146–153.

[19] Y. Sun, M. S. Kamel, and Y. Wang, “Boosting for learning multiple
classes with imbalanced class distribution,” in Sixth International Con-
ference on Data Mining (ICDM’06), Dec 2006, pp. 592–602.

[20] C. Ferri, J. Hernández-Orallo, and M. A. Salido, “Volume under the roc
surface for multi-class problems,” in Machine Learning: ECML 2003,
2003, pp. 108–120.

[21] T. C. W. Landgrebe and R. P. W. Duin, “Efficient multiclass roc
approximation by decomposition via confusion matrix perturbation anal-
ysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 5, pp. 810–822, May 2008.

[22] D. J. Hand and R. J. Till, “A simple generalisation of the area under the
roc curve for multiple class classification problems,” Machine Learning,
vol. 45, no. 2, pp. 171–186, 2001.

[23] D. Brzezinski and J. Stefanowski, “Prequential AUC: properties of the
area under the roc curve for data streams with concept drift,” Knowledge
and Information Systems, vol. 52, no. 2, p. 531–562, 2017.

[24] R. Bayer, “Symmetric binary b-trees: Data structure and maintenance
algorithms,” Acta Informatica, vol. 1, no. 4, pp. 290–306, 1972.

[25] F. Provost and P. Domingos, “Tree induction for probability-based
ranking,” Machine Learning, vol. 52, no. 3, pp. 199–215, 2003.

[26] N. C. Oza, “Online bagging and boosting,” IEEE International Confer-
ence on Systems, Man and Cybernetics, pp. 2340–2345, 2005.

[27] T. Djukic, G. Mackinnon, R. Mena, P. Krishnakumari, O. Cats, and
M. Brackstone, “Seta deliverable 4.3: Initial evaluation of predictors for
smart mobility,” pp. 1–57, 2017.

[28] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and
R. Huerta, “Chemical gas sensor drift compensation using classifier
ensembles,” Sensors and Actuators B: Chemical, vol. 166-167, pp. 320
– 329, 2012.

